Dinámica Holomorfa

Febrero 22, 2007

Tarea 4

- 1. Demuestre que el conjunto de Julia de cualquier racional es un conjunto perfecto.
- 2. Sea f racional de grado $d \geq 2$. Entonces J(f) es conexo si y sólo si cada componente de F(f) es simplemente conexa. (Hint: Sea $U \subset \overline{\mathbb{C}}$ abierto. Entonces $\overline{\mathbb{C}} \setminus U$ es conexo si y sólo si cada componente de U es simplemente conexa.)
- 3. Para las siguientes funciones racionales, demuestre la existencia de uno o varios dominios de Fatou completamente invariantes, indique su clase (dominio Böttcher, Schröder, Leau etc.) y si es simplemente conexo ó infinitamente conexo. Si es posible, obtenga imágenes de los conjuntos de Julia.
 - (a) $A(z) = \lambda z + z^2$, con $\lambda = \exp(\pi i(\sqrt{5} 1))$.
 - (b) B(z) = 6z(1-z).
 - (c) $C(z) = z z^2 + z^3/z_0$, con $z_0 = -0.41 + 0.54i$.
- 4. Demuestre el teorema de Kœnigs para una cuenca de atracción:

Sea $f: \mathbb{C} \to \mathbb{C}$ holomorfa con un punto fijo atractor $z_0 = f(z_0)$ de multiplicador $0 < |\lambda| < 1$. Sea \mathcal{A} la cuenca de atracción de z_0 . Entonces existe $\varphi: \mathcal{A} \to \mathbb{C}$ holomorfa tal que $\varphi(z_0) = 0$,

$$\varphi \circ f = \lambda \varphi$$
,

y φ manda una vecindad de z_0 biholomorfamente a una vecindad del origen. Además, φ es única salvo por una constante multiplicativa.

5. Suponga que \mathcal{A} tiene un número finito de componentes simplemente conexas que constituyen un ciclo atractor para una racional f de grado $d \geq 2$. Usando la fórmula de Riemann–Hurwitz, demuestre que el periodo del ciclo es a lo más dos.

Fecha de entrega: Marzo 8, 2007 en clase.