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A Floquet theory is presented that generalizes known results for differential equations and for difference equations to 
the setting of dynamic equations on time scales. Since logarithms of matrices play a key role in Floquet theory, 
considerable effort is expended in producing case-free exact representations of the principal branch of the matrix 
logarithm. Such representations were fmt produced by Putzer as representations of matrix exponentials. Some 
representations depend on knowledge of the eigenvalues while others depend only on the coefficients of the 
characteristic polynomial. Logarithms of special forms of matrices are also considered. In particular, it is shown that 
the square of a nonsingular matrix with real entries has a logarithm with real entries. 
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1. INTRODUCTION 

The theory of dynamic equations on time scales (or, more generally, measure chains) was 
introduced in Stefan Hilger's PhD thesis in 1988. The theory presents a structure where, once 
a result is established for general time scales, special cases include a result for differential 
equations (obtained by taking the time scale to be the real numbers) and a result for 
difference equations (obtained by taking the time scale to be the integers). A great deal of 
work has been done since 1988 unifying the theory of differential equations and the theory of 
difference equations by establishing the corresponding results in the time scale setting. The 
recent book of Bohner and Peterson [3] provides both an excellent introduction to the subject 
and up-to-date coverage of much of the linear theory. 

In that spirit, the first part of this paper presents a time scale treatment of Floquet theory. 
Logarithms of matrices arise in describing the fundamental solution. Motivated by this fact, 
the second part of the paper presents some new representations of the principal branch of the 
matrix logarithm function. We call these Putzer representations since such results for matrix 
exponentials go back to Putzer [19] in 1966. 
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78 C.D. AHLBRANDT AND J. RIDENHOUR 

Finally, in the last section, we present some special logarithms where some property or 
structure in the choice of a logarithm of a given matrix is preserved. 

2. FLOQUET THEORY ON TIME SCALES 

A time scale U is a closed nonempty subset of the real numbers [w. We wish to study periodic 
behavior and we fix a positive number p to be the period of interest. We consider only time 
scales U that are p-periodic in the sense that t E U implies t + p E U. Clearly, a p-periodic 
time scale is unbounded above. The forward jump operator u : T - T is defined by 

a(t) := inf{s E Tls > t). 

Similarly, the backward jump operator p : U - T is defined by 

p(t)  := sup{s E Tls < t). 

Here we take the supremum of the empty set to be inf T in the case that U is bounded below 
(so that p(t)  = r when t = min a). The graininessfunction p : T - [0, m) defined by p( t )  := 

a(t)  - t measures the distance between a point r and its nearest neighbor to the right in the 
time scale T. A point t E B is right-scattered if dt) > t and left-scattered when p(t) < t .  
Also, t E T is right-dense if a(t)  = t and left-dense if p(t) = t and t is not a minimum of T. A 
function f : T - R is said to be rd-continuous if it is continuous at all right-dense points of T 
and has finite left-hand limits at all left-dense points of T. We refer the reader to p. 5 of 
Ref. [3] for the definition of the delta derivative (or Hilger derivative) f A  of a function 
f : T - 58. It follows from Theorem 1.16 of Ref. [3] that, when f ' ( t )  exists, it is given by 

We note that this limit by itself is not a suitable definition off ' ( t )  since the limit can exist 
without f being delta differentiable at t. (This happens when t is right-scattered and 

f (s) = L # f ( t ) ) .  As usual, we differentiate vectors and matrices component-wise and 
say the vector or matrix is rd-continuous if each entry is rd-continuous. 

Let M, denote the set of n X n matrices with real entries or complex entries. If A : T - Mn 
is a matrix-valued function, we are interested in establishing a Floquet theory for the vector 
equation 

xA = A(t)x (1) 

when both A(t ) and the time scale U are p-periodic. The coefficient function A is said to be 
regressive if the matrix 

I + p(t)A(t)  

is nonsingular for all t E U. When A is rd-continuous and regressive, it is a basic fact (e.g. see 
Ref. [3]) that solutions to initial value problems for dynamic equations such as Eq. (1) exist, 
are unique and extend to all of T. 

We begin with a preliminary lemma. 

LEMMA 1 Suppose that A : T - M, is rd-continuous and regressive and that both A ( t )  and 
the time scale U are p-periodic. I f@(t)  is a fundamental matrix for Eq. (1) and if ?Pis defined 
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FLOQUET THEORY 19 

by P ( t )  := @(t + p ) ,  then @ ( t )  = @ ( t  + p )  and ??(to is also a fundamental matrix for 
Eq. (1). 

Proof Since T is p-periodic, we first note that dt + p )  = p(t) + p for all t E T. With @ and 
q as given, we have 

@(a(t) + p )  - @(s + P) 
a(t) - s 

= l& WW)) - W) 
u(t) - s 

= &I 

Then 

q A ( t )  = QA(t + p )  = A(t +p)@(t + p )  = A(t)*(t), 

completing the proof. 0 

We note that the derivative calculation in this proof establishes a simple chain rule in this 
setting. The validity of chain rule calculations in more general time scale settings is 
addressed in Ref. [2]. We are ready for the basic Floquet theorem. 

THEOREM 1 (FLOQUET THEOREM ON TIME SCALES) Suppose that A : T - M, is rd- 
continuous and regressive and that both A(?)  and the time scale T are p-periodic. If 
@(t)  is a fundamental matrix for Eq. ( I ) ,  then there exists a p-periodic matrix P(t) 
and a constant matrix R such that 

q t )  = P(t)eR' for all t E T. 

Proof For such a fundamental matrix @, let q ( t )  = @(t +p) .  We have by Lemma 1 that 

*( t )  = @(t)C 

for some nonsingular matrix C. Let S be a logarithm of C (that is, S is a matrix such that 
es = C). Define R by R := (1 / p )  S. Then ePR = C and 

Define P ( t )  by 

Then 

Hence P ( t )  is p-periodic with @(t)  = P(t)etR for all t E U proving the theorem. 0 

When T = R, Theorem 1 is the usual result for ordinary differential equations. The following 
example gives some of the details when U is the set of nonnegative integers. 
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80 C.D. AHLBRANDT AND I. RIDENHOUR 

Example 2 Suppose T = N U (0}, p E U andA(t ) is bothp-periodic and regressive. In this 
case, regressive means that I + A @ )  is nonsingular for t E 8. Consider the matrix dynamic 
equation 

X A  = A(t)X. (2) 

Let @ be the unique solution of Eq. (2) satisfying the initial condition @(O) = I .  Since 
xA(t) = X(t + 1) - X(t ) ,  it is easy to see iteratively that 

1 - 1  

@ ( t )  = n ( I  + A(i)) for t E N 
i=O 

where the product from a lower index of 0 to an upper index of 0 is defined to be I .  
Define the matrix Q by 

n- 1 

Q := @(p) = ( I  + A(i)). 
i=O 

By the Floquet Theorem, we get 

@(t) = P(t)e'R 

where P(t  + p )  = P ( t )  and R is a constant matrix. It then follows that P(0) = I and ePR = Q 
so R = (l/p)S where S is a logarithm of Q. Writing f E B uniquely in the form f = kp + j 
where 0 5 j 5 p - 1, we obtain 

j -  1 

@(t)  = @(kp + j )  = P(kp +j)e(kp+i)R = P(j)dR(ePR)k = @(j)Qk = n ( I  + A(i)) Qk [ i=o ] 
An arbitrary solution of Eq. (2) is then of the form 

j-1 

X(t )  = ( I  + A(i)) QkX(0) .  [ i=o ] 
This agrees with the representation of such a solution given in Eq. (3.130) of Ref. [ 1, p. 1461. 

The stability properties of Eq. (2) depend on the eigenvalues of Q. In particular, the zero 
solution of Eq. (2) is asymptotically stable if and only if p(Q) < 1 where p(.) is the spectral 
radius function. 

3. PUTZER REPRESENTATIONS OF MATRIX LOGARITHMS 

In his 1966 paper [19], Putzer proved two theorems which provide closed form 
representations of the matrix exponential function eA' where A is an n X n matrix. The first 
theorem expressed F(t )  = $' in the form 

n- 1 

F(t )  = c c i + l ( r ) A i ,  (3) 
i=O 
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FLOQUET THEORY 81 

while the second gave F(t )  = eA‘ as 

n- 1 

i=O 

where Al,. . .,A,, is a listing of the eigenvalues of A with repeats indicating multiplicity and the 
matrices PO, P I ,  . . ., P,, are given by 

Here the coefficient functions c l ( t ) ,  . . ., cn(t) in Eq. (3 )  and rl(t) ,  . . ., r,,(t) in Eq. (4) are 
determined by solving an initial-value problem for a simple first-order system of differential 
equations. For purposes of reference, we call the matrices in (5) Putzer matrices. 
Furthermore, since the right-hand side of Eq. (4) is a finite linear combination of the Putzer 
matrices with variable coefficients, we call Eq. (4) a Putzer matrix representation of F(t ) .  
Similarly, since the right-hand side of Eq. (3) is a finite linear combination of powers of A 
with variable coefficients, we call Eq. (3) a Putzerpolynomial representation of F ( t ) .  In this 
section, we give both Putzer matrix representations and Putzer polynomial representations of 
an appropriately defined principal branch of the matrix logarithm function F(t )  = 
Ln(Z + A t ) .  

Textbook presentations of Putzer’s second theorem are given by Waltman [22, pp. 49-51] 
and Horn and Johnson [12, pp. 504-5071. Also, Kelley and Peterson [13] use a Putzer 
method for calculating certain matrix powers. Other recent works dealing with such 
representations are [7,17,18]. However, to the knowledge of the authors, the Putzer 
representations presented here for treating matrix logarithms are new. 

Golub and Van Loan [9, p. 5781 state that, “The computation of a logarithm of a matrix is 
an important area demanding much more work.” Our methods produce case-free exact 
representations of the principal branch of the matrix logarithm function. When the order of 
the matrix is small, our exact formulas may be used as benchmarks for testing the accuracy of 
numerical algorithms for evaluating matrix logarithms. However, the primary uses of our 
representations are as theoretical tools for studying matrix logarithms, not for numerical 
estimation of them. 

Logarithms of matrices occur in many engineering applications. Kenney and Laub [14j 
explain how logarithms may be used to recover an unknown coefficient matrix X in a 
system modeled by a linear differential equation dy/dt = Xy. The need to find logarithms 
of matrices also arises in control problems (see Refs. [6,15,16]), in parameter 
identification problems for Markov processes (see Ref. [21]), and in Floquet theory as 
shown in Section 2 of this paper. The discussion of matrix logarithms in most graduate 
level textbooks on ordinary differential equations, such as [lo, p. 611, relies on the Jordan 
canonical form. 
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82 C.D. AHLBRANDT AND J. RIDENHOUR 

Given an n X n matrix A. we write the characteristic polynomial p ( A )  as 

p(A) = det[AZ - 

or in factored form as 

The Cayley-Hamilton Theorem 
characteristic equation p(A) = 0. 
Hermitian or conjugate-transpose 

n 
- hi). . .(A - A,) = (A - Ak). 

k=l 
(7) 

[12, p. 861 states that an n X n matrix satisfies its 
A matrix U is unitary if U* U = I where U* is the 
of U. The Schur Triangularization Theorem [12, p. 791 

states that, given an n X n matrix B with eigenvalues A1 , . . ., A,,, there exists a unitary matrix 
U such that U*BU is upper triangular with A1 , . . ., A, on the main diagonal. Both will be used 
below. 

An n X n matrix Y is said to be a logarithm of the matrix X if and only if ey = X. Further, 
1nX will denote the set of all logarithms of X. Since ey is always nonsingular, only 
nonsingular matrices can have logarithms; hence, In Xis the empty set when Xis singular. If X 
is nonsingular and Y E lnX, then Y,, = Y + 2nm.Z is also a logarithm of X for any n in the set 
of integers H. (This is since Y and 2nmZ commute so eY+2nm1 = = X). Since any 
nonsingular matrix X has a logarithm, it follows that there are at least countably many such 
logarithms. In fact, it is known that the set 1nX is uncountable when it is nonempty. 
In Gantmacher's advanced monograph on the theory of matrices, an algebraic 
characterization [8, p. 2411 of all logarithms of a matrix X is given. 

In spite of the severe nonuniqueness problem when it comes to choosing a matrix 
logarithm, the computation of logarithms is one-to-one in the following sense: if A and B are 
nonsingular n X n matrices with A # B, then the intersection of the sets 1nA and In B is 
empty. 

The scalar geometric series 1 - x + x2 - . . . = 1 /( 1 + x )  integrates term by term to give 
In( 1 + x )  = x - x2/2 + x 3 / 3  - . . ., valid for 1x1 < 1. By analogy, we expect that one choice 
of ln(I + tA) and its derivative, for small Itl, will be given by 

X ( t ) = l n ( Z + t A ) = t A - r 2 A 2 / 2 + t 3 A 3 / 3  - . . .  (8) 

and 

X'(t)=A-tA2+t2A3 - . . . = (  I - tA+t2A2  -...)A =(I+tA)-'A. (9) 

Thus X(t) defined by the series in Eq. (8) satisfies the initial value problem 

Note that, since there are infinitely many possible logarithms of I, the constant in the series in 
Eq. (8) and the value of X(0) in (10) could have been chosen differently. It is this choice of 0 
as the value of X(0) that will lead us to the principal branch of ln(I + ?A). 

Let R- denote the set of real numbers r with t 5 0. As above M, denotes the set of n x n 
matrices with real (or complex) entries. Our principal branch of the logarithm will be defined 
only on the following subset of M,. 

Definition I 
the set of matrices in M,, which have no eigenvalues in R-. 

For each positive integer n, the set A, of admissible matrices is defined to be 
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FLOQUET THEORY 83 

Given any matrix A E M,,, we define the dual polynomial for A by q(t)  = det(Z + tA). The 
following lemma gives basic information about q ( t )  that will be essential in all that follows. 

LEMMA 2 Suppose B E An is given. Let A = B - I and let p ( h )  and q( t )  be the charac- 
teristic and dual polynomials, respectively, for the matrix A. Let A*, . . .,An be the eigenvalues 
of A. Then q( t )  may be written in factored form as 

or in polynomial form as 

The degree of q ( t )  is n - m where m is the number of times 0 is an eigenvalue of A. The 
factors in Eq. (11) satis& 

1 + hit CZ R- for t E [0,1], (13) 

and consequently 

q(t) # 0 for t E [O, 11. 

Also, q( t )  and p ( h )  are related by the identity 

q(t) = (-t)np(-:) for t # o (15) 

and the coeficients of q(r) in Eq. (12) and of p(A)  in Eq. (6) are related by 

(16) k qk = (-1) pn-k, 0 5 k 5 n.  

Proof From basic linear algebra, the eigenvalues of I + tA are 1 + thl , . . ., 1 + th, and the 
determinant of a matrix is the product of its eigenvalues, so Eq. (1 1) holds. Both Eq. (12) and 
the claim that the degree of q ( t )  is n - m follow directly from Eq. (1 1). 
Now we prove (13). Fix an i with 1 5 i 5 n and consider the function f i ( t )  = 1 + hit for 
t E [0,1]. Let pi = hi + 1. Then pi CZ R- since pi is an eigenvalue of B = A + I and B is 
admissible. Both f i (0)  = 1 and fi(1) = pi are not in R-. Suppose there is a number to E 
(0, 1) with fi(t0) = 1 + Airo E R-; i.e., 1 + hito 5 0. But then hi is a real number with 
hi 5 - l/ro < - 1, so pi = hi + 1 must be in R- contradicting that B is admissible. This 
proves (13). We obtain (14) directly from Eq. (1  1)  and (13), since 1 + Air # 0 for 1 5 i 5 n, 

Finally, Eq. (15) follows by putting A = - 1 / t  in Eq. (7) and comparing that result to Eq. (1 1). 
From Eq. (15), 

t E [O, 11. 

valid for t # 0. Then the polynomial difference q(t) - [ 1 - pnt  + . . + (- l)"pot"] is zero 
0 for all t # 0 and hence must be identically zero. This proves Eq. (16). 

Now suppose B E A,, is given and A = B - I .  From (14), the matrix I + tA is invertible for 
all r E [0,1] and, from the cofactor method of calculating inverses, all entries in ( I  + a)-' 
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84 C.D. AHLBRANDT AND J. RIDENHOUR 

are continuous on the interval 0 5 t 5 1. Hence, the initial-value problem (10) has a unique 
solution X ( t )  valid on the interval 0 5 r 5 1. Furthermore, (10) is equivalent both to the 
initial-value problem 

( I  + tA)X'(t) = A ,  X ( 0 )  = 0 ,  (17) 

and to the integral expression 

Definition 2 If B E A,, and A = B - I, then we define the principal logarithm of the matrix 
I + tA, denoted by Ln(I + tA) for 0 5 t 5 1, to be the solution X ( t )  of the initial-value 
problem (10). Then Ln B = X (  1). 

Before proceeding to the Putzer representations, we note that Ln z for z E C will denote the 
principal branch of the logarithm of complex numbers (that is, Ln z = log,(lzI) + 8 where the 
argument 8 of z is chosen in the interval -T < 8 < T). If A E C and 1 + A @ R-, then 
z(t) = 1 + At,  0 5 t 5 1 describes a smooth arc (line segment) from the point z = 1 to the 
point z = 1 + A which does not contain any point in R-. From basic complex variables (see 
Ref. [4]), for 0 5 t 5 1 and k a positive integer, 

Ln(1 + A t )  if k = 1, 
d s = {  k-l 1 (1 - (l+&,) if k 2 2. 

We now give our first representation. 

THEOREM 3 (PUTZER MATRIX REPRESENTATION) Suppose B E A,,, A = B - I ,  A*,. . .,A, 
are the eigenvalues of A, and Pa. . ., P,, are the Putzer matrices in (5). Then X(t)  = Ln(I + At)  
for 0 5 t 5 1 has a Putzer sum representation X ( t )  = Cyitri+l(t)Pi provided that 
rl(t), , , .,r,,(t) satisfy the frst-order system of diflerential equations 

(1 + tAl)(( t )  = A1 , 
(1 + tA2)112(t) = - d 1 ( t )  + 1, 

(1 + tAi+l)d+,(t) = -t<(t) for 2 5 i 5 n - 1 

and the initial conditions 

rI(0) = . . . = r,(O) = 0. 

Solutions for rl(t), . . .,r,,(t) are given by 

rl(t)  = j' A ds = Ln(1 + Alt ) ,  
0 1 + A1s 

Proof The system (20) results from substituting X(t)  = Cyziri+l(t)Pi into the differential 
equation (17), writing A = AlPo + P1 for the right-hand side, regrouping terms on 
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FLOQUET THEORY 85 

the left-hand side, and equating the coefficients of Po on both sides to get the first equation in 
(20), equating coefficients of PI to get the second equation, and so on. Clearly, the initial 
condition in (17) holds when (21) holds. 
We solve for r’](t) in the first equation and integrate as in Eq. (19) to get Eq. (22). We then 
substitute for d ( t )  on the right-hand of the second equation, and solve to get #2(t) = 
l / [ ( l  + tAl)(l + Continuing this recursive procedure leads to 

and integration leads to (23). Note that all the denominators in the integrands in Eqs. (22) and 
0 (23) are nonzero by (13). 

The integrals in (23) can all be calculated explicitly by expanding the integrands in partial 
fractions and using Eq. (19). This results in closed-form exact representations of Ln(Z + tA). 
Two special cases are covered in the following corollary. 

COROLLARY 1 Suppose X ( t )  = C:’dri+l(t)P; is the Puher sum in Theorem 3. 

1.  (Distinct Eigenvalues) If Al , .  . .,A, are distinct, then (23) becomes 

k 
1 

Ln(1 + Ajt) for 2 5 k 5 n. n (Aj  - hi) 
l s i s k ,  i#j j =  1 

2. (All Eigenvalues Equal) If Al = . . . = Am then (23) becomes 

Proof In the case of distinct eigenvalues, use a partial fractions expansion to get (24) from 
(23). When all eigenvalues are equal, use mathematical induction together with an 
integration by parts to get (25). 

Example 4 If we use Part 2 of Corollary 1 to find an exact representation of LnB when 

B =  [i :I, we find A = B - I =  [: :]; hl=A2=2 ,  Po=Z,  P I =  

rl(t)  = Ln(1 4- 2t), r2(t) = t /( l  + 2f), and 

0 5 t S l .  Ln(1 + 2t) 1 ’ [ Ln(lo+ 2t) t/(l + 2t) 
Ln(Z +At )  = rl(t)Po + rz(t)P1 = 

Ln3 1/3 1 0 
Letting t = 1 gives LnB = 

L J 
Numerical coding of these exact formulas provides a benchmark for the computation of 
matrix logarithms. Matlab’s “Version 6” returns excellent numerical results when the routine 
logm is applied to the matrix B in Example 4, but “Version 4” and earlier Versions gave 
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86 C.D. AHLBRANLlT AND J. RIDENHOUR 

relatively poor estimates for the same matrix B.  The difficulty in the numerical calculation of 
logarithms of Jordan blocks has been recently resolved in the work of Kenney and Laub [ 141. 
We note here that conditions (20) and (21) are sufficient for the Putzer matrix representation 
Cy:dri+l(t)P; to equal X(t) = Ln(I + tA), but are not necessary because Putzer matrix 
representations do not always have unique coefficients. For example, if A is the zero matrix, 
then r2(t),. . .,rn(r) are arbitrary since P1,. . .rPn-l are zero matrices. The same remarks apply 
to the Putzer polynomial representations that we now develop. 

THEOREM 5 (PUTZER POLYNOMIAL REPRESENTATION) Suppose B E A,, and A = B - I .  
Then there exist continuously differentiable functions ci(t), 1 5 i 5 n, such that 

n- 1 
Ln(I + tA) = c ci+l(t)Ai 

i=O 

for 0 5 t 5 1. The initial conditions q(0)  = 0 make LnZ = 0. For n = 1 we have cl(r) = 
rl(t) since this sum is the same as the Putzer matrix representation. For n > 1 marching 
coeficients in ( I  + tA)X'(t) = A leads to the system 

which has solution 

where q ( t )  is the dual polynomial. Then ~ ( 0 )  = 0 implies ci( t )  = Sfc{(s) ds for each i. 

Proof The existence of the ci(t) is a corollary to the Putzer matrix representation of 
Ln(I + tA). Indeed, for ri(t) as in Theorem 3 and X(t) = ~ y ~ ~ r i + l ( t ) P i ,  replace each Pi for 
1 5 i 5 n - 1 by Pi = n;=,(A - Ail) .  For n 2 2, a direct choice of the coefficients is 
obtained by matching coefficients of A' after substitution of X(t)  = Cy:tci+l(f)Ai 
in ( I  + fA)X'(t) = A  and use of the Cayley-Hamilton Theorem to write A" = 
- CY!dpiA'. 
Now d ( t )  is in terms of dn(t). The system is solved by solving for &t),  etc., in terms of c',(t). 
This gives 

k 

c',(r) = (-t)k-2 - c ; ( r ) c  (-tYpk-j for 2 5 k 5 n. 
j= 1 
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FLOQUJZT THEORY 87 

For the case of k = n, bring all the & ( t )  terms to the left side for the equation 

j= 1 

and, using Eq. (16), the coefficient of &(t)  is the dual polynomial q(t ) .  Replace &(t)  in each 
0 equation for the final solution. 

It is important to note that this Putzer polynomial representation of the logarithm does not 
explicitly require the eigenvalues, but it needs only the similarity invariants p i  which are the 
coefficients of the characteristic polynomial of A. 

Remark 6 We note that both the Putzer matrix representation and the Putzer polynomial 
representation are easily implemented as calculational algorithms. Here, one can use 
Computer algebra systems such as Mathematica and Maple to find closed-form solutions to 
the initial-value problem (20) and (21), to produce exact representations of the integrals (22) 
and (23), to first calculate d(t) , .  . . ,&(t) via (28), and finally to calculate ci(t)  = &<(s)ds. 

If the eigenvalues of B are real, then the p i  are real and the c i ( t )  are real. Furthermore, this 
representation allows us to rewrite the integral definition (18) as [23, p. 1341 

Ln(Z + tA) = A(Z + sA)-' ds (31) I 
for admissible B = Z + A .  Indeed, for X ( t )  = Ln(Z + tA), we have from Eq. (26) that X'(t) = 
C ~ ' ~ < + l ( t ) A i  and consequently that A commutes with X'( t ) .  Hence, ( I  + tA)X'(t) = X'(t)  X 

( I  + tA) = A for t E [0, 11 which then gives Eq. (31). 
So far, we have only shown the existence of a logarithm for admissible matrices. Given a 
matrix D with eigenvalues A1 = rleiel , .  . ., A, = r,eien and a real number 6, the matrix 
eiSD has eigenvalues rlei(B+el), . . ., rnei(S+9n) which means all eigenvalues of D are rotated 
through an angle 6 to obtain eigenvalues of eiSD. Hence, if D is nonsingular, then zero is 
not an eigenvalue of D and it is easy to choose S E R so that eisD is admissible. 

Dejnition 3 
admissible. If D is Sadmissible, we define Ln(D,G) by 

Given D E M, and S E R, we say D is Sadmissible if the matrix ei'D is 

Ln(D, 6) = Ln(e"D) - iSZ. 

When D is Sadmissible, D cannot have zero as an eigenvalue and must be nonsingular. The 
following theorem gives an assortment of logarithm properties. 

THEOREM 7 
S-admissible, E is €-admissible and P is nonsingulax Then the following hold: 

Suppose the matrices B, C, D, E, and Pare in M, B and C are admissible, D is 

1. Znverse Mapping Property. Ln B E In B and Ln(D, 6) E In D; i.e., 

eLnB = B and eLn(D,6) = D 

2. Principal Log Property. Zf B has eigenvalues Al,. . .,A, then LnB has eigenvalues 
Ln Al,.  . ., Ln A, where Ln z is the principal branch of the complex logarithm. Hence, all 
eigenvalues A of Ln B satisfy - T < I m A  < T, and our principal branch of the matrix 
logarithm agrees with the principal branch as defined by others (e.g., [14, p .  6441). 
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C.D. AHLBRANDT AND J. RIDENHOUR 88 

3. 

4. 

5. 

6. 

General Properties. 4 B ? and B * are admissible with Ln B = m, Ln(B T ,  = (Ln B)T, 
and Ln (B*) = (Ln B)* . Also P -'BP is admissible with Ln(P-'BP) = P-'(Ln B)P. 
LnB is real if B is real, Ln B is real symmetric if B is real symmetric and LnB is 
upper triangular if B is upper triangular. If B = diag(b1,. . ., b,,), then LnB = 
diag(Ln bl, . . ., Ln b,,). 
Inverse Matrix Property. B-' is admissible and D-'  is (- 6)-admissible with 
Ln(B-') = -Ln B and Ln(D-', -6) = -Ln(D, 6). 
Commutativity. Any matrix which commutes with B must also commute with LnB. 
Ln B and Ln C commute if and only if B and C commute. If B and C commute, then 
Ln B + Ln C E ln(BC). If D and E commute, then Ln(D, 6) + Ln(E, E )  E ln(DE). 
Monotoneity Properties. Assume additionally that B and C are real symmetric and 
B = Z + A  with A nonsingular. Then 

1 

Ln(B) = (Ap1 + tI)-'dt. 
S O  

IfB > I, then LnB > 0. If0 < B < I ,  thenLnB < 0. IfB > C > I, thenLnB > LnC. 
If 0 < B < C < I, then Ln B < Ln C < 0. 

Proof of the Inverse Mapping Property First we prove for any scalar differentiable function 
g( t )  of the real variable f that (d/dt)[eg(''] = g'(t)Aeg(')A. We use a Putzer polynomial 
representation (26) of eAt to write &' = Cy~~c;+l( t )A' .  Then $ 8' = AeA' = 
Cy'd <+ (t)A and 

Now let X(t) = Cyidr;+l(t)P; be a Putzer matrix representation of Ln(Z + At). From 
(9, Pi commutes with Pi so we obtain 

Thus, 

[(I + tA)e-X(')]' = [A - (I + tA)X'(t)]e-X(') = 0 

since X'(t) = (Z+tA)-'A. The function (I+tA)e-'(') then has the constant value of I, 
since that is its value at t = 0. Hence ex(t) = (e-'('))-' = Z + tA. Then 
eLn(lftA) = I + tA which, for t = 1, gives eLnB = B. F or D, eLn(D,6) = eLn(e'SD)-(i@l = 
eLn(e'6D) -161 = ei&D.e-i61 = D.  e 

Proof of Principal Log Property Let B have eigenvalues Al, .  . .,A,. Using Schur's Theorem, 
find a unitary matrix U so that T = U-'(B - 1)U is an upper triangular matrix with 
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FXOQUET THEORY 89 

the eigenvalues of B - I as diagonal entries; i.e., Tii = hi - 1 for 1 I i I n. Let 
S = U-'(LnB)U. Then S is similar to LnB and 

1 
S = U-'(LnB)U = U - ' ( I  + s(B - Z))-'(B - Z)U ds 

JO 

1 1 

U-'(I+s(B -I))-'UU-'(B - I ) U  dr= [U-'(I+s(B-I))U]-'T ds 
= Jo f 0  

1 

= S,II  + sTI-'T ds. 

Hence, S is upper triangular which, together with Eq. (19), leads to 

h i - 1  
0 1 + s(hi - 1) 

dr = Ln hi. sii = J 
Then the eigenvalues of Ln B are Ln Ai, 1 5 i I n, as claimed. 0 

Proof of Inverse Matrix Property Set A = B - I and Y = B-' -I. Then 
Y = (I + A)-' - I = (I + A)-'( -A) = -(I + A)-'A and 

1 
Ln(B-') = Ln(Z+ Y) = ( I+sY) - 'Y  dr= [ I  - s (Z+A) - 'A] - ' ( I+A) - ' ( -A)ds  Jo 

1 1 

[(I+A)(I - s(I+A)-'A)]-'(-A)dr= [ I+A - sA]-*(-A)ds 
= fo f o  

1 

0 
= -/ [I+ (1 - s)A]-'A dr. 

Then set T = 1 - s for Ln(B -') = fl [ I  + 7 A l - I  Ad7 = - LnB. Also, Ln(D-', 
- S )  = Ln(e-'% + is1 = - (Ln(e'%) - ~ S I )  = - Ln(D,G). 0 

The proofs of the other parts of Theorem 7 are routine and are omitted. 

4. SPECIAL LOGARITHMS 

One often wants to preserve some property or structure in the choice of a logarithm of a given 
matrix. For example, in some applications, a real matrix arises and one wants to find a real 
logarithm. Producing these real logarithms by automated packages is difficult. In fact, as the 
following example shows, there may not be a real logarithm. 

Example 8 A real (or complex) n X n matrix Y with det Y < 0 cannot have a real logarithm. 
In particular, the negative of an n X n identity matrix of odd dimension has no real logarithm. 
This follows from the trace formula [12, p. 4391. 
Culver [5 ]  has given a complete characterization, using the Jordan normal form, of all real 
matrices that have real logarithms and we refer the interested reader to his paper for details. 
The following theorem gives a criterion under which a possibly complex matrix of the form 
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90 C.D. AHLBRANDT AND J. RIDENHOUR 

C c  will have a real logarithm. It applies in particular to the square of a nonsingular real 
matrix. 

THEOREM 9 (THE C 2  PROBLEM) Suppose C is nonsingular n x n and commutes with its 
complex conjugate c. Then there exist real n x n matrices U and V which commute such that 

c = eU+iV = eUeiV and c= eU-iV - - e e  U -iV . 

Then e 2u = C c  so 2U is a real logarithm of C c .  In particulal; i f  C is nonsingular and has 
real entries, then there exists a real matrix R such that C2 = eR. 

Proof Suppose C is nonsingular with C c =  CC. Choose a E R so that C is a-admissible. 
Let B = eiaC and A = B - 1. Then the matrices A = eiaC - I and A = eCiaC - I commute 
and BB = BB so Ln(@ = LnB commutes with LnB. Set W = Ln(C, a) = LnB - ial, 
U = (1 /2) [W +TI, and V = (1/(2i))[W - TI. Then W = U + iV = Ln(C, a) with U and 
V having real entries. Since commutes with LnB, it follows that U commutes with V. 

- e  e - e e as claimed. If C is 
0 

nus c = eLn(C,a) - LnB- id  = U+iV = eUeiV and C = eU-iV - U -iV 

real, then c commutes with C and C2 = eZu so R = 2U is a real logarithm of C 2 .  

As in calculus, logarithms can be used to define roots and powers. We elaborate on that as 
follows. 

Example I0 (Principal Roots) 
Define the set of p-th roots of B by 

Suppose p is a positive real number and B is nonsingular. 

Y :  Y = e(l/P)' for some x E InB 

Define for B admissible and p > 0, the principal branch of the p-th root by @ = e(l/p)LnB. If 
C is a-admissible and p > 0, define the function Root by 

Root(C,p, a) = eCiaIPfi for B = ei"C. 

For m E Z', the set of positive integers, one can show that: 

1. If B is admissible, then @ E B '/" and (a)'" = B. 
2. If C is a-admissible, then (Root(C, m, a))"' = C .  
3. If B > 0 then @ > 0 and, if X > 0 satisfies X" = B, then X = @. For the uniqueness 

of the m-th root, use the fact that a positive definite matrix is diagonalizable to find a 
nonsingular matrix Q such that Q-'XQ = D ,  a diagonal matrix with positive real 
diagonal entries 8,. Then D" = Q-'X"Q, Q-'(Ln B)Q = Ln(Dm), Q-' B Q  = 
e('/m)Ln(Dm), and finally, 

Householder matrices may be used to produce many interesting examples. Part 6 of the 
following shows that 1nI is an uncountable set. Part 7 gives an example where A and B 
commute, Y1 E lnA, Y Z  E lnB, and both A and B commute with Y1 and with Y2, yet 
Y1 + Y2 6? ln(AB); a situation that strongly contrasts with properties of the principal branch 
of the matrix logarithm. 
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Example 1 I (Householder Matrix Examples) Suppose that u E R" is a unit column vector 
in the 2-norm, i.e. uTu = 1. Let H be the real Householder matrix (i.e. elementary reflector as 
in Ref. [9] )  H = I - 2u uT. Then the following hold: 

1. 

2.  
3 .  
4 .  

5 .  

6 .  

7 .  

u u has rank 1 and u u T~ = u. Thus u u has n - 1 eigenvalues of 0 and one eigenvalue 
of 1. 
H has one eigenvalue of - 1 and n - 1 eigenvalues of 1 ; hence det H = - 1. 
H T  = R, H 2  = I ,  and H-' = (HT)-'  = H .  
For n = 2 ,  His real Householder if and only if H has the form [: withcz + sz = 1. 

For n > 2 and Has in Part (4) ,  fi = diag[H, Zn-2} is real Householder. Hence for n L 2,  
Z '" contains an uncountable set of real Householder matrices. 
X = Ln(H, 7r/2) gives ex = H and ezy = I. Thus lnZis an uncountable set. This result is 
due to Helton [ l l ,  p. 7341. 
Consider H1 = [0 .6 ,0 .8;  0.8, -0.61 and HZ = [0 .8 ,0 .6;  0 .6 ,  -0.81. Use of the following 
Matlab code (and Matlab's expm) 

function Y=logput2d(X) 
%gives Putzer log of 2 by 2 w i t h  distinct e.vols. 
A=X-eye (2) ; lambda=eig (A )  ;rl=log (1 +lambdo (1)) ; 
r2= (1  og (1 +1 wnbdo (I)) -1 og (I + 1 ambda (2)) ) / ( 1  ambda (I) - lwnbdo(2)) ; 
PO=ey e (2) ;PI =A- 1 wnbda (1) *eye (2) ; 
Y=rl  *PO+r2*Pl; 

leads to B1 = -i*HI, B2 = -i*Hz, Y1 = 2(Ln(B1) + i(7r/2)Z), and YZ = 2(Ln(B2) + 
i(7r/2)Z) give eyl = eyz = I but ey1+y2 # I. Thus Y1 and YZ are in In I, but Y1 + Y2 Ct? 1nZ. 
Hence, even when A and B commute with Y,  in 1nA and Y2 in In B, it is not always true that 
Y1 + Y2 is in In (AB). 

The following example shows some of the structure of interest when finding logarithms. 

Example 12 (Symplectic Versus Hamiltonian) We collect together some facts and leave the 

details to the reader. Suppose that J is the 2n x 2n skew symmetric matrix J = 

A matrix M is said to be Hamiltonian if it is 2n x 2n and M* J + JM = 0. A matrix T is said 
to be symplectic if it is 2n X 2n and T* JT = J .  

0 I n  

[-In 0 1 .  

Radon [20] .  Suppose that for each real t, M ( t )  is Hamiltonian and Y ( t )  is the solution of 
the initial value problem Y'(t) = M(t)Y(t) ,  Y (0 )  = 12". Then Y ( t )  is symplectic for each 
real t .  This can be proved by showing that the expression Y* (t)JY(t) - J has derivative 
zero; hence is constant and therefore is the same for all t as for t = 0. 

If Mznxh is partitioned as M = 1: El, with n X n block entries A, B, C, D, then M is 
L J 

Hamiltonian if and only if B and C are Hermitian and D = -A*. 

If T2nx2n is partitioned as T = [ :] , with n X n block entries E, F, G, H, then T is 

symplectic if and only if the following three conditions are satisfied: E*G = G*E,  
F*H = H*F,  E*H - G*F = I .  
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92 C.D. AHLBRANDT AND J. FUDENHOUR 

4. If M is a constant 2n x 2n Hamiltonian matrix and t is real, then tM is Hamiltonian and 
T( t )  defined by T(t)  = etM is symplectic. 

5 .  Finally J is Hamiltonian. It follows from consideration of the initial value problem 
Y’(t)  = JY( t ) ,  Y ( 0 )  = Zzn, that erJ is the symplectic matrix 

1 (cos t ) Z  (sin t)Z 

-(sint)Z (cos t)Z 
etJ = [ 

Then, selecting t properly, each of the matrices Zzn, - Izn, J ,  and - J has a countable 
infinity of real logs of the form tJ. 
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