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Inverse Function Theorem

In thls paper we obtain an extension of the classwal inverse functlon theorem from et

Banach spaces to some classes of locally convex spaces.

L INTRODUCTION

Flrst we should remember the most typlcal forms of the inverse functlon theorem and‘,' :
some definitions. S : :

Theorem 1: Let ¢ be a point of Banach space X, and fbe a functlon of class ct from

a neighbourhood of the point ¢ into Banach space ¥, such that df(c) (the Frechet differ- -

ential of f at the point c) is an isomorphism of the spaces X and Y. Then the function fis -
- a diffeomorphism from some neighbourhood of the point ¢ onto a nelghbourhood of the.

point f(c).

Let f and g be two functxons defined on some nelghbourhood of the pomt C. m the", B

space X with values in the space Y.

Definition 1. The functions f and g are called umformly tangent at the point ¢ 1f -
for every r>0 there exists s>0 such that. :

I(f~9)(x) = (f~g) M) <rlx—yl for Ix—cl<s and |y~ci<s., ,

Definition 2. The function fis called unlformly dlﬁ'erenUable at the pomt c 1f there
‘exists a continuous linear function 7, from X to ¥, such that the functmns f and T, are
uniformly tangent at the point c. : .

- Remarks: If a function fis uniformly differentiable at the pomt ¢, then 1t 15 dlﬁ'eren-' ;
tiable in the Frechet sense and T, = df(c). Let G be an open set in the 'space X
. A function fis of class C* on G, if and only if it is uniformly dxﬁ'erentlabie'at‘ each point

- of set G. This follows easily from the mean value theorem. If we replace in Theorem 1 the

class C*' by uniform differentiability of the function f at the point ¢, we get the weaker =

conclusion, namely that the function f'is a homeomorphism from some neighbourhood. of 5
the point ¢ onto a neighbourhood of the point f(c) and the inverse function f -1 is umformly o
dlﬁ'erentlable at- the point f(c) and df ~*(f(c)) = (df(c))~*. ' :




. We reformulate this remark and we get:

Theorem 2. Let f be a function defined on a neighbourhood of a point ¢ in £ Barach
space X with values in a Banach space Y. We suppose that there exists an isomorphism T’
from Y to X, such that the functions I, —T o f and 0, are uniformly tangent at the point ¢
(by I, and 0, we denote identity and zero-function on X). Then f is a homeomorphism
from a neighbourhood of the point ¢ onto a neighbourhood of the point Jf(c) and there
exists an isomorphism S from X to Y, such that the functions J,—S o f~*! and 0, are uni-
formly tangent at the point f(c) and § = T~1.

II. SOME EXTENSIONS OF BASIC DEFINITIONS

Let X be a locally convex Hausdorff space. By O we denote a family of continuous
seminorms generating the topology of X. Let f be a function from a subset of X with
values in X, let 4 be a set contained in the domain of f; and r be a positive number.

' Definition 3. We say that the function f is r-Lipschitzian on the set 4 if for every
xeAd, ye A, qe Q we have q(f(x)—f(y))<rq(x——y) Let £ and g be two functlons defined
in the neighbourhood of the point ¢ of space X with values in X.

Definition 4: The functions f and g.are called uniformly tangent at the point ¢ if
for every r>0 there exists a neighbourhood A4, of the point zero in X, such that the func-
tion f—g is r-Lipschitzian on the set ¢+ 4,.

If X is a Banach space, then the definitions 1 and 4 are equivalent. In what follows we
denote by X and Y the locally convex Hausdorff spaces sequentially complete (i.e. such
that each Cauchy sequence of X (or Y) is convergent).

. INVERSE FUNCTION THEOREM

Let f be a function defined on a neighbourhood of the point ¢ in X with values in Y.
We suppose that there exists an isomorphism T from ¥ to X such that the functions
I.—To f and O, are uniformly tangent at the point ¢. Then f'is a homeomorphism from
a neighbourhood of the point ¢ onto a neighbourhood of the point f(c) and there exists
an isomorphism S from X to Y, such that the functions J,—S o~ and 0, are uniformly
tangent at the point f(¢) and S = T~ %,

Banach lemma. Let 4 be a closed subset of X, and f be a function defined on' 4 with
values in X, such that f(4) = 4; Suppose that f is r-Lipschitzian with r<1. Then there
exists exactly one point x of the set 4 such that f(x) = x.

Proof of lemta: Let x, be a point of 4. For each n we put x, = f"(x,). For ge Q
(Q is the family of seminorms from the definition of Lipschitz condition) and p>0 we
get Q(xn+1 = Xn) <"Q’(xn—xn-;), G(Xns 1 — %) ST"G(X1 —Xg), (X1 p— X)) ST"q (X1 — X)L -1,
and so we have proved that the sequence {x,} is a Cauchy sequence. Therefore it is con-
vergent to some point x of the set A. Simultaneously the sequence {f(x,)} is convergent
to x. The Lipschitz condition implies that the restiiction of f to 4 is continuous, and so
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the sequence {f(x,} converges to f(x), therefore f(x) = x. If f(3) = y we get g(x~ P =
= q(f(x)=f()<rq(x—y) hence g(x—y) =0 and x =y. The uniqueness follows.
Proof of Theorem. Our assumptions imply that there exists a neighbourhood Ay,
of the point zero in X, such that the function I,— T o fis 1/2-Lipschitz on the set ¢+ 4 12
There exists g€ @ and r>0 such that the set B={xe X : g(x)<r} is contained in Ay
Let g be the restriction of I, ~T o f to the set ¢+ B, then g(x)—g(c)e 1/2B for x—ce B.
We put C = f(c)+1/2T~*(B). On the set (c+B)x C we define function F by the formula:
F(x,y) = g(x)+T(). For each y € C we have the following inclusion F(c+B,y)=c+B,
because if xe B, then Flc+x,3) = g(0)+g(x)—g(c)+T(») is contained in the set
(c=T<f()+1/2B+(T > f(c)+1/2B) = c+B. Let us remark that for ye C, X, €c+B,
X, €c+B, ge O we have q(F(xl, ¥)—F(x,;, y))<1/2¢(x; —x,). By our lemma applied
to the function F(-, y) we get that for each y e C there exists an unique point x,€ c+B -
~such that F(x,,y) = x,. It follows that the function f is one-to-one from the set ¢+ B
onto C. So we have proved the existence of inverse function f~* (we have f~1(y) = x,).
The continuity of g and 7' implies the continuity of . For each ge @, y,€C, y,€C,
we have inequalities: '

A .Q(f_l(h)—f_l()’z)) = Q(F(f—l@l)j, J’1)"F(f—1(J’2)s J’z))
<alg(f'00) -9 (f ) +9(T(, —yz))§(1/2)q(f o)) (TG~ )

and so ¢(f~'(»)—f "' (»2))<2IT|q(y; —p,). This proves the continuity of f~1. We have
proved that f'is a homeomorphism. Now we shall prove that the functions L-T 1oft
and 0, are uniformly tangent at the point f(c). Let us fix 7;: 0 <7< 1. Then there exists a neigh-
bourhood 4,-of the point zero in X, such that we have: g(x,—x,—(T o f(x,)—To f(x2))
<rq(x;—x,) for ge Q, x, ec+4,, x, ec+4,, hence q(T o f(x) =T o f(x,)—(x;—x3)) -
<(r/1 ‘-r)q(T"f(xx)“T o f(x2)). Let us put y, = S(x1), ¥, = f(x,). We getfor y; € flc+4,)
and yyeflc+4); g€ Q qlyi—y,—(T™ o f T @) =T 1 o f1(3))) S (/1= Dg(ry —y,).
The last inequality proves our thesis because if r tends to zero, r/1 —r must also tend to
zero. :

Remark. The implicit function theorem may be proved in the same way, taking the
Banach lemma as a basic.




