John W. Hagood, Department of Mathematics and Statistics, Northern Arizona University, PO Box 5717, Flagstaff, AZ 86011-5717, USA.
email: john.hagood@nau.edu

THE LEBESGUE DIFFERENTIATION THEOREM VIA NONOVERLAPPING INTERVAL COVERS

Abstract

A short proof is given for the Lebesgue Differentiation Theorem using a variation of the Heine-Borel covering property, without reliance on sophisticated approaches such as Vitali covers and the rising sun lemma.

In this paper we use a variation of the Heine-Borel covering property to prove the theorem due to Lebesgue that every monotone function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable almost everywhere. The approach is more accessible than typical treatments that use Vitali covers, the rising sun lemma or other methods $[1,2,3,4,5]$. Throughout λ represents Lebesgue measure on the real line.

A family of nondegenerate compact intervals \mathcal{C} is a right adapted interval cover of a set $E \subseteq \mathbb{R}$ if for each $x \in E$ there is an interval $[L(x), R(x)] \in \mathcal{C}$ such that $L(x)<x<R(x)$ and $[s, R(x)] \in \mathcal{C}$ for all $s \in[L(x), x]$. The term left adapted interval cover is defined similarly, and we refer to either of these as an adapted interval cover. We say that a family of compact intervals is nonoverlapping if the interiors of the intervals are pairwise disjoint.

Covering Lemma. If \mathcal{C} is an adapted interval cover of a compact set $K \subseteq \mathbb{R}$, then there is a finite collection of nonoverlapping intervals in \mathcal{C} that covers K.

Proof. Without loss of generality, suppose that \mathcal{C} is right adapted. Let $a=\min K$ and $b=\max K$ and let A be the set of all $t \in[a, b]$ such that \mathcal{C} has a finite nonoverlapping subcover of $[a, t] \cap K$. Then $a \in A$, so A is nonempty. Let $\beta=\sup A$. We first show that $\beta \in K$. Otherwise, β lies in a component (c, d) of $[a, b] \backslash K$ and there is a finite collection \mathcal{D} of nonoverlapping intervals in \mathcal{C} that covers $[a, c] \cap K$. Then \mathcal{D} can be modified by deleting extraneous

[^0]intervals to the right of c and adding $[d, R(d)]$. This contradicts $\beta<d$, so $\beta \in K$.

Now let $t \in(L(\beta), \beta] \cap A$ and choose any finite nonoverlapping collection \mathcal{D} of intervals in \mathcal{C} that covers $[a, t] \cap K$. If $[r, s]$ is the right-most interval of \mathcal{D} that contains t, then either $s \geq b$ in which case $b \in A$ as desired or $s \leq \beta$ and \mathcal{D} can be modified to include $[s, R(\beta)]$. Then $\min \{R(\beta), b\} \in A$, which is impossible unless $b=\beta \in A$.

The key to the proof of the main theorem is a growth lemma for monotone functions in terms of Dini derivates. As usual, the upper right-hand Dini derivate is given by

$$
D^{+} f(x)=\inf _{\alpha>0} \sup _{0<h<\alpha} \frac{f(x+h)-f(x)}{h}
$$

and the other derivates D_{+}, D^{-}and D_{-}are defined similarly. It is well known that the derivates of a monotone function are measurable.

Growth Lemma. Suppose that f is strictly increasing on $[a, b]$. Let C be the set of points in (a, b) at which f is continuous and let E be a Borel subset of C.
(a) For any Dini derivate D, if $D f(x)>q$ on E, then $\lambda(f(E)) \geq q \lambda(E)$.
(b) For any Dini derivate D, if $D f(x)<p$ on E, then $\lambda(f(E)) \leq p \lambda(E)$.

Proof. Part (a): The proofs for D^{+}and D^{-}are similar and the other two cases are then consequences, so we proceed with D^{+}. Suppose that $D^{+} f>q$ on a Borel set $E \subseteq C$. Since f is strictly increasing, $f(E)$ is Borel measurable. Let $\varepsilon>0$, and choose a compact set $K \subseteq E$ and an open set $U \supseteq f(E)$ such that $\lambda(E \backslash K)<\varepsilon$ and $\lambda(U \backslash f(E))<\varepsilon$.

Construct a right adapted interval cover \mathcal{C} of K as follows. For each $x \in K$, f is continuous at x so there is an open interval $I \subseteq(a, b)$ about x such that $f(I) \subseteq U$. Choose a number $R(x) \in I$ satisfying $x<R(x)$ and

$$
f(R(x))-f(x)>q(R(x)-x) .
$$

Using continuity at x, choose $L(x) \in I$ such that $L(x)<x$ and

$$
f(R(x))-f(s)>q(R(x)-s)
$$

whenever $L(x) \leq s \leq x$. Let

$$
\mathcal{C}=\{[s, R(x)]: x \in K, L(x) \leq s \leq x\} .
$$

Then \mathcal{C} is a right adapted interval cover of K, so there is a finite set of nonoverlapping intervals $\left\{\left[c_{i}, d_{i}\right]\right\}_{i=1}^{n}$ that covers K and associated points $x_{i} \in K$ such that $L\left(x_{i}\right) \leq c_{i} \leq x_{i}<d_{i}=R\left(x_{i}\right)$. The intervals $\left[f\left(c_{i}\right), f\left(d_{i}\right)\right]$ are also nonoverlapping and lie in U. Then

$$
\begin{aligned}
\lambda(f(E)) & >\lambda(U)-\varepsilon \geq \lambda\left(\cup_{i=1}^{n}\left[f\left(c_{i}\right), f\left(d_{i}\right)\right]\right)-\varepsilon=\sum_{i=1}^{n}\left(f\left(d_{i}\right)-f\left(c_{i}\right)\right)-\varepsilon \\
& >\sum_{i=1}^{n} q\left(d_{i}-c_{i}\right)-\varepsilon \geq q \lambda(K)-\varepsilon>q \lambda(E)-\varepsilon(1+q)
\end{aligned}
$$

Thus, $\lambda(f(E)) \geq q \lambda(E)$.
Part(b): Let $\varepsilon>0$ and choose a compact set $K \subseteq f(E)$ and an open set $U \supseteq E$ such that $\lambda(f(E) \backslash K)<\varepsilon$ and $\lambda(U \backslash E)<\varepsilon$. Now K must have the form

$$
K=\left[f\left(\alpha_{0}\right), f\left(\beta_{0}\right)\right] \backslash \bigcup_{i}\left(f\left(\alpha_{i}\right), f\left(\beta_{i}\right)\right)
$$

for some finite or countable set of points $\alpha_{i}, \beta_{i} \in E$, so

$$
f^{-1}(K)=\left[\alpha_{0}, \beta_{0}\right] \backslash \bigcup_{i \geq 1}\left(\alpha_{i}, \beta_{i}\right)
$$

which is a closed subset of E. This permits us to apply the above technique to $f^{-1}(K)$ and U to show that $\lambda(f(E)) \leq p \lambda(E)$.

The proof of the main theorem now follows from two consequences of the growth theorem. In the setting of the lemma, if

$$
A=\{x \in C: D f(x)=\infty\}
$$

for any Dini derivate D, then for any positive real number q,

$$
f(b)-f(a) \geq \lambda(f(A)) \geq q \lambda(A)
$$

Thus $\lambda(A)=0$, so that the Dini derivates of f are finite a.e. Second, all sets of the form

$$
B=\left\{x \in C: D_{+} f(x)<p<q<D^{-} f(x)\right\}
$$

satisfy $q \lambda(B) \leq \lambda(f(B)) \leq p \lambda(B)$ so that $\lambda(B)=0$. That is, $D^{-} f \leq D_{+} f$ a.e. and similarly $D^{+} f \leq D_{-} f$ a.e. The case of a general monotone function follows from the strictly increasing case in standard fashion. Thus we have the

Lebesgue Differentiation Theorem. If $f:[a, b] \rightarrow \mathbb{R}$ is monotone, then f is differentiable almost everywhere.

References

[1] D. Austin, A geometric proof of the Lebesgue differentiation theorem, Proc. Amer. Math. Soc., 16 (1965), 220-221.
[2] F. Riesz and B. Sz.-Nagy, Functional Analysis, Fredrick Ungar, New York, 1955.
[3] H. Royden, Real Analysis, 3rd ed., Prentice Hall, New Jersey, 1988.
[4] W. Rudin, Real and Complex Analysis, McGraw-Hill, Inc., New York, 1966.
[5] L. P. Yee and R. Výborný, The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, 2000.

[^0]: Key Words: Lebesgue differentiation theorem, interval cover, monotone function Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26A48
 Received by the editors February 16, 2004
 Communicated by: B. S. Thomson

