Dinámica Holomorfa

Febrero 8, 2007

Tarea 2

- 1. Demuestre que la sucesión de funciones racionales $f_n(z) = 1/(n^2z n)$ sobre \mathbb{C} converge puntualmente, pero no normalmente, a la función $f(z) \equiv 0$.
- 2. Demuestre que $\{f^n\}$ es una sucesión normal en un abierto $D \subset S$ si y sólo si $\{f^{nk}\}$ es normal en D, con $k \geq 1$.
- 3. Muestre que el conjunto de Julia para una transformación de Möbius es vacío o consiste de un sólo punto fijo.
- 4. Sea S una superficie de Riemann, $f: S \to S$ holomorfa, no constante y F su conjunto de Fatou. Utilizando argumentos de familias normales, pruebe que si $f(z_0) \in F$, entonces $z_0 \in F$, esto es, $f^{-1}(F) \subset F$.
- 5. Demuestre que el conjunto de Julia de una función racional sobre $\overline{\mathbb{C}}$ contiene todos sus puntos fijos repulsores.

Fecha de entrega: Febrero 15, 2007 en clase.