
A ”typical” n × n matrix has n distinct eigen-

values

In the sequel, we will denote by R
n×n the vector space of n×n matrices with

real entries. Similarly, Cn×n will denote the vector space of n × n matrices
with complex entries. Let

Un = {A ∈ C
n×n : A has n distinct eigenvalues}

and

Vn = {A ∈ R
n×n : A has n distinct (possibly complex) eigenvalues}.

Theorem 1. The set Un is an open and dense subset of C
n×n.

Proof. We first show that the set Un is open. To this end, it suffices to
show that the complement C

n×n \Un is closed. Suppose that {Ak : k ∈ N} is
a sequence of matrices in Cn×n such that Ak /∈ Un for all k ∈ N and Ak → A
as k → ∞. We need to show that A /∈ Un.

Since Ak does not belong to the set Un, the matrix Ak has at most n− 1
distinct eigenvalues. Hence, the matrix Ak has at least one eigenvalue λk

with algebraic multiplicity at least 2. This implies pk(λk) = p′k(λk) = 0,
where pk(λ) = det(λI − Ak) denotes the characteristic polynomial of Ak.
Let p(λ) = det(λI − A) be the characteristic polynomial of the limit matrix
A. Since Ak → A as k → ∞, the coefficients of pk(λ) converge to the
corresponding coefficients of p(λ) as k → ∞. In particular, all coefficients
of pk(λ) are uniformly bounded (independent of k). Consequently, |pk(λ) −
λn| ≤ M

∑n−1
j=0 |λ|

j, where M is a constant independent of k. Since pk(λk) =

0, it follows that |λk|
n ≤ M

∑n−1
j=0 |λk|

j. From this it is easy to see that the
sequence {λk : k ∈ N} is bounded, i.e. supk∈N |λk| < ∞.

By the Bolzano-Weierstrass theorem, we can find a subsequence {λkj
: j ∈

N} of the original sequence {λk : k ∈ N} such that the limit limj→∞ λkj
= µ

exists. The number µ satisfies p(µ) = limj→∞ pkj
(λkj

) = 0 and p′(µ) =
limj→∞ p′kj

(λkj
) = 0. Hence, µ is an eigenvalue of A with algebraic multi-

plicity at least 2. Therefore, A has at most n− 1 distinct eigenvalues. Thus,
A /∈ Un as claimed.

We next show that the set Un is dense. The proof is by induction on n.
Assume that Un−1 is a dense subset of C(n−1)×(n−1) (i.e. every (n−1)×(n−1)
matrix can be approximated by one that has n− 1 distinct eigenvalues). We
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claim that Un is a dense subset of Cn×n. To this end, we assume that a matrix
A ∈ Cn×n and a positive real number r are given. Our goal is to find a matrix
B ∈ Un such that ‖A−B‖ < r. By the fundamental theorem of algebra, the
matrix A has an eigenvalue λ ∈ C. Let v1 ∈ Cn be an eigenvector of A with
eigenvalue λ. Since v1 6= 0, we can find vectors v2, . . . , vn ∈ Cn such that
{v1, v2, . . . , vn} is linearly independent. We now define

S =





| | |
v1 v2 · · · vn

| | |



 ∈ C
n×n.

The matrix A can be written in the form

A = S

[

λ Q
0 A0

]

S−1,

where A0 ∈ C(n−1)×(n−1) and Q ∈ C1×(n−1). The induction hypothesis guar-
antees the existence of a matrix B0 ∈ C(n−1)×(n−1) such that B0 has n − 1
distinct eigenvalues and

∥

∥

∥

∥

S

[

0 0
0 A0 − B0

]

S−1

∥

∥

∥

∥

<
r

2
.

Moreover, we can find a number δ ∈ C such that λ + δ is not an eigenvalue
of B0 and

∥

∥

∥

∥

S

[

δ 0
0 0

]

S−1

∥

∥

∥

∥

<
r

2
.

We then define

B = S

[

λ + δ Q
0 B0

]

S−1 ∈ C
n×n.

Every eigenvalue of B0 is an eigenvalue of B. Moreover, λ + δ is another
eigenvalue of B. Since B0 has n − 1 distinct eigenvalues and λ + δ is not
an eigenvalue of B, we conclude that B has n distinct eigenvalues. Since
‖A − B‖ < r

2
+ r

2
= r, the proof is complete.

Theorem 2. The set Vn is an open and dense subset of Rn×n.
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Proof. We know from the previous theorem that Un is an open subset
of Cn×n. This, in particular, implies that Vn is an open subset of Rn×n.
However, the fact that Un is a dense subset of Cn×n is not sufficient to
conclude that Vn is a dense subset of Rn×n. (It follows from Theorem 1 that
every matrix A ∈ Rn×n can be approximated by a matrix B ∈ Cn×n that has
n distinct eigenvalues. Theorem 2 tells us that we can find an approximating
matrix B, whose entries are real numbers.)

In order to show that Vn is a dense subset of R
n×n, we proceed by in-

duction on n. We begin with the case n = 2. A 2 × 2 matrix ( a b
c d ) has

two distinct eigenvalues if and only if (a − d)2 6= −4bc. The set of all 2 × 2
matrices satisfying this condition is clearly dense. Therefore, V2 is a dense
subset of R2×2.

We next assume that Vn−1 is a dense subset of R
(n−1)×(n−1) and Vn−2 is

a dense subset of R(n−2)×(n−2). Our goal is to show that Vn is a dense subset
of Rn×n. To this end, we assume that a matrix A ∈ Rn×n and a positive real
number r are given. We need to find a matrix B ∈ Vn such that ‖A−B‖ < r.
Let λ be a (possibly complex) eigenvalue of A. We consider two cases:

Case 1: Suppose that λ = λ̄, so that λ ∈ R. Let v1 ∈ Rn be an eigenvector
of A with eigenvector λ. As above, we choose vectors v2, . . . , vn ∈ Rn such
that {v1, v2, . . . , vn} is linearly independent, and define

S =





| | |
v1 v2 · · · vn

| | |



 ∈ R
n×n.

The matrix A can be written in the form

A = S

[

λ Q
0 A0

]

S−1,

where A0 ∈ R(n−1)×(n−1) and Q ∈ R1×(n−1). As above, the induction hypoth-
esis implies the existence of a matrix B0 ∈ R(n−1)×(n−1) such that B0 has
n − 1 distinct eigenvalues and

∥

∥

∥

∥

S

[

0 0
0 A0 − B0

]

S−1

∥

∥

∥

∥

<
r

2
.

Moreover, we can find a number δ ∈ R such that λ + δ is not an eigenvalue
of B0 and

∥

∥

∥

∥

S

[

δ 0
0 0

]

S−1

∥

∥

∥

∥

<
r

2
.
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We then define

B = S

[

λ + δ Q
0 B0

]

S−1 ∈ R
n×n.

It is easy to see that B has n distinct eigenvalues. Since ‖A−B‖ < r
2
+ r

2
= r,

the assertion follows.
Case 2: Suppose that λ 6= λ̄. Let v ∈ Cn be an eigenvector of A with

eigenvalue λ. We define w1 = Re(v) ∈ Rn and w2 = Im(v) ∈ Rn. Since
Im(λ) 6= 0, the vectors w1 and w2 are linearly independent. We choose vectors
w3, . . . , wn ∈ Rn such that {w1, w2, w3, . . . , wn} is linearly independent, and
define

S =





| | | |
w1 w2 w3 · · · wn

| | | |



 ∈ R
n×n.

Since Av = λv, we have

A = S

[

E Q
0 A0

]

S−1,

where

E =

[

Re(λ) Im(λ)
−Im(λ) Re(λ)

]

∈ R
2×2,

A0 ∈ R
(n−2)×(n−2) and Q ∈ R

2×(n−2). It follows from the induction hypothesis
that there exists a matrix B0 ∈ R(n−2)×(n−2) such that B0 has n − 2 distinct
eigenvalues and

∥

∥

∥

∥

S

[

0 0
0 A0 − B0

]

S−1

∥

∥

∥

∥

<
r

2
.

Moreover, we can find a real number δ such that neither λ + δ nor λ̄ + δ is
an eigenvalue of B0 and

∥

∥

∥

∥

S

[

δ I2×2 0
0 0

]

S−1

∥

∥

∥

∥

<
r

2
.

We then define

B = S

[

E + δ I2×2 Q
0 B0

]

S−1 ∈ R
n×n.
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As above, it is not difficult to see that every eigenvalue of B0 is also an
eigenvalue of B. Moreover, the numbers λ + δ and λ + δ are eigenvalues of
E + δI2×2. Therefore, the numbers λ + δ and λ + δ are eigenvalues of B.
Note that λ + δ and λ + δ are two distinct complex numbers, none of which
is an eigenvalue of B0. Therefore, B has n distinct eigenvalues. Moreover, it
is easy to see that ‖A − B‖ < r. This completes the proof.
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