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Abstract

My aim in this article is to provide an accessible introduction to the
notion of topological entropy and (for context) its measure theoretic ana-
logue, and then to present some recent work applying related ideas to the
structure of iterated preimages for a continuous (in general non-invertible)
map of a compact metric space to itself. These ideas will be illustrated
by two classes of examples, from circle maps and symbolic dynamics. My
focus is on motivating and explaining definitions; most results are stated
with at most a sketch of the proof. The informed reader will recognize
imagery from Bowen’s exposition of topological entropy [Bow78] which I
have freely adopted for motivation.

1 Measure-theoretic entropy

How much can we learn from observations using an instrument with finite res-
olution?

A simple model of a single observation on a ”state space” X is a finite
partition P = {A1, . . . , AN} of X into atoms, grouping the points (states) in
X according to the reading they induce on our instrument. A measure µ on X
with total measure µ(X) = 1 defines the probability of a given reading as

pi = µ(Ai), i = 1, . . . , N.

Shannon [Sha63] (see also [Khi57]) noted that the ”entropy” of the partition

H(P) := −
N∑

i=0

pi log pi
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measures the a priori uncertainty about the outcome of an observation—or
conversely the information we obtain from performing the observation. The
extreme values of entropy among partitions with a fixed number N of atoms
are H(P) = 0, when the outcome is completely determined (some pi = 1, all
others = 0), and H(P) = log N , when all outcomes are equally likely (pi = 1

N ,
i = 1, . . . , N).

To model a sequence of observations at different times, we imagine a dy-
namical system generated by the (µ-measurable) map f :X→X, so the state
initially at x ∈ X evolves, after k time intervals, to the state located at fk(x),
where

fk := f◦...◦f︸ ︷︷ ︸
k times

.

An observation made after k time intervals is modelled by the partition f−k[P] =
{f−k[A1], . . . , f−k[AN ]}, where the kth iterated preimage of A ⊂ X is

f−k[A] := {x ∈ X | fk(x) ∈ A}.

Assuming that µ is an f -invariant measure (µ(f−1[A]) = µ(A)), the outcomes of
observations made at different times are identically distributed. The joint dis-
tribution of n successive observations performed one time unit apart is modelled
by the mutual refinement

Pn := P ∨ f−1[P] ∨ . . . f−(n−1)[P]

whose typical atom, Ai0 ∩ f−1[Ai1 ]∩ · · · ∩ f−(n−1)[Ain−1 ], consists of the points
with a given itinerary of length n with respect to P (i.e., f j(x) ∈ Aij

, j =
0, . . . , n−1). The asymptotic average information per observation for a sequence
of successive observations

H(f,P) := lim
n→∞

1
n

H(Pn)

is the entropy of f relative to P.
For example, suppose f :X→X is the restriction to the unit circle S1 :=

{x ∈ C | |x| = 1} of x 7→ x2. If we parametrize S1 by θ ∈ R using exp(θ) :=
e2πiθ ∈ S1, our map corresponds to θ 7→ 2θ (mod Z), the angle-doubling
map. (Lebesgue) arclength measure is invariant under this map, and if P is a
partition into two semicircles, say A1 = {0 ≤ θ ≤ 1

2}, A2 = { 1
2 ≤ θ ≤ 1}, then

Pn is a partition into 2n intervals of equal arclength. Thus H(Pn) = n log 2, so

H(f,P) = log 2.

Note that in this case the observations at different times are (probabilistically)
independent: knowing the itinerary of length n does not help us predict the
next position of a random point.

An equivalent model of this situation comes from expressing the angle in
binary notation:

θ =
∞∑

i=0

xi

2i+1
, xi ∈ {0, 1}, i = 0, 1, . . .
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which is ambiguous only on the Lebesgue-null set of dyadic rational values for
θ. Up to this ambiguity, we have a bijection with the set {0, 1}N of sequences
x = x0, x1, . . . in {0, 1}. For any finite sequence w = w0, . . . , wn−1 ∈ {0, 1}n,
the cylinder set

C(w) := {x ∈ {0, 1}N |xi = wi for i = 0, . . . , n− 1}

of sequences which begin with w corresponds to an arc in S1 of length 2−n, and
we can define a measure µ on {0, 1}N via

µ(C(w)) = 2−n for all w of length n,

which is equivalent to arclength measure on S1. The angle-doubling map cor-
responds to the shift map on sequences

s(x0x1x2 . . . ) = x1x2 . . . .

More generally, if A is a finite set (”alphabet”) and we assign a ”weight”
p(a) ≥ 0 to each ”letter” a ∈ A so that

∑
a∈A p(a) = 1, then the formula

µ(C(w0 . . . wn−1)) = p(w0)p(w1) · · · p(wn−1)

defines a probability measure on the space of sequences 1

AN := {x = x0x1 . . . |xi ∈ A, i = 0, 1, . . . }

and the natural shift map on AN with this measure is called a Bernoulli shift.
The partition P = {C(a) | a ∈ A} has entropy

H(P) = −
∑
a∈A

p(a) log p(a).

The refinement Pn consists of all cylinder sets C(w) as w ranges over ”words”
w = w0 . . . wn−1 ∈ An of length |w| = n, and a straightforward calculation
shows that successive observations are independent, with

H(Pn) = nH(P), H(s,P) = H(P).

The quantity H(f,P) depends on our observational device. We obtain a
device-independent measurement of the predictability of the dynamics of the
measure-theoretic model f : (X, µ)→(X, µ) by maximizing over all finite parti-
tions: this is the entropy of f with respect to µ:

hµ(f) := sup{H(f,P) | P a finite measurable partition of X}.

It can be shown that the partition P of S1 into semicircles maximizes H(f,P)
for the angle-doubling map, so hµ(f) = log 2 in this case. For the general

1It will be convenient to abuse notation and include 0 in N.
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Bernoulli shift (determined by the weights p(a), a ∈ A), the partition P =
{C(a) | a ∈ A} into cylinder sets again maximizes entropy, so in this case

hµ(f) = −
∑
a∈A

p(a) log p(a).

For example, the Bernoulli shift corresponding to a biased coin flip, say p(0) = 1
3 ,

p(1) = 2
3 , has entropy hµ(f) = log 3− 2

3 log 2 < log 2.
The idea of using Shannon’s entropy in this way was suggested by Kol-

mogorov [Kol58] (and refined by Sinai [Sin59]), who showed that hµ(f) is invari-
ant under measure-theoretic equivalence of dynamical systems, and used this to
prove the existence of non-equivalent Bernoulli shifts. Subsequently Ornstein
[Orn74] showed that for a large class of ergodic systems (including Bernoulli
shifts [Orn70]) hµ(f) is a complete invariant: two systems from this class are
equivalent precisely if they have the same (measure-theoretic) entropy.

2 Topological entropy

Adler, Konheim and McAndrew [AKM65] formulated an analogue of hµ(f) when
the measure space (X, µ) is replaced by a compact topological space and f is
assumed continuous. They replaced the partition P with an open cover and the
entropy H(P) with the logarithm of the minimum cardinality of a subcover. The
resulting topological entropy, htop(f), is an invariant of topological conjugacy
between continuous maps on compact spaces.

A more intuitive formulation of htop(f), given independently by Bowen
[Bow71] and Dinaburg [Din70], uses separated sets in a (compact) metric space2.

2.1 Separated sets

Let us again model observations via instruments with finite resolution, but this
time using a (compact) metric d on our space X. We assume that our instrument
can distinguish points x, x′ ∈ X precisely if d(x, x′) ≥ ε for some positive
constant ε. A subset E ⊂ X is ε-separated3 if our instrument can distinguish
the points of E. Compactness puts a finite upper bound on the cardinality of
any ε-separated set in X, and we can define

maxsep[d, ε, X] := max{card[E] |E ⊂ X is ε-separated with respect to d}.

On the circle, using d the normalized arclength

d(exp(θ), exp(θ′)) = min
j∈Z

|θ − θ′ + j|

2The reader who wishes to search the literature should note that the phrase measure-
theoretic entropy, when translated from its Russian equivalent to English, comes out as metric
entropy; this is not to be confused with topological entropy in a metric space.

3In §6, we mention the complementary notion of ε-spanning, and note that all of the
definitions which follow can be reformulated in terms of this notion.
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any set of N equally spaced points

EN (exp(θ)) := {exp(θ +
j

N
) | j = 0, . . . , N − 1}

is a maximal ε-separated set whenever 1
N+1 < ε ≤ 1

N , so

maxsep[d,
1
N

,S1] = card[EN (x)] = N.

The sequence space AN has a natural topology as the countable product of
copies of the alphabet A (which is given the discrete topology); this is captured
in the metric

d(x,x′) := 2−δ(x,x′)

where
δ(x,x′) := 1 + min{i |xi 6= x′i}.

Note that if two sequences x, x′ have different initial words w,w′ of length n
(i.e., x ∈ C(w), x′ ∈ C(w′), |w| = |w′| = n and w 6= w′), then δ(x,x′) ≤ n,
so C(w) and C(w′) are at mutual distance at least 2−n, and each such cylinder
has diameter 2−(n+1). It follows that a set consisting of one representative from
each cylinder set C(w), w ∈ An, is a maximal 2−n-separated set, and since there
are (card[A])n words of length n,

maxsep[d, 2−n,AN] = (card[A])n.

2.2 Bowen-Dinaburg definition of topological entropy

Now we introduce dynamics via a continuous map f :X→X, and ask about the
resolution of n successive observations separated by unit time intervals. This is
captured in the Bowen-Dinaburg metrics, defined for n = 1, 2, . . . by

df
n(x, x′) := max

0≤i<n
d(f i(x), f i(x′)).

Two points x, x′ ∈ X cannot be distinguished by our sequence of measurements
if they (n,ε)-shadow each other (i.e., d(f i(x), f i(x′)) < ε for i = 0, . . . , n− 1),
so the points of E ⊂ X are distinguished precisely if any two x 6= x′ ∈ E have
df

n(x, x′) ≥ ε–that is, E is ε-separated with respect to df
n, or (n, ε)-separated.

The number of distinguishable orbit segments of length n is thus

maxsep[df
n, ε,X] = max{card[E] |E ⊂ X is (n, ε)− separated}.

For the angle-doubling map, note that if d(x, x′) ≤ 1
4 then d(f(x), f(x′)) =

2d(x, x′). In particular, if
d(x, x′) = 2−k

for some k ≥ 1 then

d(f j(x), f j(x′)) =

{
2j−k for j < k

0 for j ≥ k.

and, noting that f(E2k(x)) = E2k−1(f(x)), we see that E2k(x) is
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• 2−k-separated with respect to d, and

• (n, ε)-separated for any ε ≤ 1
2 if n ≥ k.

In particular, for 0 < ε < 1
2 and n > log 1

2
ε,

maxsep[df
n, ε, S1] = card[E2n(x)] = 2n.

An (n, ε)-separated set is analogous to a collection of different itineraries of
length n (with respect to some partition whose atoms have diameter ε). Since
the number of conceivable itineraries grows exponentially with n, it is natural to
look at the exponential growth rate of the cardinalities above. For any sequence
{cn} of positive real numbers, we write

GR{cn} := lim sup
n

1
n

log cn.

The complexity of the dynamics emanating from any subset K ⊂ X is reflected
in

htop(f,K) := lim
ε→0

GR{maxsep[df
n, ε,K]}.

Our primary interest is when K = X: the topological entropy of f :X→X
is

htop(f) := htop(f,X).

We have seen that the angle doubling map has topological entropy log 2; in
fact the analogous angle-stretching maps ζk : x 7→ xk (k ≥ 2) satisfy

htop(ζk) = log k.

A beautiful general relation between measure-theoretic and topological en-
tropy was established through the work of Goodwyn [Goo69], Dinaburg [Din70]
and Goodman [Goo71]:

Theorem 1 (Variational Principle for Entropy) For f :X→X any con-
tinuous map on a compact metric space,

htop(f) = sup{hµ(f) |µ is an f-invariant Borel probability measure on X}.

2.3 One-sided subshifts

The shift map on the sequence space AN

s(x0x1x2 . . . ) = x1x2 . . .

is a card[A]-to-one map, continuous with respect to the product topology. By a
(one-sided4) subshift we mean the restriction f :X→X of the shift to a closed

4The space AZ of bisequences also has a natural shift map, and invariant subsets are called
two-sided subshifts. (cf §5.3)
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invariant5 subset X ⊂ AN. Such a set is determined by its admissible words:
for n = 1, 2, . . . , let

Wn(X) := {w = w0 . . . wn−1∈An | ∃x∈X, i ∈ N with xi+j = wj , j = 0, . . . , n−1}.

Note that a word which appears starting at position i in x ∈ X appears as
the initial subword of f i(x), which also belongs to X if X is shift-invariant.
Thus Wn(X) equals the set of words w ∈ An with X ∩ C(w) nonempty, and
it follows that a maximal 2−n-separated set En ⊂ X results from picking one
representative from each such nonempty intersection. Thus for 2−(k+1) < ε <
2−k, En+k is a maximal (n, ε)-separated set, and

maxsep[df
n, ε,X] = card[Wn+k(X)]

giving us for any subshift f :X→X

htop(f) = lim
k→∞

GR{card[Wn+k+1(X)]} = GR{card[Wn(X)]}.

We spell out the results of this calculation for several examples.

Full shift: When Wn(X) = An, so X = AN, we have

htop(f) = GR{card[A]n} = log card[A]

”Golden Mean” Shift: Define X as the set of all sequences of 0’s and 1’s in
which 1 is never followed immediately by itself, so W2(X) = {00, 01, 10}.
If we list all words of length n, then the words of length n + 1 come from
either following an arbitrary word of length n with 0, or following a word
of length n that ends in 0 with a 1. If we set

wn := card[Wn(X)],

we see that there are wn words of length n + 1 which end in 0, and hence
wn−1 words of length n+1 which end in 1: this gives the recursive relation

wn+1 = wn + wn−1

showing that wn grows at the same rate as the Fibonacci numbers Fn (in
fact, wn = Fn+3). This rate is known [LM95, p. 101] to be the logarithm
of the golden mean, so

htop(f) = GR{wn} = GR{Fn} = log

(
1 +

√
5

2

)
.

A generalization of this example arises from any finite alphabet A =
{a1, . . . , aN} and a list Wa ⊂ A2 of allowed pairs: X is then defined as the

5we require only f(X) ⊆ X

7



set of all sequences in AN for which every subword of length 2 belongs to
Wa. This information can be encoded in a square transition matrix A of
size N = card[A] whose (i, j) entry is 1 (resp. 0) if the word aiaj belongs
(resp. does not belong) to Wa. Note that the (i, j) entry of a power Ak

of A equals the number of admissible words of length k + 1 which begin
with ai and end with aj , so wn := card[Wn(X)] equals the sum ‖ An−1 ‖
of the entries of An−1, and we have

htop(f) = GR{wn} = GR{‖ An−1 ‖} = log(spectral radius of A).

In the special case of the ”golden mean’ shift, we have

A =
[
1 1
1 0

]
whose characteristic polynomial, t2 − t − 1, has the golden mean as its
larger root.

Even Shift: Let X be the set of sequences of 0’s and 1’s in which two successive
appearances of 1 are separated by a block of consecutive 0’s of even length
(which may be the empty block, of length zero). This is most easily
described by giving a list Wd of disallowed words, in this case

Wd = {1(0)2n+11 |n = 0, 1, . . . }

and specifying that X consists of all sequences in which no word from Wd

appears (anywhere).

In general, such a description essentially specifies a basis of open subsets
of the complement AN \ X. When such a list is (or can be made) finite,
a recoding allows us to construct X as a subshift on more symbols, but
specified as in the previous case by the allowed (or disallowed) pairs. This
is called a subshift of finite type (or topological Markov chain).

The ”even” shift is clearly not of finite type, as no test on words of bounded
length can detect long forbidden words. However, it can be shown [LM95,
p. 103] that in this case card[Wn] = Fn+3 − 1 (where again Fn is the nth

Fibonacci number), so the even shift has

htop(f) = GR{Fn+3 − 1} = log

(
1 +

√
5

2

)
.

Dyck Shift: This beautiful example, first suggested by Krieger [Kri72] and
named after an early contributor to the study of free groups and formal
languages, codifies the rules of matching parentheses. As it is not readily
accessible in the literature, I give a detailed account6 based on ideas I
learned from Doris and Ulf Fiebig.

6I thank Eugen Mihailescu for pointing out a substantial error in an earlier version of this
account.
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The alphabet consists of N pairs of matching left and right delimiters

A = {`1, r1, . . . , `N , rN}.

For example, when N = 2, we can think of

`1 = ”(”, r1 = ”)”, `2 = ”{”, r2 = ”}”.

Call a word w = w0, ..., w2k−1 of even length balanced if its entries can
be paired subject to

• a pair of entries consists of a left delimiter to the left of a matching
right delimiter: if wα is paired with wβ , where 0 ≤ α < β ≤ 2k − 1,
then wα = `i for some index i and wβ = ri for the same index;

• distinct pairs are nested or disjoint: given α < β as above, every
intermediate wγ (α < γ < β) is paired with some other intermediate
wδ (α < δ < β).

Note that a pairing of this type is unique if it exists. We regard the empty
word as balanced.

Now we specify the (infinite) list of disallowed words as

Wd = {`ibrj | b is a balanced word and i 6= j}.

The subshift on the set of sequences DN ⊂ AN in which no element of Wd

appears is the (one-sided) Dyck shift on N pairs. When N = 1, Wd is
empty, so D1 is the full shift on two symbols; we will tacitly assume that
N ≥ 2.

Proposition 1 The Dyck shift f :DN →DN on N pairs has

htop(f) = log(N + 1).

Proof:

An admissible word has the general form

w = b0ri1b1ri2 . . . bk−1rik
bk`j1bk+1 . . . `jmbk+m

where each bα, α = 0, . . . , k + m, is a (possibly empty) balanced subword,
and the k ≥ 0 right delimiters which are not matched in w all occur to
the left of the m ≥ 0 unmatched left delimiters in w. This leads to a
natural decomposition of any admissible word as a concatenation of three
(possibly empty) subwords

w = ABC

where B = bk is balanced, while A = b0 . . . rik
(resp. C = `j1 . . . bk+m)

ends (resp. starts) with an unmatched right (resp. left) delimiter.
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To calculate the topological entropy, note first that every admissible word
w is the initial subword of at least N + 1 admissible words of length
|w| + 1: the N words w`i, i = 1, . . . , N are always admissible, and wrjm

is admissible if m ≥ 0 while all words wri are admissible if m = 0. Thus

card[Wn+1] ≥ (N + 1)card[Wn]

for all n, and so

htop(f) = GR{card[Wn]} ≥ log(N + 1).

To handle the opposite inequality, we first estimate the cardinality of the
sets An, Bn, Cn of admissible words of length n whose decomposition has
only one nonempty factor, of the type indicated by the letter.

We begin with balanced words: since Bn = ∅ for n odd, assume n = 2p.
To estimate card[Bn], we note that the number of possible configurations
of p ”`”’s and p ”r”’s in a balanced word of length n is bounded above

by
(

n
p

)
, and for each such configuration, once we have assigned an index

to each ` (which we can do in Np ways), the uniqueness of the pairing
insures that the word has been determined. Thus,

card[Bn] ≤
(

n
p

)
Np < (N + 1)n,

where the last inequality is a consequence of the binomial theorem.

We now consider the set Cn of words beginning with an unmatched left
delimiter, noting that the initial length k subword of any w ∈ Cn itself
belongs to Ck. Given w ∈ Cn, we immediately have w`i ∈ Cn+1 for
i = 1, . . . , N , and wri ∈ Cn+1 provided that w has at least two unmatched
left delimiters, the last of which is `i. This gives us

card[Cn+1] ≤ (N + 1)card[Cn]

and since card[C1] = N ,

card[Cn] ≤ (N + 1)n.

A similar estimate can be obtained for card[An], either by repeating the
argument or by noting the bijection between An and Cn obtained by re-
versing letter order and interchanging ` with r (keeping indices).

Finally, to estimate card[Wn] we consider, for each ordered triple (i, j, k) of
nonnegative integers summing to n, the set of words of the form w = ABC
with |A| = i, |B| = j, and |C| = k. Since an arbitrary factoring is possible,
the number of such words is

card[Ai] · card[Bj ] · card[Ck] ≤ (N + 1)i+j+k = (N + 1)n.
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But the number of possible triples (i, j, k) summing to n is less than
(n + 1)3, so

card[Wn] ≤ (n + 1)3(N + 1)n.

The growth rate of the right-hand quantity is log(N + 1), so

htop(f) = log(N + 1).

2

Square-Free Sequences: An even more complicated subshift is defined by
forbidding any subword to immediately follow a copy of itself:

Wd = {w2 := ww |w ∈ A+ :=
∞⋃

k=1

Ak}.

An elementary argument shows that A must have at least three letters
for this to give a nonempty subshift. For three (or more) letters, there
exist square-free sequences 7 and it is known [Bri63] that htop(f) > 0.
Although there are some known bounds for the entropy [Gri01, She81a,
She81b, SS82], a precise value has not been determined.

3 Pointwise preimage entropy

There is a curious asymmetry in the definitions of entropy in §§1-2, which look
only at the future behavior of points. When f is invertible, it turns out that
the inverse map f−1 has the same entropy: for htop(f), this follows from the
observation that x and x′ (n, ε)-shadow each other under a homeomorphism f
precisely if their f (n−1)-images (n, ε)-shadow each other under f−1.

However, when f is not invertible the iterated preimages f−n[x] of a point are
in general sets rather than points, so the formulations in §2 cannot be ”reversed”
in time. In 1991, Langevin and Walczak [LW91] built on ideas from their earlier
work with Ghys (on the ”entropy” of a foliation) to formulate an invariant based
on the behavior of preimages. We direct the interested reader to their original
paper or to [NP99] for more details on this invariant, whose definition is rather
involved; it is related to, and often equals, the branch preimage entropy which
we present in §5.

Instead we begin with a more accessible pair of invariants defined by Hurley
[Hur95] in 1995, looking at the growth rate of the size of iterated preimages of
a point, measured via the Bowen-Dinaburg metrics. The two invariants differ
in the stage at which one globalizes the pointwise measurements by maximizing
over x ∈ X:

hp(f) := sup
x∈X

lim
ε→0

GR{ maxsep[df
n, ε, f−n[x]]}

hm(f) := lim
ε→0

GR{max
x∈X

maxsep[df
n, ε, f−n[x]]}

7For experts, one example is the sequence xi = mi+1 −mi ∈ {−1, 0, 1}, where {mi} is the
Morse-Thue sequence of 0’s and 1’s—I believe this was first observed by Thue.

11



We refer to hp and hm collectively as pointwise preimage entropies; both are
invariants of topological conjugacy [NP99] and we have the trivial inequalities

hp(f) ≤ hm(f) ≤ htop(f).

There are examples for which either of these inequalities is strict: any homeo-
morphism with htop(f) > 0 works for the second inequality (since f−n[x] is a
single point, both pointwise preimage entropies are zero) and an example for the
first is given in [FFN03]. However, the thrust of our discussion in this section
and the next is that there are many cases when the three invariants agree. (We
will also see this from a different perspective in §5.2.)

For the angle-doubling map, we note that the nth iterated preimage of a
point consists of 2n equally spaced points:

f−n[x] = E2n(xn)

where xn is any nth preimage of x: for example if x = exp(θ) we can take
xn = exp(2−nθ). Since this set is (n, ε)-separated if ε ≤ 2−n (or n ≥ log 1

2
ε),

we have, independent of x ∈ S1,

maxsep[df
n, ε, f−n[x]] = card[f−n[x]] = 2n

so
hp(f) = hm(f) = log 2.

A similar argument gives the common value log k for hp(ζk) and hm(ζk) where
ζk is the angle-stretching map x 7→ xk, k = 3, 4, . . . .

3.1 Pointwise preimage entropy for subshifts

If x ∈ X ⊂ AN is a point in the shift-invariant set X, its nth predecessor set
(in X) consists of all the words w ∈ An of length n such that the concatenation
wx also belongs to X:

Pn(x) = Pn(x,X) := {w ∈ An |wx ∈ X}.

Note that by definition Pn(x, X) ⊂ Wn(X). Clearly, the nth iterated preimage of
x under the subshift f :X→X is the set of all concatentations wx, w ∈ Pn(x,X),
so from our earlier calculations, when 0 < ε ≤ 1

2 and x ∈ X

maxsep[df
n, ε, f−n[x]] = card[Pn(x)].

This immediately gives

hp(f) :=sup
x∈X

GR{ card[Pn(x)]}

hm(f) := GR{max
x∈X

card[Pn(x)]}

Again, we trace the application of this through our examples of subshifts:
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Full Shift: Clearly, Pn(x,AN) = An for all x ∈ AN, so

hp(f) = hm(f) = log card[A].

Subshifts of Finite Type: When X is defined by the transition matrix A,
the predecessor set of any x ∈ X is determined by its initial entry, x0:

Pn(x,X) = {w ∈ Wn(X) |wx ∈ Wn+1(X)}

and the cardinality of this is the column sum in An corresponding to x0.
If we pick x0 so that this column sum grows (with n) at least as fast as
all the other columns, then any x ∈ X beginning with x0 has a maximal
growth rate, and this equals the growth rate of ‖ An ‖, so

hp(f) = hm(f) = GR{‖ An ‖} = log(spectral radius of A).

Even Shift: The predecessor set of a sequence in the even shift is determined
by the parity of the location of the first 1 in the sequence: if x = 0∞ then
Pn(x) = Wn(X), while if xk = 1 and xi = 0 for all i < k, then w ∈ Wn(X)
belongs to Pn(x) if either w = 0n or w ends with 10`, where ` has the
same parity as k. Thus Pn(x) is in one-to-one correspondence with the
set of admissible words of length n + 2 (resp. n + 1) ending with 01 (resp.
1) if k is odd (resp. if k is even or x = 0∞), and our earlier considerations
show that all of these sets grow at the rate

hp(f) = hm(f) = log

(
1 +

√
5

2

)
.

Dyck Shift: If x is a sequence formed by concatenating infinitely many bal-
anced words, then

Pn(x, DN ) = Wn(DN )

so
hp(f) = hm(f) = GR{card[Wn(DN )]} = log(N + 1).

Square-Free Sequences: The predecessor sets in this subshift vary wildly
from point to point (cf §5.1) and the tools used in the other cases tell
us nothing about pointwise preimage entropy in this case.

The alert reader will have noted that in all the cases except the last, the
pointwise preimage entropies hp(f) and hm(f) agree not only with each other
but also with the topological entropy htop(f). This is no accident:

Theorem 2 ([FFN03]) For any one-sided subshift f :X→X, if

GR{WnX} = log λ

then there exists a point p ∈ X such that

card[Pn(p, X)] ≥ λn for all n = 1, 2, . . . .

13



The argument for this rests on a combinatorial lemma8 concerning the
growth of branches in a tree, saying roughly that if we pick a ”root” vertex
and have, for some N , more than λN vertices at distance N from the root, then
for some k (depending on λ, N , and the maximum valence of vertices in the
tree) there exists a vertex v such that for i = 1, . . . , k the number of vertices at
distance i from v , in a direction away from the root, is at least λi.

4 Entropy points

The phenomenon described for one-sided subshifts in the preceding section—
that the preimages of some point determine the topological entropy—never oc-
curs for homeomorphisms with positive topological entropy (e.g., most two-sided
subshifts), since any preimage of a point is still a single point. However, it is
possible to resolve this cognitive dissonance via a calculation of topological en-
tropy in the spirit of pointwise preimage entropy—looking at preimages of local
stable sets instead of points.

For ε > 0, the ε-stable set of x ∈ X under the map f :X→X is

S(x, ε, f) := {y ∈ X | d(f i(x), f i(y)) < ε for all i ≥ 0}.

(This is just the intersection of ε-balls with respect to the various Bowen-
Dinaburg metrics.) We can define a kind of ”ε-local preimage entropy” by

hs(f, x, ε) := lim
δ→0

GR{maxsep[df
n, δ, f−n[S(x, ε, f)]]}.

Recall that a map f :X→X is forward-expansive if for some expansiveness
constant c > 0, every ε-stable set for 0 < ε ≤ c is a single point (i.e., S(x, ε, f) =
{x} whenever ε ≤ c and x ∈ X). Every one-sided shift, as well as each of
the angle-stretching maps on S1, is forward-expansive. Clearly, for forward-
expansive maps,

hp(f) = sup
x∈X

hs(f, x, ε)

whenever 0 < ε ≤ c. More generally, though, we have

Theorem 3 ([FFN03]) If X is a compact metric space of finite covering di-
mension, then for every continuous map f :X→X and every ε > 0,

sup
x∈X

hs(f, x, ε) = htop(f).

It is possible, adapting an argument of Mañé [Mañ79], to show [FFN03]
that forward-expansiveness of f :X→X implies finite covering dimension for X
(if it is compact metric), immediately implying the equality hp(f) = hm(f) =
htop(f) in this case. Theorem 2 shows that for one-sided shifts, the supremum in

8A related result was apparently obtained by Furstenberg and Ledrappier & Peres.
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Theorem 3 is actually a maximum. this leads us to consider the set of entropy
points of a continuous map f :X→X, defined as

E(f) := {x ∈ X | lim
ε→0

hs(f, x, ε) = htop(f)}.

Points of E(f) are those near which the local ”backward” behavior reflects the
topological entropy of f .

How big is the set E(f) of entropy points for a general map f :X→X? For
one-sided subshifts, E(f) is always nonempty, but there are examples where it
is nowhere dense in X, and there are examples of other continuous maps with
E(f) = ∅ [FFN03]. A number of conditions, given in [FFN03], imply E(f) 6= ∅;
the most general of these was defined by Misiurewicz (modifying a notion due
to Bowen): a continuous map f :X→X is asymptotically h-expansive if

lim
ε→0

sup
x∈X

htop(f, S(x, ε, f)) = 0.

In effect, this says that ε-stable sets for small ε > 0 look almost like points from
the perspective of topological entropy. We have

Theorem 4 ([FFN03]) Every asymptotically h-expansive map on a compact
metric space has

E(f) 6= ∅.

Forward-expansive maps are automatically asymptotically h-expansive, but
the latter class is far larger; in particular

Theorem 5 ([Buz97]) Every C∞ diffeomorphism of a compact manifold is
asymptotically h-expansive.

5 Branch preimage entropy

In formulating the pointwise preimage entropies, one focuses on the preimage
sets f−n[x] of individual points. These sets have a natural tree-like structure,
with preimage points as ”vertices” and an ”edge” from z ∈ f−n[x] to f(z) ∈
f−(n−1)[x], and one can try to examine the structure of branches in this tree—
sequences {zi} with z0 = x and f(zi+1) = zi for all i. The idea of the Langevin-
Walczak invariant [LW91], which is to compare points x, x′ ∈ X by means of
their respective branch structures, was used by Hurley [Hur95] to formulate an
invariant that fits our general context and in many natural cases9 equals that
defined by Langevin and Walczak [LW91].

A complication for both formulations is that, if a map is not surjective,
some branches may terminate at points with no preimage; to avoid this largely
technical distraction, we will assume tacitly that f :X→X is a surjection.

9(but not all—see [NP99] for an example)
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Recall that for any compact metric space (X, d), there is an associated Haus-
dorff metric Hd which makes the collection H(X) of nonempty closed subsets
of X into a compact metric space: for K0,K1 ∈ H(X),

Hd(K0,K1) := max
i=0,1

{ sup
x∈Ki

[ inf
x′∈K1−i

d(x, x′)]}.

Given f :X→X a continuous surjection, we can apply the Hausdorff exten-
sion to the Bowen-Dinaburg metrics df

n to define a sequence of branch metrics
on X via

db
n(x, x′) := Hdf

n(f−n[x], f−n[x′]).

That is, x ∈ X is ”branch close” to x′ ∈ X if every branch at x is shadowed
by some branch at x′, and vice-versa. Applying the usual mechanism to these
metrics yields the branch preimage entropy

hb(f) := lim
ε→0

GR{maxsep[db
n, ε,X]}.

Standard arguments apply to show that topologically conjugate maps have
equal branch preimage entropy. When f is a homeomorphism, this equals the
topological entropy, but in general hb(f) acts very differently from htop(f)—a
number of general equalities for htop(f) become inequalities (sometimes strict)
for hb(f) [NP99].

One can think of hb(f) as measuring the homogeneity of the preimage struc-
ture of f . For example, the preimage sets of two points x, x′ ∈ S1 under the
angle-doubling map are rotations of each other, yielding db

n(x, x′) = d(x, x′) and
hence hb(f) = 0; this argument has a natural extension to any self-covering map
f :X→X.

5.1 Branch preimage entropy for subshifts

Suppose that f :X→X is the restriction of the shift map to some (shift-invariant)
closed subset X ⊂ AN. We have already seen that preimage sets can be identified
with predecessor sets

f−n[x] = {wx |w ∈ Pn(x, X)}.

Suppose now that x, x′ ∈ X have different (n + k)th predecessor sets, say
w = w0...wn+k−1 ∈ Pn+k(x) \ Pn+k(x′), which means that z = wx belongs
to f−(n+k)[x], but for any z′ ∈ f−(n+k)[x′] we have z′ = w′x′, where w′ =
w′0...w

′
n+k−1 and w′j 6= wj for some j < n + k. If we let i = min(j, n), then the

initial k-words of f i(z) and f i(z′) are distinct, so

df
n(z, z′) ≥ 2−k,

and this shows that whenever Pn+k(x) 6= Pn+k(x′) as sets,

db
n(x, x′) ≥ 2−k.
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But if w ∈ Pn+k(x) ∩ Pn+k(x′) then z = wx and z′ = w′x′ satisfy df
n(x, x′) ≤

2−k; it follows that

maxsep[db
n, 2−k, X] = NPn+k[X].

where NPm[X] denotes the number of distinct mth predecessor sets Pm(x) (as
x ranges over X). So we have, for any one-sided subshift f :X→X,

hb(f) = lim
k→∞

GR{NPn+k[X]} = GR{NPn[X]}.

Here are the details of this calculation for our earlier examples:

Full Shift: Since Pn(x,AN) = An for all x ∈ AN, NPn[AN] = 1 for all n and

hb(f) = 0.

Subshifts of Finite Type: We saw earlier that Pn(x) is determined by x0, so
NPn[X] ≤ card[A] for all n, and

hb(f) = 0.

Sofic Subshifts: We saw that the even shift has precisely two distinct nth

predecessor sets for each n, so NPn[X] = 2 for all n and hb(f) = 0. In
general, a subshift f :X→X is called sofic if NPn[X] has a finite upper
bound as n →∞; Benjamin Weiss [Wei73] showed that f :X→X is sofic
precisely if there is a subshift of finite type g :Y →Y and a continuous
surjection p :Y →X such that p◦g = f◦p (i.e., f is a factor of g). All sofic
subshifts clearly have

hb(f) = 0.

Dyck Shift: Any balanced word can precede any sequence in DN : more gener-
ally, if w = ABC ∈ Wn (as in §2.2.3) then, if C is empty, w ∈ Pn(x,DN )
for all x ∈ DN . If C 6= ∅, the unmatched left delimiters in C must match
the first unmatched right delimiters (if any) in x. To be precise, suppose
w ∈ Wn has m ≥ 0 unmatched left delimiters, `j1 , ..., `jm

(reading left-
to-right in w) and x ∈ DN has 0 ≤ p ≤ ∞ unmatched delimiters; let
q = min(m, p) ≤ n and suppose the first q unmatched right delimiters in
x are rs0 , ..., rsq

(reading left-to-right in x). Then w ∈ Pn(x) precisely if
the indices match, moving in opposite directions in x and w:

si = jm−i for 0 ≤ i < q.

This shows that the predecessor set Pn(x) is determined by the indices
of the first n (or fewer, if x has fewer) unmatched right delimiters in x.
NPn[DN ] thus equals the number of sequences of length n or less of indices
from {1, . . . , N}, or

NPn[DN ] =
n∑

i=0

N i ≤ (n + 1)Nn
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which has growth rate

hb(f,DN ) = GR{(n + 1)Nn} = log N.

(For comparison, recall that htop(f,DN ) = log(N + 1).)

Square-Free Sequences We show, as in [NP99], that if A is an alphabet on
six or more letters then the shift f :X→X on square-free sequences in A
has infinite branch preimage entropy.

Pick three distinguished letters from A, and

β = b0b1b2...

a square-free sequence in just these three letters. The complement A∗ of
these letters in A still has at least three letters, so we have the nonempty
subset X∗ ⊂ X of square-free sequences which have no letter in common
with β.

We will produce, for every subset E ⊂ Wn(X∗) of square-free words in
A∗, a sequence xE ∈ X whose predecessor set in X intersects Wn(X∗)
precisely in E:

Pn(xE , X) ∩ (A∗)n = Pn(xE , X) ∩Wn(X∗) = E.

When E = Wn(X∗), xE = β works, since for A ∈ Wn(X∗) the sequence
Aβ is square-free. Otherwise, consider the complement

F := Wn(X∗) \ E = {A0, A1, . . . , Ak}

and for i = 0, . . . , k let
Bi := b0...bi

be the initial subword of length i + 1 in β.

We can exclude A0 from Pn(xE) by making sure the initial subword of xE

is b0A0b0; for example if k = 0 (so E = Wn(X∗) \ {A0}) we can take

xE = b0A0b0b1b2... = B0A0β :

any word A 6= A0 in A∗ which is square-free belongs to the predecessor
set. If k ≥ 1, we exclude A1 (in addition to A0) by making sure that an
initial word w1 of xE is followed by A1w1; we shall take

w1 := b0A0b0b1 = B0A0B1

so

xE = b0A0b0b1A1b0A0b0b1b2.... = w1A1w1b2... = B0A0B1A1B0A0β.

For i = 1, . . . , k − 1, define wi+1 recursively by

wi+1 := wiAiwibi+1
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noting that for A ∈ Wn(X∗), Awi+1 is square-free precisely if A is distinct
from A0, ..., Ai. (The observation that wi+1 is itself square-free requires a
little thought.) Note also that wi+1 ends with Bi+1. Thus, the sequence

xE := wkbk+1bk+2...

is square-free, and its nth predecessor set intersects Wn(X∗) precisely in
E, as required.

This shows that the number NPn[X] of distinct nth predecessor sets for
X is bounded below by the number of distinct subsets of Wn(X∗), or
2wn (where wn = card[Wn(X∗)]). But we know that wn has positive
exponential growth rate (since X∗ has positive topological entropy), and
hence

hb(f) = GR{NPn[X]} ≥ GR{2wn} =
(

lim sup
n→∞

wn

n

)
· log 2 = ∞.

5.2 Hurley’s inequalities

The main result of Hurley’s paper [Hur95] is a beautiful inequality relating
pointwise, branch and topological entropy:

Theorem 6 ([Hur95]) For any continuous map f :X→X on a compact met-
ric space,

hm(f) ≤ htop(f) ≤ hm(f) + hb(f).

In particular, for any map with branch preimage entropy zero, pointwise
preimage entropy automatically agrees with topological entropy. We have seen
that this occurs for subshifts of finite type and more generally for sofic sub-
shifts, but for other subshifts Theorem 2 appears to provide the only proof that
hm(f) = htop(f).

Several other classes of maps are known to have hb(f) = 0 (and hence
hm(f) = htop(f)):

• A forward-expansive map on a compact manifold is automatically a
self-covering map [HR69] and so has branch entropy zero (as noted earlier
in this section).

• Any rational map f(z) = p(z)
q(z) (p, q polynomials) on the Riemann sphere

has zero branch preimage entropy [LP92].

• If X is homeomorphic to a finite graph (including the interval and circle)
then every continuous map f :X→X has branch preimage entropy zero
[NP99].
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5.3 Natural extensions

Given f :X→X a continuous map on a compact space, define the space

X̂ = X̂f := {x̂ = ...x−1x0x1... ∈ XZ | f(xi) = xi+1 for all i ∈ Z}

(with the induced product topology) and the projection π :X̂→X via

π(x̂) = x0.

The image of the projection is the eventual range of f

π[X̂] =
∞⋂

i=0

f i[X]

which is homeomorphic to the quotient space X̂/π. The shift map f̂ :X̂→X̂

[f̂(x̂)]i = xi+1, i ∈ Z

is a homeomorphism called the natural extension (or inverse limit) of f :X→X.
In effect, X̂f separates the various prehistories of points; note that for x̂ ∈ X̂,
x0 = π(x̂) determines all xi with i ≥ 0.

The natural extension of the angle-doubling map can be identified with the
”solenoid” of Smale [Shu86, 4.9], [KH95, 17.1], while the natural extension of a
one-sided subshift X ⊂ AN is the two-sided subshift X̂ ⊂ AZ specified by the
same list of disallowed words. In general, htop(f̂) = htop(f).

Of course, topologically conjugate maps have topologically conjugate natural
extensions, but the converse is not always true. The following example was
shown to me by Bob Burton.

Consider the coding ϕ :A2→B which assigns to each word w ∈ A2 of length
2 in the alphabet A = {0, 1} a letter ϕ(w) ∈ B in the alphabet B = {1, 2, 3}
via

ϕ(01) = 1
ϕ(11) = 2

ϕ(00) = ϕ(10) = 3.

Any such coding induces a continuous map ĥ :AZ→BZ via ĥ(x̂) = ŷ, where

yi = ϕ(xi−1xi).

The image ĥ[AZ] is the subshift X̂ ⊂ BZ with the transition matrix

A =

0 1 1
0 1 1
1 0 1

 .

Furthermore, yi determines xi, so ĥ is a homeomorphism between AZ and X̂ ⊂
BZ which conjugates the shift maps on these spaces.
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However, the one-sided subshift f :X→X defined by the transition matrix
A cannot be conjugated to the (full) shift on AN, because for y = y0y1... ∈ X,
f−1[y] has cardinality numerically equal to y0 ∈ {1, 2, 3}, while every x ∈ AN

has precisely two preimages.
The two one-sided subshifts are both of finite type, so automatically satisfy

hb(f) = 0. But more generally, the following is true:

Theorem 7 If f :X→X and g :Y →Y are both forward-expansive with topo-
logically conjugate natural extensions f̂ :X̂→X̂, ĝ : Ŷ → Ŷ , then

hb(f) = hb(g).

This theorem was first conjectured by Bob Burton, with whom I unsuccess-
fully sought a proof several years ago. I know of two arguments for this fact,
both unpublished. One proceeds by analyzing the structure of conjugacies be-
tween natural extensions (which for forward-expansive maps come from a kind of
generalized coding) and using it to estimate the growth rate of maxsep[db

n, ε,X]
for ε < c. The other is based on ”lifting” hb(f) to f̂ by a trick similar to our
replacement of points with local stable sets in §4. Unlike the situation there, the
resulting quantity has not been shown invariant under conjugacy of f̂ , except
when f is forward-expansive. Both arguments are due to Doris and Ulf Fiebig,
with some contribution on my part to the first one.

6 Pressure and Hausdorff dimension

In the context of an abstract ”thermodynamic formalism” for dynamical sys-
tems, Ruelle [Rue73, Rue78] modified the concept of topological entropy, replac-
ing the number maxsep[df

n, ε,X] of n-orbit segments with a ”weighted” count,
the weights coming from a function ϕ, to get the topological pressure of ϕ with
respect to f . To be precise10 given f :X→X a continuous map and ϕ :X→R a
continuous real-valued function, the sum of ϕ along the n-orbit segment starting
at x ∈ X is denoted

Snϕ(x) :=
n−1∑
i=0

ϕ(f i(x))

and for ε > 0 we consider

N(f, ϕ, ε, n) := sup
E

∑
x∈E

eSnϕ

the supremum taken over all (n, ε)-separated sets in X. The topological pres-
sure of ϕ with respect to f is then

Pf (ϕ) := lim
ε→0

GR{N(f, ϕ, ε, n)}.

10We loosely follow [KH95, §20.2], which together with [Wal82, Chap. 9] is a good reference
for details.
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It can be shown that Pf (ϕ) is either always finite or always infinite for all
ϕ ∈ C(X), the space of continuous real-valued functions on X, and when finite
Pf :C(X)→R is monotone, convex and continuous. It is also clear that the
topological pressure of the constant zero function is the topological entropy:

Pf (0) = htop(f).

There is a fascinating connection between topological pressure and the Haus-
dorff dimension of certain invariant sets. This connection was first noted, in the
context of Fuchsian groups, in Bowen’s last paper [Bow79] (published posthu-
mously), and is generally referred to as Bowen’s formula. For any strictly neg-
ative ϕ ∈ C(X), the function t 7→ Pf (t · ϕ) has a unique zero tϕ. Ruelle showed
[Rue82] that if f is C1+α and J is a conformal repellor (J is the closure of some
recurrent f -orbit, and the derivative multiplies the length of all vectors at x ∈ J
by a factor α(x), where α(x) > 1 for all x ∈ J) then the Hausdorff dimension
HD(J) of J equals tϕ, where ϕ(x) = − log α(x).

Analogous results for saddle sets of surface diffeomorphisms were obtained
by Manning et al [Man81, MM83]. A saddle set for a diffeomorphism of a
surface is an invariant set Λ such that at each x ∈ Λ there exist two independent
vectors v+, v− ∈ TxΛ with ‖ Dfn(v±) ‖ going to zero at a (uniform) exponential
rate as n → ±∞. Every point x ∈ Λ then has an invariant curve W s(x) (its
stable manifold) which goes through x tangent to v+. The prototype of this is
the Smale ”horseshoe” ([Shu86, KH95]), where v± are coordinate vectors. The
stable dimension at x ∈ Λ of a saddle set Λ is the Hausdorff dimension of the
intersection of Λ with the stable manifold of x:

sd(Λ, x) := HD(Λ ∩W s(x)).

If we define φs ∈ C(X) by

φs(x) := log ‖ Df(v+) ‖

then, under a few mild technical assumptions11 we again have [MM83] Bowen’s
formula

sd(Λ, x) = tφs .

The same formula was obtained for the C2 version of the Hénon map by Ver-
jovsky and Wu [VW96].

When the map is not invertible, the situation becomes more complicated.
Mihailescu [Mih01] showed that in a complex two-dimensional setting, the stable
dimension of a saddle set for a holomorphic endomorphism (with no critical
points in the set) has tφs as an upper bound, but the inequality can be strict. By
taking account of the minimum number of preimages of points in Λ, Mihailescu
and Urbański [MU01] obtained a better upper bound on sd(Λ).

In the same paper [MU01], Mihailescu and Urbański also obtained a lower
bound, using a new ”entropy” invariant h−(f) which we shall sketch below; they

11Λ is a basic set
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showed that this invariant, for the restriction of f to Λ, is a lower bound for the
stable dimension times the supremum of |φs| on Λ. Subsequently [MU02] they
defined two new notions of pressure, P−f (ϕ) and Pf,−(ϕ) and used Bowen type
formulas to obtain lower and upper bounds for stable dimension.

A notion complementary to that of an ε-separated set is an ε-spanning12

set: E ⊂ X ε-spans X if every point of X is within distance < ε of some point of
E. A (set-theoretically) maximal ε-separated subset of X automatically ε-spans
X, and a minimal ε-spanning set is ε

3 -separated, so in all of our definitions of
”entropy” we could replace maxsep[d, ε, X] with the number

minspan[d, ε, X] := min{card[E] |E ⊂ X ε-spans X}.

For the Mihailescu-Urbański invariants it is more natural to work with this
number.

The difference between htop(f) and hb(f), when phrased in terms of spanning
sets, can be clarified (at least when f is surjective) by noting that each n-branch
z0, z1, ...zn−1 of f−1 has a well-defined ”root” x = z0 and ”tip” z = zn−1 ∈
f−n[x]; the latter detrmines the branch via f(zi) = zi−1. A set E ⊂ X ε-spans
X in the branch metric db

n if the collection of branches rooted at points in E,
or in terms of ”tips”, Ef,n := {f−n[x] |x ∈ E} ⊂ H(X), ε-spans Xf,n in the
Hausdorff Bowen-Dinaburg metric Hdf

n—which is to say for any x ∈ X we can
find x′ ∈ E such that every branch rooted at one of x or x′ is (n, ε)-shadowed
by at least one branch rooted at the other. However, if we consider branches
without regard to their roots, merely asking for a collection of branches which
includes an (n, ε)-shadow of every branch, we are simply asking for a collection
of tips which ε-spans X in the Bowen-Dinaburg metric df

n, and so the usual
machinery in this case leads to htop(f).

The Mihailescu-Urbański definitions mix these two notions. Let us say that
a collection of n-branches weakly ε-spans n-branches in X if for any x ∈ X
we can find at least one n-branch at x which is (n, ε)-shadowed by one from
our collection. Looking at ”tips”, this amounts to saying we have a collection
E′ ⊂ X of tips such that the minimum Bowen-Dinaburg distance df

n of any
preimage set f−n[x], x ∈ X from our set E′ is at most ε. Denote the minimum
cardinality of a set E′ which weakly ε-spans n-branches in X by w[f, n, ε,X],
and let

hw(f) := lim
ε→0

GR{w[f, n, ε,X]}.

Note that since any set which (n, ε) spans X also weakly ε-spans n-branches in
X, we have

w[f, n, ε,X] ≤ minspan[df
n, ε,X]

so
hw(f) ≤ htop(f).

Going further, we say that a collection E ⊂ X (of ”roots”) very weakly
ε-spans n-branches in X if the collection of all branches rooted at points of E

12The phrase ε-dense denotes the same idea.
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weakly ε-spans n-branches in X. The minimum cardinality of a set which very
weakly ε-spans n-branches in X, which we will denote v[f, n, ε,X], is bounded
above by w[f, n, ε,X], since if E′ is the set of ”tips” for a weakly ε-spanning
set of n-branches, then the corresponding set E = fn[E′] of ”roots” is a very
weakly ε-spanning set with cardinality less than or equal to card[E′]. Thus, the
”entropy” defined using v[f, n, ε,X],

hv(f) := lim
ε→0

GR{v[f, n, ε,X]}

satisfies
hv(f) ≤ hw(f) ≤ htop(f).

Furthermore, any set which ε-spans X in the branch metric db
n also weakly

ε-spans n-branches in X, so

v[f, n, ε,X] ≤ minspan[db
n, ε,X]

which implies
hv(f) ≤ hb(f).

To define the corresponding notions of pressure, we set, for f :X→X and
ϕ ∈ C(X),

P−f (ϕ) := lim
ε→0

GR{inf
E′

∑
z∈E′

eSnϕ(z)}

where the infimum is taken over sets E′ of ”tips” for collections which weakly
ε-span n-branches in X, and

Pf,−(ϕ) := lim
ε→0

GR{inf
E

∑
x∈E

min
z∈f−n[x]

eSnϕ(z)}

where the infimum is taken over sets E (of ”roots”) which very weakly ε-span
n-branches in X.

It can be shown [MU02] that these are invariant in the sense that if f :X→X
and g :Y →Y are maps conjugated by the homeomorphism h :X→Y (h◦f =
g◦h), then for any ϕ ∈ C(X),

P−f (ϕ) = P−g (ϕ◦h−1)

Pf,−(ϕ) = Pg,−(ϕ◦h−1)

Note that when ϕ is the constant zero function, then eSnϕ(z) = 1 for all z ∈ X
and n ∈ N, so

P−f (0) = hw(f)

Pf,−(0) = hv(f).

The invariance of pressure implies the invariance of these ”entropies”; in [MU01,
MU02] hv (resp. hw) is denoted h− (resp. h−).

The bounds on stable dimension given by Mihailescu-Urbański can then be
stated as follows:
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Theorem 8 ([MU02]) Suppose f is a holomorphic Axiom A map of P2 and
Λ is a basic saddle set for f with no critical points of f . Let

φs(x) := log ‖ Df(v+) ‖

where v+ is the ”contracting” vector at x ∈ Λ, and denote by ts (resp. ts−) the
(unique) zero of the function t 7→ P−f (t · φs) (resp. t 7→ Pf,−(t · φs)).

Then for all x ∈ Λ
ts− ≤ sd(Λ, x) ≤ ts.

7 Other directions

I would like to close with some brief speculative comments on two other possible
directions of study in the spirit of preimage entropy:

Variational Principle: The relation between measure-theoretic and topolog-
ical entropy given by Theorem 1 has an extension to topological pressure
[Rue73, Wal76, Mis76]:

Theorem 9 (Variational Principle) For any continuous map f :X→X
on a compact metric space and any ϕ ∈ C(X),

Pf (ϕ) = sup
µ

{
hµ(f) +

∫
ϕ dµ

}
where the supremum is taken over all f-invariant Borel probability mea-
sures µ.

It is natural to ask whether there is an analogue of this for preimage en-
tropy: one needs to find an appropriate version of pressure and of measure-
theoretic entropy, probably based on the branch structure of preimages.
Mihailescu and Urbański have some ideas and results in this direction.

Semigroup Actions: The dynamics of a single map f :X→X can be viewed
as an action of the semigroup N on X. Andrzej Bís [Bís02] has formulated
analogues of the various preimage entropies in the context of an action of
any finitely-generated semigroup of continuous maps on a compact met-
ric space. One might speculate that a combination of these ideas with
those of Mihailescu and Urbański might yield more general results on the
dimension of fractals defined by iterated function systems.
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