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ABSTRACT
Given a transcendental meromorphic function that satisfies an asymptotic behaviour
near infinity, P. Rippon and G. Stallard showed in [15] that such function has a family
of invariant Baker domains associated to its essential singularity at infinity. In this
work, we extend this result to meromorphic functions with a countable number
of essential singularities. Furthermore, for any p ∈ N we provide a closed form
description of a large class of functions with countable many essential singularities
that exhibit p families of invariant Baker domains. This closed form allow us to
provide explicit examples of the results.
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1. Introduction and statement of results

For a given meromorphic function f : Ω → Ĉ, where Ω ∈ {C, Ĉ}, we define the
iterates of f by f0 = Id and fn = f(fn−1) for n ≥ 1. The Fatou set of f , denoted
here by F(f), is the set of all points z ∈ C for which the family of iterates {fn}n≥0 is
defined, meromorphic and forms a normal family in a neighbourhood of the point z. Its
complement, J (f) = Ĉ\F(f), is known as the Julia set of f . Both sets are completely
invariant under f . In particular, if U ⊂ F(f) is a maximal component of normality for
f , then given any integer n ≥ 0, there exists a component Un ⊂ F(f) (also maximal)
so that fn(U) ⊂ Un. If Un = U and n ≥ 1 is the minimal integer that satisfies this, U is
called a periodic component of period n. See [2] for a full classification of periodic Fatou
components and further properties of Fatou and Julia sets of meromorphic functions.
The kind of Fatou components that one shall be concerned with in this work are
defined as follows.

Definition 1.1. Let U ⊂ F(f) be a maximal domain of normality so that f : U → U
is analytic. If there exists z0 ∈ ∂U such that fn(z) → z0 as n → ∞ for every z ∈ U
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and f(z0) is not defined, then U is called an invariant Baker domain of f and z0 is
called the Baker point of U .

It follows directly from Definition 1.1 that rational maps do not have Baker domains,
while transcendental meromorphic functions may exhibit Baker domains associated to
their essential singularity at infinity. The first known example of a transcendental entire
function with an invariant Baker domain was given by P. Fatou, [8]. Other examples
of transcendental entire and meromorphic functions are described in the survey by
P. Rippon, [14]. Recently, D. Mart́ı-Pete provided examples of analytic self-maps of
the punctured plane with Baker domains associated to the ommited values, see [11].

Rational, entire transcendental functions and analytic self-maps of the punctured
plane are closed under composition. In contrast, if f is a transcendental meromorphic
function with at least one pole that is not an ommited value in C, then that pole
becomes a finite essential singularity of f2, thus making f2 to lie outside the class of
f . Indeed, let z0 ∈ C be a pole of f of order p ≥ 1 and assume there exists at least one
value w0 ∈ C so that f(w0) = z0. One can express f as f(z) = (z − z0)−pg(z), where
g is a transcendental meromorphic function that is analytic in a neigbourhood of z0.
The second iterate of f can be written as

f2(z) =
(
(z − z0)−pg(z)− z0

)−p
g
(
(z − z0)−pg(z)

)
.

From the above expression one easily sees that w0 is now a pole of f2 and z0 becomes
a finite essential singularity for f2. To overcome this problem, one may consider a
larger class of meromorphic functions previously investigated by A. Bolsch in [4]. The
following definition is motivated by Definition 1.1 also in [4].

Definition 1.2. A function f is said to belong to class K if there exists a countable
compact set A(f) ⊂ Ĉ such that f is a non-constant analytic function in Ĉ\A(f) but
in no other superset.

Thus, a function in class K has countably many essential singularities. Moreover,
it follows from [4, Theorem 1.2 (iii)] that if f ∈ K, then f2 ∈ K with A(f2) =
A(f) ∪ f−1(A(f)), In consequence, K is closed under composition.

The extension of the Julia-Fatou theory of iteration in class K can be found in the
dissertations of Bolsch [4] and M. Herring [9]. Among many results, it was shown in
Theorem 4.1.1 in [9] that the classification of invariant Fatou components for tran-
scendental meromorphic functions holds for functions in class K. Our main purpose
is to provide sufficient conditions over a large class of functions with countable many
essential singularities that exhibit an infinite collection of invariant Baker domains.

Families of Baker domains

Consider the case of the entire transcendental function f(z) = z + e−z. It was proved
by I. N. Baker and P. Domı́nguez in [1, Theorem 5.1] the existence of an invariant
Baker domain U ⊂ C where R(fn(z)) → ∞ as n → ∞ and where ∂U is tangent to
the lines y = ±π. Since f(z + 2πi) = f(z) + 2πi, then for each k ∈ Z, Uk := U + 2πik
is again an invariant Baker domain with boundary tangent to the lines y = (2k± 1)π.

Following the terminology introduced in [15], one says that f(z) = z+ e−z exhibits
a family of Baker domains: that is, F(f) contains an infinite and countable collection
of invariant Baker domains associated to the essential singularity at infinity and each
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Baker domain lies inside a strip |I(z)−2πk| < π, for each k ∈ Z. Also in [15], P. Rippon
and G. Stallard studied a class of transcendental meromorphic functions that share
an asymptotic behaviour near infinity, namely, functions that satisfy

sup{|Arg((f(z)− z)ez)| : z ∈ R(t, s)} → 0, as t→∞ (AB)

over a half strip R(t, s) = {z : t ≤ R(z), |I(z)| ≤ s}, with s > 0 and where Arg(z)
denotes the principal argument. For further reference, we provide the full statement.

Theorem 1.3 (Theorem 1 in [15]). If f is a meromorphic function that satisfies
condition (AB), then:

(1) for each k ∈ Z there is an invariant Baker domain Uk of f such that, for each
0 < θ < π, Uk contains a set of the form

Vk(θ) = {z : vk(θ) < R(z), |I(z)− 2kπ| < θ};

(2) the Uk are distinct Baker domains;
(3) if z ∈ Uk, then |I(fn(z))− 2kπ| → 0 and R(fn(z))→∞ as n→∞;
(4) each Uk contains a singularity of f−1.

Based on this theorem, the authors constructed examples of transcendental entire
functions of the form g(z) = z(1 + ez

p

) with p ∈ N, so that on each sector |Arg(z) −
2πij/p| < π/p, j = 0, . . . , p− 1, there exists a family of invariant Baker domains. One
says that g exhibits p-families of Baker domains associated to its unique essential
singularity at infinity.

Since the required asymptotic behavior in (AB) is a local condition near infinity, it
is not difficult to conclude that Theorem 1.3 can be extended to functions with more
than one isolated essential singularity. This observation is at the core of the proof of
our results.

Statement of results

Our first result presents a generalization of Theorem 1.3 in which condition (AB) is
replaced by a new asymptotic behaviour (AB′) where a displacement in the argument
is now allowed. This new asymptotic condition was inspired by the Remark after
Theorem 6.1 in [14].

Theorem A. Let f be a non-constant, complex-valued function that is analytic on
the right half plane H0 = {z ∈ C : 0 < x0 < R(z)} and suppose that, for each s > 0
and some α ∈ R,

sup{|Arg((f(z)− z)ezeiα)| : z ∈ R(t, s)} → 0, as t→∞. (AB′)

If f has an isolated essential singularity at∞, then f satisfies the following conditions:

(1′) for each k ∈ Z there is an invariant Baker domain Uk of f such that, for each
0 < θ < π, Uk contains a set of the form

V ′k(θ) = {z : vk(θ) < R(z), |I(z)− 2kπ − α| < θ};

(2′) the Uk are distinct Baker domains;
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(3′) if z ∈ Uk, then |I(fn(z))−2kπ−α| → 0, (fn+1(z)−fn(z))→ 0 and R(fn(z))→
∞ as n→∞;

(4′) each Uk contains a singularity of f−1.

Proof. The proof is almost verbatim to the proof of Theorem 1.3 in [15] with the
following variations. First, if f is a function that satisfies condition (AB′), then it is
clear that the definition of V ′k(θ) and the estimate on I(fn(z)) in (3′) must take into
account the displacement by α.

The condition (fn+1(z)− fn(z))→ 0 that appears in (3′) can be implicitly derived
from the proof of Theorem 1.3. Indeed, Lemma 2.1 in [15] states that if s > 0, then

sup{|f(z)− z| : z ∈ R(t, s)} → 0, as t→∞.

The justification behind the above condition requires that Arg((f(z)− z)ez) be suffi-
ciently small when z ∈ R(t, s+ 1) which is always possible due to (AB). Similarly, the
principal argument of (f(z)− z)ezeiα can be made sufficiently small if f now satisfies
condition (AB′), and thus the rest of the proof of Lemma 2.1 follows through. The
lemma, combined with R(fn(z))→∞ as n→∞ gives the desired result.

The main result in this article is the following.

Theorem B. Let Ω ∈ {C, Ĉ} and g : Ω→ Ĉ be either a transcendental meromorphic
function or a rational function. Consider a function in class K given by

f(z) = z + exp(g(z)),

with A(f) = g−1(∞). If z0 ∈ A(f) is a pole of g of order p ≥ 1, then f(z) has p-
families of Baker domains with z0 as its Baker point. Furthermore, each family lies in
a sector of opening 2π/p in a small neighbourhood of z0.

From the classification of Baker domains described by Cowen and König (see Sec-
tion 3 for further details) we are able to conclude the following.

Corollary. Under the assumptions of Theorem B, each Baker domain Uk of f with
Baker point at z0 is parabolic of type I.

We provide three examples of functions in class K of the form f(z) = z+ exp(g(z))
that satisfy conditions of Theorem B. The distinction among these examples can be
resumed as follows.

• Lemma 3.2 applied to the case when g(z) = z(z2− c2)−1, with c ∈ C∗, concludes
that the point at infinity is a parabolic fixed point of f .
• When g(z) = z−3 + exp(z), then the point at infinity becomes a Baker point

of f associated to infinitely many families of Baker domains parabolic of type I
(Proposition 4.3).
• When g(z) = (sin(z))−1, the point at infinity is a Baker point of f associated to

two invariant Baker domains parabolic of type II (Proposition 4.5).
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Outline

The proof of Theorem B is given in Section 2. A brief introduction to the classification
of Baker domains and the proof of the Corollary is found in Section 3. In Section 4
we provide several examples of functions in class K of the form f(z) = z + exp(g(z)),
when g is either a rational or a transcendental meromorphic function.

2. Proof of Theorem B

Let z0 ∈ A(f) be a pole of g of order p ≥ 1 and set ω = exp(2πi/p). For each
j = 1, 2, . . . , n− 1, define the Aj sector by Aj = ωjA0, where

A0 :=

{
z ∈ C∗ :

−π
p

< arg(z) <
π

p

}
and arg has been chosen so that the positive real axis is the angle bisector of A0. Select
t, s > 0 so that tan(s/t) = π/p and denote by R0 = R0(t, s) the half strip contained
in A0 and defined by

R0(t, s) := {z : t ≤ R(z), |I(z)| ≤ s} .

Similarly, let Rj = Rj(t, s) = ωjR0 for each j.

Figure 1. Sectors and half strips for the case p = 3.

In order to understand the asymptotic behavior of g(z) as z → z0 along a prescribed
direction, consider a punctured disk D∗ centred at z0 and radius sufficiently small so
that, for each z ∈ D∗, the Laurent series expansion of g at z0 is given by

g(z) =
a−p

(z − z0)p
+

a−p+1

(z − z0)p−1
+ . . .+ a0 + a1(z − z0) + . . . , (1)

with a−p 6= 0. Selecting the same branch of arg(z) as before, there exists b ∈ C that
satisfies (−b)p = −a−p (the minus sign in front of b will become clear later on) so
the Möbius map M(w) = z0 − b/w sends D∗ into a punctured neighbourhood D∗∞ of
infinity and where for each w ∈ D∗∞,

G(w) = g(M(w)) = −wp + αp−1w
p−1 + . . .+ α0 +

α−1

w
+ . . . . (2)
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Proposition 2.1. Let D∞ ⊂ Ĉ denote a disk centred at infinity and consider a func-
tion G analytic in the punctured neighbourhood D∗∞ with power series expansion given
by

G(w) = −wp + αp−1w
p−1 + ...+ α1w + α0 + . . . ,

for some p ≥ 1. Then, for each j = 0, . . . , p− 1,

lim
w→∞

w∈Rj(t,s)

R(G(w)) = −∞.

Proof. First, observe that limw→∞−G(w)/wp = 1 in any direction that w approaches
infinity. Denote this asymptotic equivalence as G(w) ∼ −wp when w →∞. Fix j and
consider w ∈ Rj(t, s). Since the height of each half strip is bounded, then arg(w) →
2πj/p as w → ∞ over Rj (that is, arg(w) converges to the angle bisector of Aj as
w → ∞ along Rj). Then arg(wp) = p arg(w) → 2πj. This, together with the fact
G(w) ∼ −wp as w → ∞ gives the assertion on the limit and the proposition is
proved.

Consider the asymptotic expression of Equations (1) and (2) given by

g(z) = a−p(z − z0)−p(1 + o(1)), z → z0, (3)

G(w) = −wp(1 + o(1)), w →∞. (4)

Using the change of coordinates defined by the Möbius map M , we now consider
the conjugate function F (w) = M−1 ◦ f ◦M(w), which, after some computations, its
expression can be reduced to

F (w) =
w

1− w
b exp(G(w))

.

The negative sign in the definition of b now becomes apparent in the denominator of
F , and it will allow one to express F (w) using the geometric series. To do so, recall
that from Proposition 2.1,

lim
Rj(t,s)3w→∞

R(G(w)) = −∞

over each sector Aj , independently of s, t > 0. Hence, given 0 < r < 1, for each s > 0
there exists ts := t(s) > 0 such that∣∣∣w

b
exp(G(w))

∣∣∣ < r, w ∈ Rj(ts, s).

Consider the set Vj :=
⋃
s>0Rj(ts, s) ⊂ Aj and observe that

Vj ⊂
{
w ∈ Aj :

∣∣∣w
b

exp(G(w))
∣∣∣ < r < 1

}
.

Clealry, Vj is a nonempty subset of Aj with unbounded real part. Since the geometric
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series for w
b exp(G(w)) is uniformly convergent inside Vj , we can express F (w) as

F (w) = w
(
1 + (wb exp(G(w))) + (wb exp(G(w)))2 + ...

)
,

= w + w2

b exp(G(w))(1 + (wb exp(G(w))) + (wb exp(G(w)))2 + ...),

for w ∈ Vj . Without loss of generality, we restrict our analysis to the case j = 0
and drop the subscripts from the regions A0, R0 and V0, as previously defined. The
asymptotic form of F can be expressed as

F (w) = w +
w2

b
exp(G(w))(1 + o(1)), R(w)→∞, w ∈ R(t, s). (5)

Let φ−1(z) = z1/p be the unbranched inverse of wp = φ(w) defined in the sector A.
Clearly, φ|V is well defined and single valued. Denote by V = φ(V ) and consider the
conjugate function F := φ◦F ◦φ−1 where F : V→ C\R−. For t, s > 0 sufficiently large,
the half strip R(t, s) is simply defined by R(t, s) = {z ∈ V : t ≤ R(z), |I(z)| ≤ s}.
Since R(t, s) ⊂ V, then φ−1(R(t, s)) ⊂ V , so, for z ∈ R(t, s)

F (φ−1(z)) = z1/p + z1/pH(z)(1 +H(z) + (H(z))2 + ...),

where H(z) = z1/pb−1exp(G(z1/p)). From Equation (2), we obtain

G(z1/p) = −z(1− β1bz
−1/p + β2bz

−2/p ∓ ...)

and consequently

G(z1/p) = −z(1 + o(1)), as R(z)→∞, z ∈ R(t, s). (6)

Combining the conclusion of Proposition 2.1, Equations (5) and (6) we obtain for
R(z)→∞ inside R(t, s),

F (φ−1(z)) = z1/p +
z2/p

b
exp(−z(1 + o(1))(1 + o(1)).

Then,

F(z) =
(
z1/p + z2/p

b exp(−z(1 + o(1))(1 + o(1))
)p

= z + z2

bp exp(−pz(1 + o(1))(1 + o(1))p+1

= z + z2

bp exp(−pz(1 + o(1))(1 + o(1)), R(z)→∞.

Since p ≥ 1 is an integer, the map z 7→ pz does not affect the angle bisector of R(t, s),
so one can consider the conjugation z 7→ pF( zp) which, for simplicity, it is denoted
again by F. One obtains

F(z) = z +
z2

pbp
exp(−z(1 + o(1))(1 + o(1)), (7)
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as R(z)→∞, z ∈ R(t, s). It follows that

arg ((F(z)− z)ez) = arg

(
z2

pbp
exp(zo(1))(1 + o(1))

)
.

Setting α = −arg b−p, the previous expression becomes

arg((F(z)− z)ezeiα) = arg
(
z2exp(zo(1))(1 + o(1))

)
, (8)

= (2 arg(z) + I(z)o(1))(1 + o(1))

which converges to zero as R(z) → ∞, z ∈ R(t, s) with bounded imaginary part.
Taking supremum, we conclude that F satisfies condition (AB′) of Theorem A. Then
F(z) possesses a family of Baker domains, Uk, k ∈ Z with ∞ as its Baker point. As
the same analysis can be performed on each of the sectors Aj under the appropiate
change of variable, then F has in fact p-families of Baker domains, each one inside a
sector Aj near the point at infinity.

Finally, since each change of coordinates was conformal in its respective domains,
we conclude that f has p-families of Baker domains associated to z0. Each family is
contained in a sector of opening 2π/p of D∗, which corresponds to a sector Aj under
the map M−1(z). 2

3. Classification of Baker domains

The classical result of Denjoy-Wolff establishes that if f is a holomorphic, fixpoint-free
self-map of a hyperbolic domain U , then its sequence of iterates converge uniformly to
a boundary point ω of U . In [5], C.C. Cowen studies the case when U concides with
the right-half plane H+ = {z : R(z) > 0} and ω = ∞, showing the existence of a
semi-conjugacy between (f, U) and (T,Ω) via an analytic function ϕ : H+ → Ω. The
local dynamics of the pair (T,Ω) provides a linear model for the dynamics of (f, U)
classified as

• parabolic of type I if Ω = C and T (w) = w + 1,
• parabolic of type II if Ω = H+ and T (w) = w ± i,
• hyperbolic type if Ω = H+ and T (w) = aw, a > 1.

Although one may feel tempted to directly apply Cowen’s classification to the case
of a transcendental meromorphic function f acting on an invariant Baker domain U ,
it is not necessarily true that U may be simply connected (see for example [12] where
the author provides examples of 2-periodic Baker domains of infinite connectivity). A
generalization of the existence of semi-conjugacies for a multiply connected hyperbolic
domain was presented by H. Königs in [10, Theorem 3]. For our purposes, it will be
sufficient to consider the work by K. Barański et al. in [3], adjusting their terminology
to Cowen’s classification.

First, recall the following definition given in [3]: consider a hyperbolic domain U in

C and ζ be an isolated point of the boundary of U in Ĉ. There exists a neighbourhood
V ⊂ Ĉ of ζ such that V \ {ζ} ⊂ U . If f(U) ⊂ U , Picard’s Theorem implies that f
extends holomorphically to V . If f(ζ) = ζ one says that ζ is an isolated boundary fixed
point of f .
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Theorem 3.1 (Theorem A in [3]). Let U be a hyperbolic domain in C and let f :
U → U be a holomorphic map without fixed points and without isolated boundary fixed
points. Then the following statements are equivalent:

(a) U is parabolic of type I.
(b) ρU (fn+1(z), fn(z))→ 0 as n→∞ for some z ∈ U .
(c) ρU (fn+1(z), fn(z))→ 0 as n→∞ almost uniformly on U .
(d) |fn+1(z)− fn(z)|/dist(fn(z), ∂U)→ 0 as n→∞ for some z ∈ U .
(e) |fn+1(z)− fn(z)|/dist(fn(z), ∂U)→ 0 as n→∞ almost uniformly on U .

ρU denotes the hyperbolic metric in (b) and (c), while the euclidean metric is used
in (d) and (e).

Lemma 3.2. Let f(z) = z + exp(g(z)) be a function in class K, where g is either a
transcendental meromorphic function or a rational function. Then f has no isolated
boundary fixed points.

Proof. It is clear that f has no fixed points, except when g(∞) ∈ C and thus g is
rational. In this case one obtains limz→∞ f(z) =∞, so the point at infinity is a fixed

point of f . Let g(z) = P (z)
Q(z) , where P and Q are polynomials without common factors

and degrees p = deg(P ) and q = deg(Q). Since g(∞) ∈ C, then 0 ≤ p ≤ q. If one
writes g′(z) = R(z)/(Q(z))2 it follows that deg(R) ≤ 2q − 1 < deg(Q2), and thus
g′(∞) = 0. This implies that

lim
z→∞

1

f ′(z)
= lim

z→∞

1

1 + g′(z) exp(g(z))
= 1,

that is,∞ is a parabolic fixed point for f , and hence, it cannot be an isolated boundary
point of its Leau domain.

Proof of Corollary. Consider again the expression of the function F given in Equa-
tion (7) and its asymptotic behavior given in Equation (8). Since the supremum of the
argument tends to zero as R(z)→∞ along the half strip R(t, s), then F satisfies the
hypothesis of Theorem A. In particular, from condition (1′) each Baker domain Uk of
F contains a set of the form

V′k(θ) = {z : 0 < vk(θ) < R(z), |I(z)− 2kπ − α| < θ}

which implies that dist(Fn(z), ∂Uk) is bounded away from 0. From condition (3′) one
has (Fn+1(z)− Fn(z))→ 0 as n→∞. Then

|Fn+1(z)− Fn(z)|
dist(Fn(z), ∂Uk)

→ 0 as n→∞.

It follows directly from Theorem 3.1 that each Uk is parabolic of type I. The conformal
conjugacies that relate F to f preserve the classification of each Baker domain Uk.

4. Examples

We now present three examples of functions in class K of the form f(z) = z+exp(g(z))
in terms of the choice of the function g.
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Example 4.1 (One-parameter family in K). Consider first an analytic family of ra-
tional functions given by

gc(z) =
z

z2 − c2
, with c ∈ C. (9)

Thus when c 6= 0, gc represents a singular perturbation of the Möbius map z 7→ 1/z,
where the simple pole at the origin splits into two simple poles at ±c. Then one obtains
an analytic family of functions in class K

fc(z) = z + exp

(
z

z2 − c2

)
, (10)

with A(fc) = {±c}. The point at infinity becomes a parabolic fixed point for each fc
as a consequence of Lemma 3.2. Theorem B guarantees the existence of a family of
Baker domains parabolic of type I at each Baker point ±c with a displacement in the
bisector of each Uk given by α = −I(c)/(4|c|2).

Remark 1. In [7] the author provides a global study of the dynamical properties of
fc, showing that for certain values of c, each Baker domain Uk is simply connected.

Since the expression of gc is sufficiently simple, one can verify directly the conditions
of Theorem A. Indeed, for c 6= 0, consider the Möbius map M(z) = − 1

2(z−c) which

sends the ordered triplet (−c, c,∞) into the ordered triplet ( 1
4c ,∞, 0). Setting w =

u+ iv and w = M(z), one obtains a new function dependent on c 6= 0,

Fc(w) = M ◦ f ◦M−1(w),
= M

(
M−1(w) + exp

(
gc ◦M−1(w)

))
,

which reduces to

Fc(w) =
w

1− 2w exp
(

2w(2cw−1)
1−4cw

) . (11)

Fc now has one of its essential singularities at the point at infinity. For convenience,

let Gc(w) = 2w(2cw−1)
1−4cw . The power series expansion in a neighbourhood at infinity can

be easily computed to obtain

Gc(w) = −w − w2

4c
− w3

8c2
− w4

16c3
+O(w5).

From Proposition 2.1, limR(w)→∞R(Gc(w)) = −∞ and a straightforward computation
shows that

lim
R(w)→∞

I(Gc(w)) = −
(
I(c)

4|c|2
− I(w)

)
. (12)

Hence, there exists uv := u(v) > 0, such that

|2w exp(Gc(w))| = 2|w| exp(R(Gc(w))) < r < 1,
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Figure 2. Left: Family of Baker domains for fc and c = i are displayed in yellow. In shades of blue is the

parabolic basin associated to infinity. Right: Dynamical plane for the conjugated function Fc under M . In

shades of blue is the parabolic basin and in yellow the Baker domains. Observe the small displacement between
R+ and the bisector of U0.

for w in a half strip R(uv, v). Setting Vr =
⋃
v>0R(uv, v), Fc(w) can be expressed as

the series

Fc(w) = w

(
1 + 2weGc(w) +

(
2weGc(w)

)2
+ ...

)
,

which is uniformly convergent in Vr. Then, as R(w) → ∞ along Vr, Fc(w) = w +
2w2eGc(w)(1 + o(1)). Mutiplying by ewe−w, one has Fc(w) = w+ 2w2eGc(w)+we−w(1 +
o(1)) and thus

arg((Fc(w)− w)ew) = arg
(

(2w2eGc(w)+w)(1 + o(1))
)
,

= (2 arg(w) + I(Gc(w) + w)) (1 + o(1)).

Since arg(w)→ 0 and (12) holds if R(w)→∞, then it is clear that

arg
(
(Fc(w)− w)eweiα

)
→ 0

with α = − I(c)
4|c|2 . Thus Fc(w) meets the hypothesis of Theorem A. An analogous ap-

proach can be performed for the essential singularity at −c. Figure 2 displays the
dynamical planes of fc and Fc when c = i. The image on the right shows the displace-
ment of the bisector of U0 from the line y = 0 by a factor of α = −1

4 .

Example 4.2 (Multiple pole at the origin). Consider the case when g(z) = z−3 +
exp(z). Then A(f) = {0,∞}. Theorem B implies the existence of 3-families of Baker
domains of parabolic type I at z0 = 0. Since g is a trancendental meromorphic func-
tion, the point at infinity is no longer a fixed point of f , and in particular, f has
no isolated boundary fixed points. One can say more about the dynamics near this
essential singularity.

Proposition 4.3. The function f(z) = z+ exp(z−3 + ez) has at z =∞ a Baker point
for infinitely many families of Baker domains parabolic of type I.

11



Proof. First observe that

f(z + 2πik) = z + exp

(
1

(z + 2πik)3
+ ez

)
+ 2πik,

= z + exp

(
1

z3
−O

(
1

z4

)
+ ez

)
+ 2πik,

= z + exp

(
1

z3
+ ez

)
1

exp(O(z−4))
+ 2πik,

when |z| >> 1. Then f(z + 2πik) ∼ f(z) + 2πik for all k ∈ Z. So it is sufficient to
restrict the analysis of f inside the horizontal strip 0 < I(z) < 2π. To do so, consider
first the conjugated function

F (w) = exp ◦f ◦ log(w) = w exp

(
ew

w3

)
,

where log denotes the branch of logarithm with arg taking values in (0, 2π). In order to
verify the asymptotic behavior as R(w)→∞, one must consider a second conjugacy
under the map w 7→ −w. One obtains

G(w) = w exp

(
−e−w

w3

)
= w

(
1− e−w

w3
+O

(
e−2w

w6

))
.

Then Arg ((G(w)− w))ew) = Arg
(
− 1
w3 +O( e

−w

w6 )
)
→ 0 as R(w) → ∞. From Theo-

rem 1.3 one concludes that G has a family of invariant Baker domains associated to
infinity in the far right plane. Similarly, f has a family of invariant Baker domains on
each horizontal strip |I(z) − kπ| < π, k ∈ Z. Since f has no fixed points (and thus
no isolated boundary fixed points), we can apply Theorem 3.1 to conclude that each
Baker domain associated to infinity is parabolic of type I.

Example 4.4 (A transcendental meromorphic function). One can consider the case
when g(z) = 1/ sin(z), so by Theorem B, each point zk = kπ, k ∈ Z is a Baker point
of f associated to a family of Baker domains. Observe that ∞ is also an essential
singularity which is the accumulation point of zk. One can say more.

Proposition 4.5. The point at infinity is a Baker point of f with two invariant Baker
domains parabolic of type II.

Proof. It is enough to restrict our analysis to the upper half plane. First consider
HR = {z : I(z) > R > e2} and z ∈ HR. As sin(z) = (eiz − e−iz)/2i, the asymptotic
expression of f(z) inside HR can be written as

f(z) = 1 + z +O(e−iz) when R(z) >> 1, z ∈ HR. (13)

Thus, R(fn(z))→∞ as n→∞ inside HR. Also, inside HR and n >> 1,

I(fn(z)) = I(z) + I(O(e−if
n(z))) ≤ I(z) + |O(e−if

n(z))|, (14)
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Figure 3. Dynamical plane for f when g(z) = z−3 + ez . Baker domains are displayed in yellow, the Julia set

in blue. Left: Nearby the origin there exists 3-families of Baker domains, each one inside a sector of opening

2π/3. Right: Zooming away from the origin, Baker domains associated to infinity are contained in horizontal
strips of height 2π.

and |O(e−if
n(z))| ≤ exp(e−I(fn(z)) − 1) < 1. From these estimates it follows that

f(HR) ⊂ HR. Thus, there exists a Baker domain U contained in the upper half plane,
where HR ⊂ U and R(fn(z))→∞ as n→∞ for z ∈ U . To show that U is parabolic
of type II in terms of König’s classification (see [10, Theorem 3]), we first restrict the
analysis to the set HR. Then, one must show that for z0 ∈ HR and

cn(z0) =
|fn+1(z0)− fn(z0)|
dist(fn(z0), ∂HR)

,

then lim infn→∞ cn(z0) > 0 and infz0∈U lim supn→∞ cn(z0) = 0. If n is sufficiently large,
combining (13) and (14), one obtains

dist(fn(z0), HR) = I(fn(z0))−R ≤ I(z0) + 1−R.

Thus, when n >> 1,

cn(z0) =
|1 + fn(z0) +O(e−if

n(z0))− fn(z0)|
I(fn(z0))−R

,

≥ 1− |O(e−if
n(z0))|

I(z0) + 1−R
> 0,

and one obtains lim infn→∞ cn(z0) > 0 for z0 ∈ HR. On the other hand,

lim sup
n→∞

cn(z0) = lim sup
n→∞

|1 +O(e−if
n(z0))|

dist(fn(z0), ∂HR)
<

2

dist(fn(z0), ∂HR)

and since I(fn(z0)) ≥ I(z0)− exp(e−I(fn(z0)) − 1) > I(z0)− 1, it follows that

inf
z0∈HR

lim sup
n→∞

cn(z0) = inf
z0∈HR

2

I(z0)− (R+ 1)
.
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Figure 4. Left: Dynamical plane for f(z) = z + exp(1/ sin(z)) centred at the origin. The black regions

represent Baker domains parabolic of type I (and their preimages) associated to points zk. The invariant Baker

domains parabolic of type II associated to infinity are in colour. Right: Dynamical plane of 1/(f(1/z)), centred
at the origin. The upper and lower half planes from the left image are displayed as two petals at the origin.

So as I(z0) → ∞, the above inequality converges to zero. As HR ⊂ U , one concludes
that U must be parabolic of type II. The analysis for the domain in the lower half
plane is similar.

Remark 2. This last example has been mentioned in [6], where the authors employ
a different approach from the one provided in this article.
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