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THE POINCARE-BENDIXSON THEOREM FOR 
THE KLEIN BOTTLE(1) 

BY 

NELSON G. MARKLEY(2) 

In 1923 Kneser showed that a continuous flow on the Klein bottle without 
fixed points has a periodic orbit [1]. The purpose of this paper is to prove a stronger 
version of this theorem. It states that the Klein bottle cannot support a continuous 
flow with recurrent points which are not periodic. 

1. Introduction. Let C be the complex plane. For every pair of integers n and 
m we define a homeomorphism Tn,m of C onto itself by Tn,m(z) = z + n + im. Letting 

$o = {Tn,m n and m are integers}, 

we see that ao is a group of homeomorphisms under the usual composition of 
maps. We define a to be the group of homeomorphisms generated by To01 and K 
where K(z) -+ 1/2. Then C/$o and C/$ are the torus Y and the Klein bottle X, 

respectively. In addition, (C, p) and (C, p') are the universal covering spaces of 
5r and X where p and p' are the canonical maps. Because ao ' a we get a natural 
map P2: Y-> X such that (g, P2) is the two-fold regular covering space of Xy 

and p' =P2 ? P- 

Let (X, p) be a covering space of X and let (X, R, r) be a continuous flow. 
Then there exists a unique flow (X, R, r such that p is a homomorphism of 
(X, R, rr) onto (X, R, r) [2]. Moreover, x E X is a fixed point of X if and only if 
p(x) is a fixed point of X and the covering transformations are automorphisms of 

(X, R, r). 
Let (X, R, r) be a continuous flow on a two-manifold and let x E X. A local 

cross section of X at x is a subset S of X containing x which is homeomorphic to a 
nondegenerate closed interval and for which there exists an ? > 0 such that the map 
(s, t) ->v(s, t) is a homeomorphism of S x [- s, s] onto the closure of an open 
neighborhood of x. We call s the length of the local cross section. If x is an interior 
point of X which is not a fixed point of v, then there exists a local cross section 
of X at x [4]. 

Let S be a simple curve and a, b E S. We denote the open segment of S between 
a and b by (a, b)s. For r>0 and a e X, (a, ar)={v(a, t): t e (0, r)} and [a, ar] 
={I(a, t) : t E [0, r]}, where X is a continuous flow on X. Let ls (z, z') and 1 (z, z') 
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denote the line segment and the line respectively, determined by z and z' of C. 
A line L in C is said to be rational if there exists Te o such that T(L) =L and T 
is not the identity map. 

2. Weil's theorem. At the Moscow Topology Conference in 1935 A. Weil [3] 
announced the theorem stated below. The writer does not know of a published 
proof. 

THEOREM 2.1. Let a: [0, oo) -a J be a curve on the torus wit/i no double points. 
L et &: [0, o) ->- C be any lift of a to C. If Ix(t) o- as t -- cc, then lim t(t) 
exists. 

LEMMA 2.2. Let a: [a, b] -->. . be a simple curve and let &: [a, b] -- C be a lift 
Of a. Suppose J-=ls (&(a), a(b)) u &([a, b]) is a simple closed curve and 1 (&(a), &(b)) 
n &[(a, b)]= 0. Then T[&(a)] and T[a(b)] are not in the interior of Jfor all T in W. 

Proof. If the conclusion is false, there exists a T in a-, which maps &(a) or &(b) 
into the interior of J. From the hypothesis it follows that J rn T(J) = 0. Therefore, 
T(J u Int J) c Int J, which contradicts the Brouwer fixed point theorem. 

LEMMA 2.3. Let a: [0, cc) -. .Y be a simple curve and let a: [0, cc) -> C be a 

lift of a. Let L be a rational line. If &a(t)I --. cc as t a-s cc, then a(t) does not meet 
every line parallel to L. 

Proof. Let V={z: Iz-&(0) =3}, let A ={s: t>s z> la(t)-&(O)I > 3}, and let 
to= g.l.b. A. Clearly &(to) E V. Let Rt be the ray starting at &(O) and containing a(t). 

We selected a circle of radius 3 so that any half disk would contain a fundamental 
region. We use this fact and Lemma 2.2 to show that Rt. u Rt2 is not a straight 
line when t2 > t1 > t0. Assume it is. In addition, we can assume without any loss of 
generality that a[(t1, t2)] r {Rt1 u Rt2} = o. Now Lemma 2.2 applies. But 
t2 > tl> to implies that there is a half disk of radius 3 and hence a fundamental 
region in the interior of Is (&(tl), &(t2)) u ?([t1l t]). The contradiction is obvious. 

It follows that there exists a line L' through &(O) and a half plane X determined 
by L' such that a(t) e . ' u L' when t > to. In fact, we have {a(t) : t > to} c X u R' 
where R' is one of the half rays in L' starting at a(O). We now define r such that 
a(e) R' and {a(t) : t> r} u R'. If there exists t1 such that t> t1 implies 
a(t) e dr, then let T =max {t : &(t) E L'}. When T> to, it is clear that &(r) E R'. 
If T < to, then either ray can be selected as R' and so we can assume that a(r) E R'. 
For the other case, let r= min {t : a(t) E R' and t > to}. 

Let L be a rational line through a(T) such that a(t) meets every line parallel to L. 
Clearly LO L'. Since L is rational, there exists T e a-0 such that T(&(T)) e .' and 
T(L)=L. Denote To a by a,. Let 

r-= a(T)-a(0) + 1a(T)-a&()1 and D = {z: Iz-a(T)I < r} f X. 

The set L' rn {z: Iz - (-r)I = r} consists of two points, q1 and q2, and we can assume 
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q, 0 R' and q2 E R'. Select rl > r such that t> >rl implies a(t) 0 D. In the half plane 
determined by L and q1 we select a line L1 parallel to L such that L n &([,r, rj) = 0 
and L1 n D= o. Let y1=L, nL'. Let T2=min{t: a(t)eL1}. Now select L2 
parallel to L such that L2 f I([7, r2])=0, L2 n D= 0, and L2f L'=y2 E R'. 
Let r 3= min {t : a(t) e L2}. There exists r4 E [r2, r3] such that &(74) c L1 and such 
that t E [r2, 73] and a(t) e L1 together imply I a(4)-YlI < la(t)-yj1. Finally, let 

mT5 = min {t: t E [74, 73] and a(t) E L2 u ls (q2, Y2)}. 

Set 

J = ls (Yi, &(74)) U &([r4, 75]) U lS (A(75), Y2) U ls (Y2, Y1) 

or 

J =ls (Yl, 4(T4)) U ([74, 75]) U lS (&(7s), Y1) 

according as &0(75) iS in L2 or L'. In either case J is a simple closed curve with D 
and hence a&(7) in its interior. 

Let r6= min ft : a1(t) e J and t> 7}, and let xj =L, n T(L'). Either &i(76) 

ls (x1, &(r4)) or &1(r6) e ls (x2, 4(73)) because a is simple and {&1(t) : t ? r} 
cT(d# u R')c.9X If &1(r3) E ls (x2, &(73)), then Ia1(m3)-a1(7)I < &(r3)-a(-)I 

which is impossihle. Therefore &1(r3) is in the exterior of J, 76 < r3, and &&(76) 

E ls (x1, &(r4)). Since {&(t): t E (7, 72)} is between L1 and L2, T6 E [72, 73). We now 
have the following contradiction: 

| 1(647-al(T) | < | 0C(,4)-&(r) | <-|a6)(T 

The proof is completed. 
Proof of Theorem 2.1. Set 

B = nC CI{a(t)/ Io&(t) I : t > n}. 
n=1 

The set B is a closed connected subset of U={z : lzI = 1}. Clearly limt " 0 &(t)/j&(t)j 
exists if and only if B is a point. We argue by contradiction. Let a and b be two 
distinct points of B. Let U1 and U2 be the two components of U-{a, b}. Since the 
arcwise connected set {&(t)/l a(t) : t > n} meets every open interval containing a or 
b, we can assume that 

U1 c {a(t)/Ia(t)| : t > n} 

for all n. Let R be a ray starting at 0 with rational slope so that z0 = R n U E U1. 
Pick z1 and Z2 in U1 so that they are separated by zo. Let L be any line parallel 
to R, and let R1 and R2 be the rays starting at 0 and determined by z1 and Z2 
respectively. There exists r > 0 such that the sets {z : Iz > r and z E Rj}, i = 1, 2 are 
on opposite sides of L. Since U1 c{a(t)/Ia(t)I : tn} for all n, a(t) meets the above 
sets and hence L. But this is contrary to the conclusion of Lemma 2.3, and the 
proof is completed. 
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COROLLARY 2.4. Let a, /: [0, oo) - 7 be simple curves which do not intersect. 
Let a, /: [0, oo) - C be lifts of a and /3 respectively. If Ia(t)- oo and lI(t) I - o 

as t oo, then 

rlim (t) = + lim 9(t) 

Proof. The equation limte a(t)/ ei(t) =e0' means given 8>0 there exists i >0 
such that 

a(t) E {reiO : r > 0 and 0 E (6'-s, 0'+e)} 

when t > r. Using this and the hypothesis it follows that a(R +) n ,(R +) =# 0 if the 
conclusion does not hold. 

3. The torus. Let a: [0, 1] -> 
- 
be a closed curve which is not null-homotopic, 

and let &: [0, 1 ] - C be any lift of a to C. There exists T E ao such that &(1) = T[&(0)] 
and T is not the identity. The curve a,,: R -- C defined by &,,(t) = Tn[&(t')] where 
t=n+t' and t' E [0, 1) is called a universal lift of a. If T' E ao, then obviously 

o u is another universal lift of a. 
REMARK 3.1. Let a: [0, 1] ->- be a closed curve which is not null-homotopic, 

and let au be any universal lift of a. 

(a) The image of au is between two parallel rational lines. 
(b) If au(R) lies between the lines L1 and L2, then au(R) n L # o whenever L 

is not parallel to L1. 
(c) The curve a is simple if and only if au is simple and for any T in $0, 

T o &u(R) n aeu(R) is either au(R) or the empty set. 
(d) If a is simple and To,m is the element of $0 used to define au, then n and m 

are relatively prime. 
Proof. Use the definition of au aild the properties of the transformations in $0. 
Let (gY R, v) be a continuous flow on the torus and let (C, R, #) be its lift to 

the complex plane. 
In the classical Poincare-Bendixson theory one applies the Jordan curve theorem 

to curves obtained from local cross sections and orbits. We form the same kind of 
curves on the torus, but then we take the universal lifts and use the Jordan curve 
theorem on the sphere. 

Let S be a local cross section of ir at w E Y; Suppose to > 0, wto E S, w =# wto, 
and [w, wto] ni (w, wto)s = 0, then y = [w, wto] u (w, wto)s is a simple closed curve 
(wto = 17(w, to)). When y is not null-homotopic we call the universal lift yu of y a 
control curve. Let zo E ju such that p(zo) E (w, wto)s. By 3.1 yu divides C into two 
parts. Clearly zo(- e) lies in one and Zoe in the other where ? is the length of S. 
We call them r - and r + respectively. The definition of r + does not depend on zo. 
If z E u fl p - 1(w), then z(-e) E r - and z(to + e) e r + 

LEMMA 3.2. Let yu be a control curve. Then r+ and r+ U ?u are positively 
invariant, and r- and F - u yu are negatively invariant. 
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Proof. Suppose z E Ir + and 0 + (z) 4: F +. Let r be the smallest positive number 
such that zr E Yu By our choice of -T, p(zr) e [w, wto)s. But this implies z(r- e) E r-, 
a contradiction. Clearly Cl (F +) = F + U Yu is also positively invariant. 

THEOREM 3.3. Let z0 E C. If p(zo) is {positively recurrent} {negatively recurrent} 
and not periodic, then {O + (zo)} {O - (zo)} does not lie between two parallel rational 
lines. 

Proof. Suppose p(zo) is positively recurrent and not periodic. Assume that 
o + (z0) lies between two parallel rational lines L' and L". 

Since z- is a properly discontinuous group of transformations, there exists a 
finite set of lines, {L1,..., Lq}, parallel to L' such that z' zo and z' between L' 
and L' implies z' E Li for some i. Since p(zo) is positively recurrent, there exists at 
least one i such that given any e >0 we can find z' e Li satisfying zo z' and 
0+(zO) n S(z', e)= 0 (S(z', e)={z Iz-z'l <e}). We consider two cases. 

For the first case we assume that there exists an i satisfying the above such that 
zo 0 Li. For definiteness, assume that zo E L1 and i= 2. Let T be a covering trans- 
formation mapping L1 on L2. We prove by induction that given any positive 
integer m and any e>0, there exists z'- zo such that z' e Tm(Ll) and 0 + (zo) 
n S(z', s) =A 0. It is true for m = 1. Suppose it is true for m. There exists z' E L2 

and 7 > 0 such that z1 - zo and Izorz-z I < e. We can assume that T(zo) = z1. Choose 
8 > 0 such that S(zo, 8)7 c S(z1, e). Using the isometric and automorphic properties 
of the covering transformations, we see that S(z', 8)-r - S(T(z'), ?) for all z'-zo. 
By the induction assumption there exists z2 zo and r' >0 such that z2 E Tm(Ll) 
and I -z 21 < &. Therefore, zo(7 + v') E S(T(z2), e) and T(z2) E Tm + 1(L1). Since 
d(Tm(L1), L1) -> oo as m - oo, 0 + (zo) can not lie between L' and L'. 

If the first case does not hold, assuming zo E L1, there exists el >0 such that 
z zo and 0 + (zo) n S(z', el) =A 0 together imply that z' E L1. We can assume that 
S(zo, el) is a canonical neighborhood of zo. Clearly zo is not recurrent. Thus there 
exists a local cross section S3 of * at zo such that O(zo) n S = zo and S3c S(zo, el). 
It follows that S=p(3) is a local cross section of ir at w. Since w is positively 
recurrent and not periodic we can find t2 > t1 > 0 satisfying 

(i) wti E S, 
(ii) [w, wt1] ri (w, wt1)s= o, and 

(i)Wt2 E '(W, Wtl),S 

Set y = [w, wt1] u (w, wt1)s. From (ii) we see that y is simple. If y is null-homotopic, 
then zot1 E S which contradicts our choice of S3. Therefore, we have a control 
curve Yu through zo which is between two lines parallel to L1 because S3c S(zo, El). 
Clearly ZOt2 e F + and ZOt2 E T(yu) for some T E ao. Because Izot2 -z' l< ', where 
z Zo, T(L1) =L, and T(yu) = . Consequently, ZOt2 C r + =0. Thus the 
second case cannot occur and the proof is completed. 

THEOREM 3.4. Let zo E C and let A be any compact set in C. Suppose that p(zo) E $7 
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is {positively recurrent} {negatively recurrent} and not periodic. Then there exists a 
neighborhood V of zo and r > O such that Vt rl A = 0 when {t > r} {-t > r}. 

Proof. Consider the first reading. We can find a control curve yu and a deck 
transformation Tsuch that A u z0cIF r) T(F+). By 3.1, 3.2, and 3.3 there exists 
-r> 0 such that z0r E F + and hence a neighborhood V of z0 such that VT c r 
Now apply Lemma 3.2. 

COROLLARY 3.5. Let zo E C. If p(zo) is {positively recurent} {negatively recurrent} 
and not periodic, then Izot I -*0x as {t -* oo} {t -* -oo} and 

iilm lzot 1} {tilimX |zot 

exists. 

Proof. Use 3.4 and 2.1. 

THEOREM 3.6. Let zo, z1 E C such that p(zo) and p(z1) are {positively recurrent} 
{negatively recurrent} and not periodic. Then 

{lim zo = l lim lim zot = lim zit 
t-+U0 jzotj t-+0 jz1tj t-+ - j0tj t-+-00 lz1t 

Proof. Use 2.4 and the translates of a control curve. 

4. The Klein bottle. We are now ready to prove the main theorem. 

THEOREM 5.1. Let (-* R, rr) be a continuous flow on the Klein bottle. Then 
every positively or negatively recurrent orbit is periodic. 

Proof. Let (J' R, 7r) and (C, R, *) be the lifts of 7r to Y and C. Assume w E c 
is positively recurrent and not periodic. Let p - '(w) = {w1, w }. Clearly w^1 and w2 
are not periodic. There exists a deck transformation k: JY -> Y which permutes 
W\ and w2. In addition, k is induced by K and is an automorphism of 7r. Since 
w is positively recurrent, either wi1 or wi2 is in co(w1)=co-limit points of wi1. If 
w2 E co(wl), then by applying k we see that wi E co(ii2) c 0(i 1). Therefore, i 1 and 
w2 are positively recurrent and not periodic. 

Let z1 ep- '(wi). Thenp[K(zl)] = w^ 2. Using 3.5 we conclude that limtQ (z1t)/lz1t I 
and limt,. K(zlt)/jK(zlt)l exist. Clearly their respective limits are complex 
conjugates. Therefore, by 3.6 limt,. (zlt)/lzlt I = ? 1. We will consider only the 
+ 1 case. 

Since Q + (z1) can not lie between two parallel rational lines, Im (z1t) is un- 
bounded for positive t. The next step is to show that Im (z1t) has neither upper nor 
lower bound for t>0. There is no loss in generality in assuming that Re (z1t) 
> Re (z1) if t> 0. The half plane {z: Re (z)> Re (z1)} is divided into two parts 
by 0+(z1). Clearly K(z1) lies in one and To0,[K(zl)] in the other for a suitable n. 
Observe that ImK(z1t)=-Im(z1t) and ImTo04[K(zlt)]=-Im(z1t)+n. It 
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follows Im (z1t) has neither an upper nor a lower bound. Therefore, O+(z1) meets 
every line parallel to the x-axis which contradicts Lemma 2.3, because t -*w1t 
is a simple curve on the torus. 

COROLLARY 5.2 (KNESER). Let (X* R, v) be a continuous flow on the Klein bottle 
withoutfixed points. Then there exists a periodic orbit. 

Proof. Let M be a minimal set under 7r, and let w E M. We know that w is almost 
periodic. Therefore, by Theorem 5.1 w is periodic or fixed, but 7r has no fixed 
points. 
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