90DSI02

Dinámica Holomorfa

Abril 19, 2007

Tarea 9

En todos los problemas f denota una función en $\operatorname{Rat}_d(\overline{\mathbb{C}})$, con $d \geq 2$.

1. Sea z_0 punto fijo parabólico, tal que $f'(z_0) = 1$. Sea \mathcal{P} el pétalo atractor contenido en $\mathcal{A}^*(z_0)$ y denote por $\Phi: \mathcal{P} \to \mathbb{C}$ la coordenada de Fatou tal que

$$\Phi(f(z)) = \Phi(z) + 1.$$

Demuestre lo siguiente:

- (a) Usando la ecuación funcional, pruebe que Φ puede extenderse a todo \mathcal{A}^* y por lo tanto $\Phi(\mathcal{A}^*) = \mathbb{C}$.
- (b) Demuestre que Φ tiene un punto crítico w en \mathcal{A}^* y concluya que f también tiene un punto crítico en \mathcal{A}^* . (Hint: ¿Si tal w no existe, que puede decir sobre Φ^{-1} ?)
- 2. Demuestre que para f arbitraria, el número de ciclos atractores mas el número de ciclos parabólicos (contando multiplicidad) es a lo más 2d-2.
- 3. Denote por C_f el conjunto de puntos críticos de f y por C'_f el conjunto de puntos límite de $\mathcal{O}^+(C_f)$. Demuestre lo siguiente:
 - (a) Para todo z en el complemento de $\mathcal{O}^+(\mathcal{C}_f)$, existe una vecindad U = U(z) simplemente conexa donde cada rama inversa f_j^{-n} para $1 \leq j \leq d^n$, existe y es localmente analítica.
 - (b) Toda sucesión $\{g_k\}$ de inversas analíticas definidas en U que satisfacen

$$f^{n_k} \circ g_k = \mathrm{id}_{|U},$$

forma una familia normal.

Fecha de entrega: Abril 26, 2007 en clase.