Dinámica Racional

Marzo 19, 2010

Tarea 7

- 1. Demuestre que si z_0 es un punto fijo de Cramer para una función racional $f \in \text{Rat}_d$, $d \geq 2$, entonces $z_0 \in \mathcal{J}(f)$.
- 2. Considere el polinomio $P(z)=z^k+\ldots+\lambda z,\,k\geq 2$ con punto fijo neutro $z_0=0$ y multiplicador $\lambda=\exp(2\pi i\theta)$. Suponga que $|\lambda^q-1|^{1/k^q}\to 0$ cuando $q\to\infty$. Denote por $\{z(q)\}$ la sucesión de puntos fijos de $P^q(z)$ que convergen a z_0 . ¿Qué puede decir sobre la clasificación de los z(q)? Esto es, ¿son atractores, repulsores, neutros racionales o irracionales? Justifique sus argumentos.
- 3. Sea $f(z) = \lambda z + a_2 z^2 + a_3 z^3 \dots$, donde λ es distinto de cero y no es una raíz de la unidad. Demuestre que existe una única serie de potencias formal

$$H(z) = z + h_2 z^2 + h_3 z^3 + \dots,$$

que satisface

- (a) $H(\lambda z) = f(H(z))$ en una vecindad del origen.
- (b) Para $n \geq 2$,

$$h_n = \frac{a_n + X_n}{\lambda^n - \lambda},$$

donde $X_n = X(a_2, \ldots, a_{n-1}, h_2, \ldots, h_{n-1})$ es un polinomio definido inductivamente.

(c) Si λ es un número de Liouville, demuestre que el radio de convergencia de H es cero. Sugerencia: ¿Qué ocurre con el denominador de h_n ?

Fecha de entrega: Marzo 26, 2010 en clase.