John W. Hagood, Department of Mathematics and Statistics, Northern Arizona University, PO Box 5717, Flagstaff, AZ 86011-5717, USA. email: john.hagood@nau.edu

THE LEBESGUE DIFFERENTIATION THEOREM VIA NONOVERLAPPING INTERVAL COVERS

Abstract

A short proof is given for the Lebesgue Differentiation Theorem using a variation of the Heine-Borel covering property, without reliance on sophisticated approaches such as Vitali covers and the rising sun lemma.

In this paper we use a variation of the Heine-Borel covering property to prove the theorem due to Lebesgue that every monotone function $f : [a, b] \to \mathbb{R}$ is differentiable almost everywhere. The approach is more accessible than typical treatments that use Vitali covers, the rising sun lemma or other methods [1, 2, 3, 4, 5]. Throughout λ represents Lebesgue measure on the real line.

A family of nondegenerate compact intervals C is a **right adapted inter**val cover of a set $E \subseteq \mathbb{R}$ if for each $x \in E$ there is an interval $[L(x), R(x)] \in C$ such that L(x) < x < R(x) and $[s, R(x)] \in C$ for all $s \in [L(x), x]$. The term left adapted interval cover is defined similarly, and we refer to either of these as an adapted interval cover. We say that a family of compact intervals is **nonoverlapping** if the interiors of the intervals are pairwise disjoint.

Covering Lemma. If C is an adapted interval cover of a compact set $K \subseteq \mathbb{R}$, then there is a finite collection of nonoverlapping intervals in C that covers K.

PROOF. Without loss of generality, suppose that \mathcal{C} is right adapted. Let $a = \min K$ and $b = \max K$ and let A be the set of all $t \in [a, b]$ such that \mathcal{C} has a finite nonoverlapping subcover of $[a, t] \cap K$. Then $a \in A$, so A is nonempty. Let $\beta = \sup A$. We first show that $\beta \in K$. Otherwise, β lies in a component (c, d) of $[a, b] \setminus K$ and there is a finite collection \mathcal{D} of nonoverlapping intervals in \mathcal{C} that covers $[a, c] \cap K$. Then \mathcal{D} can be modified by deleting extraneous

953

Key Words: Lebesgue differentiation theorem, interval cover, monotone function Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26A48 Received by the editors February 16, 2004 Communicated by: B. S. Thomson

intervals to the right of c and adding [d, R(d)]. This contradicts $\beta < d$, so $\beta \in K$.

Now let $t \in (L(\beta), \beta] \cap A$ and choose any finite nonoverlapping collection \mathcal{D} of intervals in \mathcal{C} that covers $[a, t] \cap K$. If [r, s] is the right-most interval of \mathcal{D} that contains t, then either $s \geq b$ in which case $b \in A$ as desired or $s \leq \beta$ and \mathcal{D} can be modified to include $[s, R(\beta)]$. Then $\min\{R(\beta), b\} \in A$, which is impossible unless $b = \beta \in A$.

The key to the proof of the main theorem is a growth lemma for monotone functions in terms of Dini derivates. As usual, the upper right-hand Dini derivate is given by

$$D^+f(x) = \inf_{\alpha>0} \sup_{0 < h < \alpha} \frac{f(x+h) - f(x)}{h}$$

and the other derivates D_+ , D^- and D_- are defined similarly. It is well known that the derivates of a monotone function are measurable.

Growth Lemma. Suppose that f is strictly increasing on [a, b]. Let C be the set of points in (a, b) at which f is continuous and let E be a Borel subset of C.

- (a) For any Dini derivate D, if Df(x) > q on E, then $\lambda(f(E)) \ge q\lambda(E)$.
- (b) For any Dini derivate D, if Df(x) < p on E, then $\lambda(f(E)) \leq p\lambda(E)$.

PROOF. Part (a): The proofs for D^+ and D^- are similar and the other two cases are then consequences, so we proceed with D^+ . Suppose that $D^+f > q$ on a Borel set $E \subseteq C$. Since f is strictly increasing, f(E) is Borel measurable. Let $\varepsilon > 0$, and choose a compact set $K \subseteq E$ and an open set $U \supseteq f(E)$ such that $\lambda(E \setminus K) < \varepsilon$ and $\lambda(U \setminus f(E)) < \varepsilon$.

Construct a right adapted interval cover C of K as follows. For each $x \in K$, f is continuous at x so there is an open interval $I \subseteq (a, b)$ about x such that $f(I) \subseteq U$. Choose a number $R(x) \in I$ satisfying x < R(x) and

$$f(R(x)) - f(x) > q(R(x) - x).$$

Using continuity at x, choose $L(x) \in I$ such that L(x) < x and

$$f(R(x)) - f(s) > q(R(x) - s)$$

whenever $L(x) \leq s \leq x$. Let

$$\mathcal{C} = \{ [s, R(x)] : x \in K, L(x) \le s \le x \}.$$

Then C is a right adapted interval cover of K, so there is a finite set of nonoverlapping intervals $\{[c_i, d_i]\}_{i=1}^n$ that covers K and associated points $x_i \in K$ such that $L(x_i) \leq c_i \leq x_i < d_i = R(x_i)$. The intervals $[f(c_i), f(d_i)]$ are also nonoverlapping and lie in U. Then

$$\lambda(f(E)) > \lambda(U) - \varepsilon \ge \lambda(\bigcup_{i=1}^{n} [f(c_i), f(d_i)]) - \varepsilon = \sum_{i=1}^{n} (f(d_i) - f(c_i)) - \varepsilon$$
$$> \sum_{i=1}^{n} q(d_i - c_i) - \varepsilon \ge q\lambda(K) - \varepsilon > q\lambda(E) - \varepsilon(1 + q).$$

Thus, $\lambda(f(E)) \ge q\lambda(E)$.

Part(b): Let $\varepsilon > 0$ and choose a compact set $K \subseteq f(E)$ and an open set $U \supseteq E$ such that $\lambda(f(E) \setminus K) < \varepsilon$ and $\lambda(U \setminus E) < \varepsilon$. Now K must have the form

$$K = [f(\alpha_0), f(\beta_0)] \setminus \bigcup_i (f(\alpha_i), f(\beta_i))$$

for some finite or countable set of points $\alpha_i, \beta_i \in E$, so

$$f^{-1}(K) = [\alpha_0, \beta_0] \setminus \bigcup_{i \ge 1} (\alpha_i, \beta_i)$$

which is a closed subset of E. This permits us to apply the above technique to $f^{-1}(K)$ and U to show that $\lambda(f(E)) \leq p\lambda(E)$. \Box

The proof of the main theorem now follows from two consequences of the growth theorem. In the setting of the lemma, if

$$A = \{x \in C : Df(x) = \infty\}$$

for any Dini derivate D, then for any positive real number q,

$$f(b) - f(a) \ge \lambda(f(A)) \ge q\lambda(A)$$

Thus $\lambda(A) = 0$, so that the Dini derivates of f are finite a.e. Second, all sets of the form

$$B = \{ x \in C : D_+ f(x)$$

satisfy $q\lambda(B) \leq \lambda(f(B)) \leq p\lambda(B)$ so that $\lambda(B) = 0$. That is, $D^-f \leq D_+f$ a.e. and similarly $D^+f \leq D_-f$ a.e. The case of a general monotone function follows from the strictly increasing case in standard fashion. Thus we have the

Lebesgue Differentiation Theorem. If $f : [a, b] \to \mathbb{R}$ is monotone, then f is differentiable almost everywhere.

References

- D. Austin, A geometric proof of the Lebesgue differentiation theorem, Proc. Amer. Math. Soc., 16 (1965), 220–221.
- [2] F. Riesz and B. Sz.-Nagy, *Functional Analysis*, Fredrick Ungar, New York, 1955.
- [3] H. Royden, Real Analysis, 3rd ed., Prentice Hall, New Jersey, 1988.
- [4] W. Rudin, Real and Complex Analysis, McGraw-Hill, Inc., New York, 1966.
- [5] L. P. Yee and R. Výborný, The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, 2000.

956