Sistemas Dinámicos

Agosto 21, 2008

Tarea 2

1. Sea Homeo([0,1]) es espacio de homeomorfismos del intervalo en sí mismo con la topología C^0 -uniforme

$$f_n \to f \text{ sii } f_n \twoheadrightarrow f, f_n^{-1} \twoheadrightarrow f^{-1}.$$

Considere la propiedad \mathcal{P} : " $f \in Homeo([0,1])$ tiene un número finito de puntos fijos". Es \mathcal{P} genérica?

- 2. Demuestre que si $\Phi \in \mathfrak{X}^r(M)$ es un campo vectorial gradiente, entonces Φ no tiene órbitas periódicas.
- 3. De un ejemplo de un campo vectorial de clase C^{∞} sobre $\mathbb{T}^n = S^1 \times \ldots \times S^1$ tal que todas sus órbitas son densas en \mathbb{T}^n .
- 4. Utilizando la ecuación diferencial c'(t) = f(c(t)) en \mathbb{R}^m que induce $\gamma'(t) = \Phi(\gamma(t))$ en TM, demuestre lo siguiente:

Si $\Phi \in \mathfrak{X}^r(M)$ es completo, $r \geq 1$, entonces

- (a) Para cada $p \in M$ existe una curva integral $\gamma(t) = \gamma_p(t)$ tal que $\gamma_p(0) = p$.
- (b) Si $\varphi_t(p) = \varphi(t,p) := \gamma_p(t)$ con $\varphi(0,p) = p$, entonces $\varphi: M \times \mathbb{R} \to M$ es de clase C^r .
- (c) Para todo $t \in \mathbb{R}$, $\varphi_t : M \to M$ es un difeomorfismo.

Fecha de entrega: Agosto 28, 2008 en clase.