
8 Periodic Linear Di¤erential Equations - Floquet Theory

The general theory of time varying linear di¤erential equations _x(t) = A(t)x(t) is still amazingly
incomplete. Only for certain classes of functions A : R �! gl(d;R) do we have a satisfactory
understanding of the qualitative behavior of the solutions. Historically the �rst complete theory for
a class of time-varying linear systems was initiated by Floquet [18] in 1883 for the periodic case. In
this section we brie�y review Floquet�s theory and relate it to the idea of Lyapunov exponents and
Lyapunov spaces as introduced in Section 2. Details supporting our discussion here can be found
in Amann [2], Guckenheimer and Holmes [22], Hahn [23], Stoker [35], and Wiggins [37]. Partly, we
follow the careful exposition in Chicone [13, Section 2.4].

De�nition 8.1 A periodic linear di¤ erential equation _x = A(t)x is given by a matrix function
A : R �! gl(d;R) that is continuous and periodic (of period T > 0). Similarly as in Example 7.3,
we use the shift �(t; �) = t+ � modT . Then we may write _x = A(�(t; 0))x and the solutions de�ne
a dynamical system via � : R� S1 � Rd �! S1 � Rd, if we identify R modT with the circle S1.

Our �rst results concern the fundamental matrix of a periodic linear system.
We will need the following lemma which can be derived using the Jordan canonical form and the

scalar logarithm (see e.g. Amann [2, Lemma 20.7] or Chicone [13, Theorem 2.47]). The di¤erence
between the real and the complex situation becomes already evident by looking at �1 = ei�.

Lemma 8.2 For every invertible matrix S 2 Gl(d;C) there is a matrix R 2 gl(d;C) such that
S = eR. For every invertible matrix S 2 Gl(d;R) there is a real matrix Q 2 gl(d;R) such that
S2 = eQ. The eigenvalues of R and Q are mapped onto the eigenvalues of S and S2, respectively.

Proof. Observe that in both cases it su¢ ces to consider a (complex or real) Jordan block. For the
�rst statement write S = �I +N = �(I + 1

�N) with nilpotent N , i.e., N
m = 0 for some m 2 N, and

consider the series expansion for t 7�! ln(1 + t). Then S = eR with

R = (ln�)I +
mX
j=1

(�1)j+1
j�j

N j :

For the second assertion de�ne Q := R + �R 2 gl(d;R). Then S2 = eRe
�R = eR+

�R = eQ, since
S = eR = e

�R.
The proof above also shows that the eigenvalues of R and Q, respectively, are mapped onto the

eigenvalues of eR.

Remark 8.3 Another way to construct Q is to observe that the real parts of the eigenvalues of S2

are all positive. Then the real logarithm of these real parts exist and one can discuss the Jordan
blocks similarly as above noting that a real logarithm of

r

�
cos! � sin!
sin! cos!

�
is (ln r)I +

�
0 �!
! 0

�
:

Remark 8.4 By construction, the real parts of the eigenvalues of R and Q, respectively, are uniquely
determined by S. The imaginary parts are unique up to addition of 2k�i; k 2 kZ. In particular,
several eigenvalues of R and Q may be mapped to the same eigenvalue of eR and eQ, respectively.

The principal fundamental solution X(t); t 2 R, is the unique solution of the matrix di¤erential
equation

_X(t) = A(t)X(t) with initial value X(0) = I: (8.1)

Then the solutions of _x = A(t)x; x(0) = x0, are given by x(t) = X(t)x0. The following lemma
shows consequences of the periodicity assumption for A(t) for the fundamental solution.

Lemma 8.5 The principal fundamental solution X(t) of _x = A(t)xwith T -periodic A(�) satis�es

X(kT + t) = X(t)X(T )k for all t 2 R and all k 2 N.
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Proof. The assertion is clear for k = 0. Suppose it holds for k � 1 2 N. Then

X(kT ) = X((k � 1)T + T ) = X(T )X(T )k�1 = X(T )k: (8.2)

De�ne
Y (t) := X(t+ kT )X(kT )�1; t 2 R.

Then Y (0) = I and di¤erentiation yields, using periodicity of A(�)

d

dt
Y (t) = _X(kT + t)X(kT )�1 = A(kT + t)X(kT + t)X(kT )�1 = A(t)Y (t):

Since the solution of this initial value problem is unique, Y (t) = X(t) and hence, by (8.2),

X(t+ kT ) = X(t)X(kT ) = X(t)X(T )k for t 2 R:

Proposition 8.6 There is a matrix Q 2 gl(d;R) such that the fundamental solution X(�) satis�es

X(2T ) = e2TQ:

The real parts �j of the eigenvalues of Q are uniquely determined by this condition, and are called
Floquet exponents. Furthermore, the eigenvalues �j of X(2T ) = X(T )2 satisfy j�j j = e�j .

Proof. By Lemma 8.2 a matrix Q with X(2T ) = e2TQ exists and the real parts of the eigenvalues
are unique. The eigenvalues of Q are mapped to the eigenvalues �j of X(2T ) and their imaginary
part does not contribute to the absolute values of the �j .
Next we relate the Floquet exponents to the Lyapunov exponents �(x0) = lim supt!1

1
t ln k'(t; x0)k,

where '(t; x0) denotes the solution of _x = A(t)x with '(0; x0) = x0 (compare De�nition 2.12).
The following theorem for periodic linear di¤erential equations is analogous to Theorem 2.13.

Theorem 8.7 Let � = (�; ') : R�S1�Rd �! S1�Rd be the �ow associated with a periodic linear
di¤erential equation _x = A(t)x. The system has a �nite number of Lyapunov exponents and they
coincide with the Floquet exponents �j, j = 1; :::; l � d. For each exponent �j and each � 2 S1 there
exists a splitting Rd =

Ll
j=1 L(�j ; �) of Rd into linear subspaces with the following properties:

(i) The subspaces L(�j ; �) have the same dimension independent of � , i.e. for each j = 1; :::; l it
holds that dimL(�j ; �) = dimL(�j ; �) =: di for all �; � 2 S1,
(ii) the subspaces L(�j ; �) are invariant under the �ow �, i.e. for each j = 1; :::; l it holds that

'(t; �)L(�j ; �) = L(�j ; �(t; �)) = L(�j ; t+ �) for all t 2 R and � 2 S1,
(iii) �(x; �) = limt!�1

1
t ln k'(t; �; x)k = �j if and only if x 2 L(�j ; �)nf0g.

Proof. By their de�nition in Proposition ??, the Floquet exponents �j are the real parts of the
eigenvalues of Q 2 gl(d;R).
First we show that the Floquet exponents are the Lyapunov exponents. By Lemma 8.5 we can

write
X(kT + s) = X(kT )X(s) for all k 2 Z and t; s 2 R:

and recall that
X(2T ) = e2TQ:

For the autonomous linear di¤erential equation _y = Qy Theorem 2.13 yields a decomposition of
Rd into subspaces L(�j) which are characterized by the property that the Lyapunov exponents for
t! �1 are given by the real parts �j of the eigenvalues.
The continuously di¤erentiable matrix function Z(t) := X(t)e�Qt; t 2 R; maps the solution eQtx0

of _y = Qy; y(0) = x0 2 Rd; to the solutions of _x = A(t)x; x(0) = x0, since

X(t)x0 = X(t)e�QteQtx0 = Z(t)
�
eQtx0

�
: (8.3)
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Observe that Z(t) is 2T -periodic, since

Z(2T + s) = X(2T + s)e�(2T+s)Q = X(s)X(2T )e�2TQe�Qs = X(s)e�sQ = Z(s)

Since Z(�) is continuous, it follows that Z(t) and Z(t)�1 are bounded on R.
The exponential growth rates remain constant under multiplication by the bounded matrix Z(t)

with bounded inverse Z(t)�1. Hence we get a corresponding decomposition of Rd which is charac-
terized by the property that the exponential growth rates for a solution starting at time t = 0 in
the corresponding subspace L(�j ; 0) := L(�j) has exponential growth rate equal to a given Floquet
exponent �j . Then

L(�j ; �) := X(�)L(�j ; 0) � 2 R;

are subspaces which yields a splitting of Rd into subspaces characterized by the property that the
exponential growth rates for a solution starting at time t = � in the corresponding subspace L(�j ; �)
has exponential growth rate for t! �1 equal to �j . But the exponential growth rate of the solution
x(t; x0) with x(0) = x0 is equal to the exponential growth rate of the solution y(t) with y(T ) = x0.
In fact, for t 2 R

x(t; x0) = X(t)x0 = X(t)x0

and
x0 = X(T )y(0), i.e., y(0) = X(T )�1x0

implies
y(t) = X(t)X(T )�1x0:

Hence for t 2 R
y(t+ T ) = X(t+ T )X(T )�1x0 = X(t)x0 = x(t; x0):

and the exponential growth rates for t ! �1 coincide. This shows that the decomposition above
is T -periodic and, clearly, it also depends continuously on � .

Corollary 8.8 For each j = 1; :::; l � d the map Lj : S1 �! Gdj de�ned by � 7�! L(�j ; �) is
continuous. The linear subspaces L(�j ; �) are called the Lyapunov spaces (or sometimes the Floquet
spaces) of the periodic matrix function A(t).

Proof. This follows from the construction of the spaces L(�j ; �) and the corresponding properties
of the Lyapunov spaces of the autonomous equation _x = Qx.
These facts show that for periodic matrix functions A : R �! gl(d;R) the Floquet exponents and

Floquet spaces replace the real parts of eigenvalues and the Lyapunov spaces, concepts that are so
useful in the linear algebra of (constant) matrices A 2 gl(d;R). The number of Lyapunov exponents
and the dimensions of the Lyapunov spaces are independent of � 2 S1, while the Lyapunov spaces
themselves depend on the time parameter � of the periodic matrix function A(t), and they form
periodic orbits in the Grassmannians Gdj and in the corresponding �ag.

Remark 8.9 Transformations as Z(t) are known as Lyapunov transformations, see [23], Chapters
61-63.

Periodic linear di¤erential equations yield periodic di¤erential equations in projective space: As
in Lemma 5.1, the �ow � : R � S1 � Rd �! S1 � Rd corresponding to _x = A(t)x projects onto a
�ow P� on S1 � Pd�1 where again the �rst component is the shift by �(t; �) = t+ � modT and the
second component is given by the solutions of the periodic di¤erential equation

_s = (A(t)� sTA(t)s I) s with s 2 Pd�1:

The next corollary characterizes the Lyapunov spaces for periodic linear di¤erential equations
by this projected �ow. It is the analogue of Theorem 5.2.
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Corollary 8.10 Let P� be the projection onto S1 � Pd�1 of a periodic linear �ow as de�ned above.
Then the following assertions hold.
(i) P� has l chain recurrent components fM1; :::;Mlg, where l is the number of di¤erent Lya-

punov exponents.
(ii) For each Lyapunov exponent �i one has that Mi = f(�;Px); x 2 Li(�i; �) and � 2 S1g, the

projection of the i-th Lyapunov space Li(�i; �) onto Pd�1. Furthermore fM1; :::;Mlg de�nes the
�nest Morse decomposition of P� andMi �Mj if and only if �i < �j.
(iii) For the setsMi in the �nest Morse decomposition, the sets

V�i := fx 2 Rd; (�;Px) 2Mig; � 2 S1;

coincide with the Lyapunov spaces and hence yield decompositions of Rd into linear subspaces

Rd = V�1 � ::: � V�l ; � 2 S1: (8.4)

Proof. For the autonomous linear equation _x = Qx we have a decomposition of Rd into the
Lyapunov spaces L(�j ; 0) which by Theorem 5.2 correspond to the Morse sets in the �nest Morse
decomposition. By (8.3) the matrix function Z(t) maps the solution of _x = Qy; y(0) = x0 2 Rd; to
the solution of _x = A(t)x; x(0) = x0:Since these maps and their inverses are uniformly bounded by
compactness of S1�Pd�1, one can show that the maximal chain transitive sets in Pd�1 are mapped
onto the maximal chain transitive sets in S1 � Pd�1. Then the assertions follow.
As an application of these results, consider the problem of stability of the zero solution of _x(t) =

A(t)x(t) with period T > 0. The following de�nition generalizes the last part of De�nition 2.12.

De�nition 8.11 The stable, center, and unstable subspaces associated with the periodic matrix
function A : R �! gl(d;R) are de�ned as L�(�) =

L
fL(�j ; �), �j < 0g, L0(�) =

L
fL(�j ; �),

�j = 0g, and L+(�) =
L
fL(�j ; �), �j > 0g, respectively, for � 2 S1.

With these preparations we can state the main result regarding stability of periodic linear dif-
ferential equations.

Theorem 8.12 The zero solution x(t; 0) � 0 of the periodic linear di¤erential equation _x = A(t)x
is asymptotically stable if and only if it is exponentially stable if and only if all Lyapunov exponents
are negative if and only if L�(�) = Rd for some (and hence for all) � 2 S1.

To show the power of Floquet�s approach we discuss two classical examples.

Example 8.13 Hamiltonian systems: Let H be a continuous quadratic form in 2d variables x1; :::; xd;
y1; :::; yd and consider the Hamiltonian system

_xi =
@H

@yi
, _yi = �

@H

@xi
, i = 1; :::; d.

Using zT = [xT ; yT ] we can set H(x; y; t) = zTA(t)z, where A =
�
A11 A12
AT12 A22

�
with A11 and A22

symmetric, and hence the equation takes the form

_z =

�
AT12(t) A22(t)
�A11(t) �A12(t)

�
z =: P (t)z.

Note that �PT (t) = QP (t)Q�1 with Q =
�
0 �I
I 0

�
where I is the d� d identity matrix. Assume

that H is T -periodic, then the equation for z and its adjoint have the same Floquet exponents and
for each exponent � its negative �� is also a Floquet exponent. Hence the �xed point 0 2 R2d cannot
be exponentially stable, compare [23], Chapter 60.
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Example 8.14 Hill-Mathieu equations: Consider the periodic linear oscillator

�y + q1(t) _y + q2(t)y = 0.

Using the substitution y = z exp(� 1
2

R
q1(u)du) one obtains Hill�s di¤erential equation

�z + p(t)z = 0, p(t) := q2(t)�
1

4
q1(t)

2 � 1
2
_q1(t):

Its characteristic equation is �2 � 2a�+ 1 = 0, with a still to be determined. The multipliers satisfy
the relations �1�2 = 1 and �1 + �2 = 2a. The exponential stability of the system can be analyzed
using the parameter a: If a2 > 1, then one of the multipliers has absolute value > 1, and hence the
system has an unbounded solution. If a2 = 1, then the system has a non-trivial periodic solution
according to Example 1. If a2 < 1, then the system is stable. The parameter a can often be expressed
in form of a power series, see [23], Chapter 62, for more details. A special case of Hill�s equation is
the Mathieu equation

�z + (�1 + �2 cos 2t)z = 0,

with �1, �2 real parameters. For this equation numerically computed stability diagrams are available,
see, e.g., [35], Chapters VI.3 and 4.
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