Sistemas Dinámicos

Octubre 9, 2008

Tarea 8

- 1. Calcule el índice del punto crítico asociado al campo Halmitoniano $\Phi(x,y)=(\partial_y H(x,y),-\partial_x H(x,y))$ con $H(x,y)=xy(x^2-y^2)$. Dibuje el espacio fase.
- 2. Sea $P_k(z) = z^k$ para $z \in \mathbb{C}$, $k \geq 1$ y defina el campo vectorial $\Phi_k(z) = \Phi_k(x,y) = (\text{Re } P_k(z), \text{Im } P_k(z))$ sobre \mathbb{R}^2 . Claramente, el origen es el único punto crítico de estos campos vectoriales. Demuestre lo siguiente:
 - (a) Para toda $k \geq 1$, el índice de origen para $\Phi(z)$ es siempre positivo y el índice para $\Phi_k(\bar{z})$ es siempre negativo.
 - (b) Dibuje los espacios fase de $\Phi_k(z)$ y $\Phi_k(\bar{z})$ para k=1,2,3.
- 3. Sea $F(x) = x + \frac{1}{4\pi}\sin(2\pi x)$. ¿Es F un levantamiento de una función $f \in \text{Homeo}(S^1)$? Si lo es, determine f y calcule $\rho(f)$. Si no, explique por qué.
- 4. Sean $f,h\in \mathrm{Homeo}^-(S^1)$. ¿Es $\rho(f)=\rho(h^{-1}\circ f\circ h)$? Demuestre o de un contraejemplo.
- 5. Sea $f \in \text{Homeo}^+(S^1)$. Demuestre que todo punto periódico de f tiene el mismo periodo mínimo.

Notación: El conjunto de todos los homeomorfismos sobre S^1 que preservan orientación se denota por $\mathrm{Homeo}^+(S^1)$ (o $\mathrm{Homeo}^-(S^1)$ si invierten orientación).

Fecha de entrega: Octubre 16, 2008 en clase.