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ARTICLES

The Dynamics of Circle Homeomorphisms:
A Hands-on Introduction

JAMES A. WALSH

Oberlin College
Oberlin, OH 44074-1019

Introduction

The dynamics of circle homeomorphisms is a deep, beautiful, and surprisingly
accessible topic for students in an advanced calculus or introductory real analysis
course. The remainder of this article should be considered a proof of this claim. It is
structured as a sequence of connected exercises providing the reader with an
introduction to the theory. These exercises could be interspersed throughout a
semester course in junior-level real analysis, or used collectively as a capstone
experience (solutions to the exercises are on the web [25] or available by writing the
author). We begin with historical background.

Henri Poincaré [22] introduced the study of the dynamics of circle homeomor-
phisms in his attempt to classify solutions to ordinary differential equations (or flows)
defined on the two-dimensional torus T2 We think of T2 as being obtained by
identifying points (x,, y;) and (x,, y,) in R? if (x, y,) = (x,, y,) + (m, n) for some
integer pair (m, n). Flows defined on T? thus correspond to vector fields V: R* — R?,
V(x, y) = (Vi(x, y), V,(x, y)), which are 1-periodic in each coordinate as in Ficure 1
(5, Ch. 17], [11, §6.1], [16, §1.5, §14.2]). Poincaré was interested in the role the
topology of T2 plays in determining the long-term behavior of solutions.
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FIGURE 1

The vector field V(x, y) = (1.1 + sin Qmy),
1.1 — cos(2x)) is invariant under integer translations.

Beginning with the simplest case, Poincaré considered differential equations having
no equilibrium points (points (x,, y,) for which V(x,, y,) = (0,0)). These flows exist
on T? because the Euler characteristic is zero [10, §3.5]. Within this class of

3
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differential equations, he restricted his study to vector fields with V,(x, ) >0 and
Vy(x, y) > 0 for all (x, y) € R®—all vectors point “northeast” in such vector fields
(see Ficure 1).

Now consider a meridianal circle T on the torus and let 8 € T (see Ficure 2). Note
that, due to the class of vector fields under consideration, the trajectory beginning at 6
must wrap around the torus and intersect T on the “other side.” Poincaré thus

FIGURE 2
Defining the return map f: T - T.

defined a map f: T — T which assigns to 6 € T the first point of intersection of the
trajectory of 6 with T. Assuming the vector field V' has continuously differentiable
components, the existence and uniqueness theorem for ODE’s (see, e.g., [21, §2.2])
implies the map f is an orientation-preserving (circle) homeomorphism. The qualita-
tive study of ODE’s defined on T? is thus reduced to the study of iteration of the
return map f.

The map f is an example of what is now called a Poincaré return map. More
generally, such maps allow for the qualitative study of flows in R" by considering the
Poincaré return map on an appropriately chosen hyperplane in R ([9, §1.5], [11,
§6.11, [16, §0.3], [21, §3.4], [24, §5.8]). What now seems such a natural technique is
one of Poincaré’s many deep and significant contributions to the field of dynamical
systems. For an insightful discussion of Poincaré’s work in dynamical systems
(“creation of ” is perhaps more apt) see the introduction in [23].

The study of the dynamics of circle homeomorphisms provides a host of wonderful
exercises at the advanced undergraduate level. In the following sections we present an
introduction to the subject, but rather than include proofs of statements we provide
exercises (with hints where appropriate) which the reader is encouraged to complete.
So, with pencil and paper in hand, please read on!

Preliminaries

Much of the following can be found in [12]. Let T denote the real numbers mod 1,
ie., T =R/Z. We think of T as a circle of circumference one due to the identification
of 0 mod 1 and 1 mod 1 in R/Z. The value 1/4 €T, for example, represents
one-fourth of a “turn” around T. Let f: T — T be an orientation-preserving circle
homeomorphism, so that each of f and f~! is continuous, and f preserves the
(cyclic) order of points on T. The simplest type of circle homeomorphism is a rigid
rotation r,(0) = 0 + w, where o is a fixed real number mod 1.

Given 0T, define £°(9) =60 and, for integers i >0, f(8)=f(f"1(9)). For
i <0, let f(0)=f""(f"*'(6)). We seek to understand the behavior of orbits of f

0(0,f) =0(0) ={f'(0):iz).
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The simplest type of orbit is a periodic orbit, one for which f"(8) =6 for some
n € Z. Such a 6-value is called a periodic point of period n. Periodic orbits for f
correspond to periodic trajectories on T? for the class of differential equations
considered by Poincaré in [22].

Exercise 1. Consider rigid rotation r,: T — T.

(a) Let w=p/q € Q (throughout, we assume ged(p, g) = 1). Show that all orbits of
r,, are periodic with the same period.

(b) Suppose w & Q. Show that all orbits of r,, are dense in T. Hint: For 6 € T, show
that 0(@) is an infinite set. Use the compactness of T or the Bolzano-Weierstrass
Theorem to conclude that 0(8) has a limit point in T. Given € > 0, deduce the
existence of integers m and n with r(8) and r,'(8) less than e apart. Now use
the fact that r,, is rigid rotation.

For x €RR, let {-) denote the fractional part of x. Let w:R = T, x = {x), be the
projection map from the reals onto T. Note that 7 wraps any interval of the form
[x,x + 1) once around T since it identifies x and x+ 1. A lift of f is a function
F:R — R such that wF(x) = fmr(x) for all x €R, i.e., such that the diagram

F

R—R

||

T——T
commutes. Given that f: T — T is continuous, one can choose a continuous lift
F:R->R (5, §17.1], [ 17, §5.6]). We will assume that all lifts in this article are
continuous.
The graph of a lift can be drawn as follows. Consider the graph of f as a subset of
T X T; the graph can be drawn in the unit square with opposite edges identified, as in
Ficure 3(a). Now tile the plane with integer translates of this square. Each curve in
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FIGURE 3

Ficuee 3(b) is then the graph of a lift of f. We see that f has infinitely many lifts, any
two of which differ by an integer. Each lift is strictly increasing on R, and F(x + 1) =
F(x)+1 for all x €R. (You'll soon be invited to prove these facts!)

To understand the behavior of orbits of f, we often study orbits of F:

o(x,F) =o(x)={F'(x):i€Z},
which can be thought of as orbits of f “laid out” in the real line. For example, if

0(8, ) has passed w(0) €T p times after g iterates, and if x €[0,1), w(x) =6 and
F is the lift satisfying F(0) €[0, 1), then p < F9(x) <p + 1.
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A lift of a circle homeomorphism is particularly useful as it allows us to study
iteration of a map defined on R—for which we have the full arsenal of results from
real analysis at our disposal.

Exercise 2. Show that for all k €Z, R,(x) =x + w + k is a lift of the rigid rotation
r,- (For the remainder of this paper, we will set k =0, so R, (x) =x + w.)

Exercise 3. Show that a lift of an orientation-preserving circle homeomorphism is
strictly increasing. Hint: Show F is strictly increasing on [n, n + 1) for all n € Z. Then
use the continuity of F.

Exercise 4. Let F be a lift of an orientation-preserving circle homeomorphism f.
Show that, for all integers n, wF"(x) =f"w(x). That is, F" is a lift of f" for all
n€e€Z.

Exercise 5. Show that any two lifts of a circle homeomorphism differ by a fixed
integer k. Hint: To show that the same k works for all x, use the fact that continuous
functions take connected sets to connected sets.

Exercise 6. (a) Show that a lift F of an orientation-preserving circle homeomor-
phism must satisfy F(x+1)=F(x)+1 for all x €R. Hint: Given x € R, show
F(x+1)=F(x)+k for some k € Z. If k # 1, use the intermediate value theorem to
contradict the fact f is a homeomorphism.

(b) Show Vx €R, Vn, k€Z, F(x +k)=F(x)+k and F*"(x + k) =F"(x) + k.

Exercise 7. Let F be a lift of an orientation-preserving circle homeomorphism.

(a) Suppose there exist x € R and integers p and ¢ such that F7(x) =x +p. Show
that 7(x) is a periodic point of period q for f. Such an x is called a p /g-periodic
point.

(b) Suppose 8 € T is a periodic point of period g. Show that there is an integer p
such that, for all x € 7~ 1(0) ={x € R: w(x) = 6}, F9(x) =x + p. Hint: Use the
fact that if x, y € 7 1(8), then x = y +k for some k €Z. Then use Exercise
6(b).

Knowing that x € R is a p /g-periodic point yields information beyond the fact 7 (x)
is a period ¢ point for f. As indicated in Ficure 4, p counts the number of times the

2 2 ey
Fy(x)
Fy(x)
y=x y=x
1 1
1 2 1 2

fi fa
FIGURE 4
a(0) is a period 3 point for f, and f;. 0is a 1/3-periodic
point for F; and 0 is a 2 /3-periodic point for Fj.
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orbit of 7(x) traverses T every g iterates. The horizontal and vertical lines in Ficure 4
(the “cobweb” diagram) represent a graphical interpretation of iteration [8, §1.3].
The extended orbit of x € R under F is defined by

eo(x,F) =eo(x)={F(x)+j:i,jE€Z}.

Exercise 8. (a) Show that eo(x) = 7w (o(m(x), f)). (b) Let w & Q. Show that
eo(x, R,) is dense in R.

The rotation number

DEFINITION. Let F be a lift of an orientation-preserving circle homeomorphism
f:T — T. The rotation number p(f) is defined, for any x € R, as the fractional part of

(1

lim

F*(x) —x
n—o n '
Remarks. The fractional part is chosen so that p(f) is independent of the lift F
(see Exercise 5). Henceforth, when the limit in (1) is used we will assume the
fractional part has been taken.
The rotation number measures the average distance a point x travels per iterate of
F, or, projecting onto T, the average rotation per iterate of f.

Exercise 9. Show that, for all x € R, p(r,) = w.

PROPOSITION 1. Let F be a lift of an orientation-preserving circle homeomorphism.
The rotation number p(f) exists and its value is independent of x. That is, p(f) is
well-defined.

Exercise 10. Show that p(f), if it exists, is independent of x by completing the
following steps:
(a) Let k € Z. Use Exercise 6 to show

lim F'(x+k)—(x+k) — lim W

n—oo n n—o

Hence to show p(f) is the same for x, # x,, we may assume x,, x, €[0, 1), so that

xo—l<x; <x,+ 1. (2)
(b) Show
lim F"(xlz)_xz < lim F'(x;) —x < lim F"(xi)_xz'

(Use each of inequality (2) and Exercises 3 and 6 twice.)

Exercise 11. Show that p(f) exists by completing the following steps ([8, §1.14].

(a) Show that if there is a p /g-periodic point x, then p(f)=p/g. Hint: Use x to
compute p(f). For a fixed integer ¢ show there is a constant M such that
[F'(y)—yl<M forall ye Rand all 0 <r<gq.

(b) Suppose there are no p/g-periodic points. (i) Use the intermediate value
theorem to show that, for any n > 0, there is an integer k, such that k, <F"(x) —x
<k, +1 for all x€R. (ii) Apply this inequality m times with x-values 0, F"(0),
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F2%(0),..., Ft™~Dn(0), respectively. Add the resulting m inequalities to find mk, <
an(o) < m(kn + 1) (111) Show that

an n mn m
[EO) PO L [EO P 1
mn n n mn m m

Deduce that

PO PO 11
m n

{ Fn(?l) S }wn m

>

and hence that is a Cauchy sequence. Conclude that p(f) exists.

n=1

Rational rotation numbers

We have seen that if F has a p/q-periodic point then the rotation number equals
p/q. Surprisingly, the converse is also true.

THEOREM 1 [22]. Suppose F is a lift of an orientation-preserving circle homeomor-
phism. Then p(f)=1p/q if and only if F has a p /q-periodic point.

This theorem provides an example of a true success story in dynamical systems
theory: simply compute a limit to gain significant insight into the dynamics of the
given map. If p(f) € Q, f has a periodic point (and, indeed, the long-term behavior of
all orbits is completely determined—see Theorem 2). If p(f) & Q, f has no periodic
points. A natural jump to make in this case would be to conclude that all orbits are
dense in T. We will see, however, that this is not always the case.

Exercise 12. Prove Theorem 1. Hint: Exercise 11(a) provides one direction. For the
other, suppose F has no p/g-periodic point. Argue that, for some €> 0 and for all
x €R, either Fi(x)>x+p+e€ or Fi(x) <x+p — € (use the intermediate value
theorem, compactness of [0, 1], and Exercise 6). Now find a contradiction.

THEOREM 2. Let F be a lift of an orientation-preserving circle homeomorphism with
p(f)=p/q. Then, for dall x € R, either

(i) x is a p/q-periodic point, or

(ii) there is a p /q-periodic point x, € R with |F"(x) — F"(x,)| = 0 as n — .

Case (ii) of Theorem 2 implies that asymptotically the orbit of 7(x) tends to a
periodic orbit that traverses T p times every q iterates of f.

Exercise 13. Let G:R — R be continuous and strictly increasing. For x € R, show
that either [G"(x)| = % or G"(x) = x, as n — », where x, is a fixed point of G.
Hint: Use properties of monotonic sequences of real numbers.

Exercise 14. Prove Theorem 2. Hint: Use Theorem 1 to conclude that G(x) =
F9(x) —p has a fixed point x,. Show that G has infinitely many fixed points via
Exercise 6. Now use Exercise 13.

Irrational rotation numbers

The dynamics of a circle homeomorphism with irrational rotation number involves
more delicate and much deeper mathematics ([7], [12], [13], [14], [27]), so only part
of the story will be told here. Yet even this partial investigation leads to several
surprising results.
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We assume F is a lift of an orientation-preserving circle homeomorphism with
p(f) = a & Q. Recall that all orbits under rigid rotation r, are dense in T. Must the
same condition also hold for f? To answer this, we need the notion of a conjugacy.

DEFINITION. Two orientation-preserving circle homeomorphisms f and g are con-
jugate if there exists an orientation-preserving circle homeomorphism A :T — T such
that Af(0) = gh(6) for all €T, i.e., such that the diagram

commutes.

Remark. The definition of topological conjugacy (see, e.g., [24, §2.6]) requires that
h be a homeomorphism satisfying hf = gh. We require in addition that h is orienta-
tion-preserving; this assures that conjugate orientation-preserving circle homeomor-
phisms have the same rotation number ([12], [16, §11.1]).

Exercise 15. (a) Show that two conjugate orientation-preserving circle homeomor-
phisms have the same dynamics. That is, show h(o(8, f)) = o(h(8), g) for all 6 T.
Hence, if 6 is a periodic point of period n for f, for example, then h(8) is a periodic
point of period n for g. Likewise, h~'(0(6, g)) = o(h~1(6), f).

(b) Show that f has a dense orbit if and only if g has a dense orbit. (This is an
example of the fact that topological properties of orbits are also preserved by the
conjugacy.)

We can now rephrase our question as follows: Given p(f)= a ¢ Q, under what
condition(s) is f conjugate to r,? If the conjugacy exists, then all orbits of f are dense
in T. This problem is surprisingly difficult; Poincaré, for example, was unable to
resolve it [2]. But we can make progress towards its solution via the following
propositions.

PROPOSITION 2. Let F be a lift of an orientation-preserving circle homeomorphism
with p(f)=a & Q. Fix xy € R and define H : eo(x) = R by

H(F'(x,) +j)=ia+j fordl i,jeZ.

If x,, x, €eo(xy) and x, <x,, then H(x,) < H(x,). That is, H preserves the “<”
ordering on eo(x,).

Proof idea: Su{;pose the conclusion is false. Then there exist i, j, k, [ € Z satisfying
Fi(xy) +j<F*(xy)+land ia+j>ka+, or (i —k)a>[—j. Note that i # k.

Case 1. Assume i—k>0. Then a>(l—j)/(i—k). By Exercises 3 and 6,
Fi(xy) +j <F*(xy) +1 implies FU¥(x,) —x,<l—j. Now show this implies
a<(l~j)/G —k), and deduce a contradiction.

Exercise 16. Complete the argument for the i —k <0 case.

Hence if p(f)=a ¢ Q, the ordering of points in eo(x,, F) is the same as the
ordering of points in eo(0, R,). This would seem to kindle hope that a conjugacy
between F and R, exists, with an appropriate extension of H to the real line as the
choice for the conjugacy. Although this is not always possible, we can say the
following:
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PROPOSITION 3. Let F be a lift of an orientation-preserving circle homeomorphism
F:T—>T with p(f) = a & Q. There exists a map H:R — R such that

(i) H is continuous and increasing;;
(i) VxeR, H(x+1)=H(x)+ 1, and H is a lift of a map h:T = T such that the

diagram
T -——>f T
T
r(l
T——T
commutes.

Remark. By “increasing” we mean nondecreasing; thus the map H need not be a
conjugacy, as it may not be strictly increasing,

Proof. Fix x, € R, and define H :eo(x,) - R as in Proposition 2. Extend H to a
map H:R—> R, y ~ sup{H(x): x €eo(x,), x <y}.

Exercise 17. Prove that H :R — R is increasing. Hint: Use Proposition 2.

Exercise 18. Prove that H:R — R is continuous. Hint: Suppose H is not continu-
ous at y, € R. Use Exercises 17 and 8(b) to derive a contradiction.

Exercise 19. Prove that for all x € R, H(x + 1) = H(x) + 1. Hint: First show that
eo(x,, F)+ 1=eo(x,, F), and that H: eo(x,, F) — R satisfies H(x + 1) = H(x) + 1
for all x € eo(x,, F).

To complete the proof of Proposition 3, note that for i, j, k, [ € Z,
H(F(F'(xy) +j))=H(F"*'(x) +j)=(i+1)a+j=H(F(x,) +j) +a
=R, (H(F'(x) +j)).

so that Ho F=R,° H on eo(x,). Now for y € R,

HF(y) =sup{17(x) cx €eo(,), x <F(y)}
=sup{H(F(x)):x €eo(x,), x <y} (Exercise 6)

=sup{Ra(17(x)): x €eo(xg), x<y}
=R,H(y). O

If the map H:R — R in Proposition 3 is not a homeomorphism, there must be an
interval | CR on which H is constant, i.e., H(J) ={y,} for some y, € R.

Exercise 20. (a) Show that for such an interval |, H is constant on F'(J) + for all
i, j € Z. Hint: Proposition 3.

(b) Show that H is locally constant on an open, dense subset of R. Thus H is an
example of a Cantor function; see Ficure 5 for an approximation of the graph of a
Cantor function arising in the next section. Hint: Use Proposition 3 and Exercise 8(b).

Exercise 21. Suppose f is an orientation-preserving circle homeomorphism with
p(f) = a & Q. Show that if f has a dense orbit, then f is conjugate to r,, and hence
all orbits of f are dense in T.
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A plot of p(w) = p(f,, ).

We see via Exercise 21 that the question of whether the map H is a homeomor-
phism depends upon the existence of a dense orbit for f. It is indeed curious to find
that, in the absence of a dense orbit for f, the mapping H is a pathological Cantor
function.

Not until 1932 did A. Denjoy provide a sufficient condition for determining when a
circle homeomorphism with irrational rotation number « is conjugate to rigid rotation
1. Surprisingly, the degree of smoothness of f is the deciding factor. For proofs of
Denjoy’s theorem see [5], [7], [9], [12], [16], [18], [19], [24].

Denjoy’s Theorem [7). Let f: T — T be an orientation-preserving circle homeomor-
phism with p(f) = a & Q. If f is a C*-diffeomorphism, then f is conjugate to r,,.

Remarks. The requirement that f be twice continuously differentiable is sufficient
but not necessary: the conjugacy exists if f is C' with f' of bounded variation ([5],
[7], [9], [16]). See [9] for a discussion of the role played by the bounded variation of
f'. There also exist C' orientation-preserving circle diffeomorphisms with irrational
rotation number that are not conjugate to r, ([7], [8], [12], [13], [27].

We note that a natural analogue of rotation number exists for maps and flows
defined on higher dimensional tori. For an introduction to rotation vectors and the
role they play in understanding the dynamics of such maps and flows, see [26].

An example

We now link ideas from the preceding sections by considering the two-parameter
standard family of circle maps

F:R->R,F, (x)=x+o+ %sin(zﬂ-x), w,e>0. (3)

Note that if €=0 we recover R,, so family (3) represents a perturbation of rigid
rotation. The standard family arises in many physical systems as a model for periodi-
cally forced nonlinear oscillators ([3], [6], [15], [20].

Exercise 22. Show that for e<1, F

w.c 1s a lift of an orientation-preserving circle
homeomorphism f, .: T — T.

We would like to investigate how p(f,, .) changes as the parameters w and € are
varied. To this end, temporarily fix € and let F,(x)=F, (x). Define a function
p:[0,1) = R, p(w) = p(f,).

Exercise 23. (a) Show that w, < w, implies p(w,) < p(w,), so that p(w) is an
increasing function. Hint: Exercise 3.
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(b) Show p(0) =0 and lim, ,; p(w) = 1. Hint: Find a fixed point for F, and a
1/1-periodic point for F,_; for & sufficiently small.

(¢) Show p:[0,1) = R is a continuous function of w. Hint: Let w,€[0,1) and
€> 0 be given. Pick n € Z with 2/n < €, and k € Z satisfying k — 1 <F;(0) <k + 1.
Using Exercises 3 and 6, show m(k — 1<F e (0) <m(k + 1). Pick & >0 so that
lw— wy| < 8 implies k —1 <FE}0) <k +1, and show |[E™™(0) — F’""(O)I < 2m. Now
deduce | p(w) — p(wy)l < €.

Suppose p(f,, ) =p/q for some w,. By Theorem I, the function G(x) = F(x) —p
has a fixed point x,. Let A = G'(x,). If A # 1 (so that the graph of G is not tangent to
the line y =x at x =x,), the implicit function theorem yields a 8> 0 so that for
w € (wy— 8,w,+8), FJ(x) — p has a fixed point. That is, for w € (w, — 8,w, + 8),
F, has a p/g-periodic point and p(w)=p/q. If A =1 there again exists such a 8,
but the argument is more complicated ([8, §1.14], [16, §11.1]). In either case we have
that if p(w,) =p/q, then p(w)=p/q on some interval of w-values containing w,.

V.I. Arnol’d ([1], [16, §11.1]) showed that adding an arbitrarily small constant to an
orientation-preserving circle homeomorphism with p(f) & Q changes the rotation
number. In summary, we have that p(w) is a continuous, increasing function, with
p(0) = 0 and p(1) = 1. Moreover, to each rational in [0, 1) corresponds an interval on
which p is constant. Since the rationals are dense in [0,1), we see that p(w)
(surprisingly) provides another example of a Cantor function (see Ficure 5).

To see how p(f,.) varies as a function of both parameters @ and €, set
A, ={(w,€): p(f, ) =r}. (The A, are level sets of the function p:(w,e) — p(f, ).)

Exercise 24. (a) Show that A ={(r,0)} for e =0. (b) Show that A, NA, = for
e<land r #r,.

We have seen that p(f,, .)=p/q implies the existence of an interval of w-values
for which p(f, ) =p/q. The sets A, /. therefore have nonempty interior, and are
known as p/g-resonance zones or Arnol’d tongues. For r & Q, A, will have empty
interior due to Arnol’'d’s result. In this case A, is a curve extending from e€=0 to
€= 1in the w,e-plane [4]. Note that in general no two of the A, regions can intersect
(Exercise 24(b)). We have then an amazingly intricate bifurcation plot for the
standard family in the w,e-plane. A computer-generated plot of the boundaries of
certain resonance zones for 0 < € < 3 is shown in Ficure 6. Note that for € > 1 these

3.00
€
0/1 1/2 1/1
0.00 '
0.00 ® 1.00

FIGURE 6
Boundaries of p/g-resonance zones for the standard
family F,, . for 0 < € < 3. The boundaries of the 0/1,
1/6,1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, 5/6, and
1/1 horns are pictured from left to right.



VOL. 72, NO. 1, FEBRUARY 1999 13

regions can intersect (F, . is no longer a homeomorphism); it turns out that for
rationals r; and r, and (w,€) €A, NA_, F, is chaotic in the sense that it has
positive topological entropy [4].

Acknowledgment. Special thanks to friend and mentor G.R. Hall for permitting his lecture notes as the
basis for this article. Thanks also to the referees for helpful comments.
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