Dinámica Racional

Febrero 26, 2010

Tarea 4

- Sea A la cuenca de atracción de un punto periódico atractor (ya sea geométrico o superatractor). Si A contiene un número finito de componentes simplemente conexas, demuestre que el punto periódico es de periodo a lo más 2.
- 2. Demuestre que todo ciclo atractor tiene en su cuenca inmediata un punto crítico de f de la siguiente forma:
 - (a) Suponga lo contrario. Sea $\mathcal{O} = \{z_0, \dots, z_k\}$ la órbita periódica y $\mathcal{A}^*(\mathcal{O})$ su cuenca inmediata. Si $U = U(z_j)$ es una vecindad pequeña para algún $z_j \in \mathcal{O}$, demuestre que para cada $n \geq 1$ existe una rama inversa $g_n : U \to \overline{\mathbb{C}}$ de $f^{-n}|_U$ que envía z_j en U.
 - (b) Demuestre que $\{g_n\}$ es una familia normal, lo cual contradice el hecho que $(g_n)'(z_i)$ es no acotada.
- 3. Considere $P(z)=z^n+a_{n-1}z^{n-1}+\ldots+a_0$ un polinomio mónico de grado $n\geq 2$. Demuestre que para un R>>1 y $V=\{z:|z|>R\}$ existe un biholomorfismo local $\Phi:V\to\mathbb{C}$ con expansión

$$\Phi(z) = bz + b_0 + \frac{b_1}{z} + \dots,$$

y satisface $\Phi(f(z)) = (\Phi(z))^n$. Además Φ es única salvo una constante multiplicativa ω , con $\omega^{n-1} = 1$.

4. De un ejemplo de una función propia de grado n que envia un dominio (n+1)-conexo sobre $\mathbb{D}\setminus\{0\}$.

Fecha de entrega: Marzo 5, 2010 en clase.