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HOLOMORPHIC MOTIONS

K. ASTALA AND G.J. MARTIN

Abstract. The notion of holomorphic motions, introduced by Mañé, Sad and
Sullivan [MSS], explains in a striking manner the many connections quasiconformal
mappings have to holomorphic dynamics, Teichmüller theory and other related areas
of complex analysis. In the theory of holomorphic motions a highlight is provided
by Slodkowski’s generalized Lambda lemma [S], which gives for any holomorphic
motion of any set E ⊂ C an extension to a motion of the whole space C.

Slodkowski’s proof is based on the theory and techniques of several complex
variables. The authors of the present article aim to explain Slodkowski’s proof to
specialists in quasiconformal mappings, holomorphic dynamics and related fields,
and wrote this article which has been circulating as an unpublished manuscript for
several years. Due to a number of demands we have now decided to publish it.

In the interim two further approahes to Slodkowski’s result have been given by
Douady [Do] and Chirka [C].

1. Introduction

Basically a holomorphic motion is an isotopy of a subset A of the extended complex
plane C = C ∪ {∞} analytically parametrised by a complex variable z in the unit
disk ∆ = {z ∈ C : |z| < 1}. A useful feature of holomorphic motions is that the
continuity assumptions can be dismissed from the definition and, in fact, analyticity
alone forces strong regularity and extendability properties on the motion.

Holomorphic motions arise naturally in many situations involving complex dynam-
ical systems. For instance the Julia sets of rational maps of C often move holomor-
phically with holomorphic variations of the parameters (that is the coefficients of
rational map). This is the situation in which holomorphic motions were first consid-
ered, by Mañé–Sad–Sullivan [MSS]. Also the limit sets of Kleinian groups often move
holomorphically when one varies the associated parameters (this time the coefficients
of the Möbius transformations associated to the generators are varied holomorphi-
cally). Such situations also occur when one is studying stability and genericity of
these dynamical systems, for instance questions like; are structurally stable or ex-
panding systems dense? For Kleinian groups one might read geometrically finite for
structurally stable, see [Su] for a deeper discussion of these things.

The surprising fact about holomorphic motions is that they always extend to am-
bient holomorphic motions (that is, holomorphically parametrised isotopies of C)
and that at each time the associated homeomorphism of the plane is quasiconfor-
mal. This is the so called extended λ–lemma. The extended λ–lemma was proven
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by Slodkowski [S] using techniques from several complex variables, in particular the
structure of polynomial hulls of sets that fiber over the circle. The result had earlier
been conjectured by Mañé–Sullivan and Sullivan–Thurston [ST]. They, along with
Bers–Royden [BR], had proven partial results. In this paper we shall give a complete
and self contained proof of the extended λ–lemma from the point of view of one com-
plex variable. The proof is based on the solution of the nonlinear Riemann–Hilbert
problem (NRH) by Snirelman in 1972 [Sn]. Actually, when all is said and done, this
is the way Slodkowski’s proof goes. He bases the proof on a result of Forstnerič [F]
concerning the structure of polynomial hulls in which Forstnerič reproves NRH with
different applications in mind and therefore more complication than is necessary in
this setting.

We hope our approach to the generalised λ–lemma is slightly more direct and
accessible. And, although the spirit of this paper is largely expository, we do obtain
some new results and new proofs of older results.

We shall give precise definitions of what a holomorphic motion is and what it means
for a mapping to be quasiconformal and so forth in the next section. Before this let
us briefly describe why in the two cases above the important dynamical parts of the
systems do move holomorphically.

Firstly, consider the case of a parametrised family of Kleinian groups Γz, z ∈ ∆.
According to a well known theorem of Jørgensen [J] members of a continuously
parametrised family of discrete groups are all canonically isomorphic to Γ0. It is
also well known that the fixed point sets of loxodromic elements are dense in the
limit set Λz of Γz and it is clear that these fixed points move holomorphically with
the parameters involved. As two loxodromic elements in the discrete group Γz can-
not share a single fixed point [B], loxodromic fixed points cannot collide unless both
belong to the same element or else the other associated pair of fixed points also
collides. In the first possibility the deformation produces parabolic elements and
changes the geometric nature of the assocated orbit space (C−Λz)/Γz, (for instance
it may become noncompact). The second possibility cannot occur since it contradicts
Jørgensen’s theorem: The group generated by the two colliding loxodromic elements
before the collision is a discrete group with a two generator free subgroup, whereas at
the time of collision, the two loxodromic elements generate a group which is virtually
abelian (since it is assumed discrete!). These groups are therefore not isomorphic
and so the collision cannot occur. The density of the loxodromic fixed points in the
limit set therefore implies that the limit set moves holomorphically and the extended
λ–lemma asserts that this motion extends to a holomorphic motion of C and the
isotopy is through quasiconformal mappings. From this we deduce that the Kleinian
groups are canonically quasiconformally conjugate on their limit sets as long as there
are no new parabolic elements produced (and this restriction is easily seen to be nec-
essary). Thus for instance a holomorphic deformation of a Fuchsian group produces
a quasiFuchsian group. The limit set moves holomorphically from a round circle to a
quasicircle.

In the case of the Julia sets J(R) of rational maps R : C → C we illustrate their
holomorphic deformations by an example, by considering the quadratic polynomials.
Any quadratic polynomial is conjugate by a Möbius transformation to a mapping
of the form Rc(z) = z2 + c and so this family exhibits all the dynamical phenomena
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possible for the iteration of a quadratic polynomial. For such a mapping R(z) we recall
that the Fatou set F(R) is where the dynamics are stable, that is the maximal domain
where the family {Rn; n ∈ Z+} is normal. Then J(R) = C− F (R). The Mandelbrot
set consists of those parameters c ∈ C such that J(z2 + c) is connected. Inside the
Mandelbrot set we have the hyperbolic regions consisting of those c’s for which Rc

has an attracting periodic cycle, that is for some n ∈ Z the mapping Rn
c (z) has a

fixed point z0 such that |(Rn
c )′(z0)| < 1. It is conjectured that the Mandelbrot set is

the closure of the hyperbolic regions. These regions are simply connected (and so are
themselves holomorphically parametrised by the disk!). Suppose we fix a hyperbolic
region U , vary c ∈ U and study the dynamical system associated to iteration. Firstly
recall that every attracting cycle attracts a critical point of our mapping. As the
mapping is quadratic there is exacly one finite attracting cycle. Recall too that the
repelling periodic points, those points z0 such that for some n ∈ Z+, Rn

c (z0) = z0 and
|(Rn

c )′(z0)| > 1, are dense in the Julia set. As we move c in U these points remain
repelling: They cannot become attracting as there is already one such cycle nor can
they become indifferent, |(Rn

c )′(z0)| = 1, as such cycles also ”attract” critical points
as well. [Actually, for every c ∈ U the closure of the critical orbit does not meet the
Julia set, so by a theorem of Fatou the mapping Rc is expanding on the Julia set,
that is |R′

c(z)| ≥ λ > 1 for all z ∈ J(Rc), This too forces repelling periodic points to
remain repelling].

It is clear the repelling points move holomorphically with the parameter c. We
need to show that they don’t collide. To see this, note that a repelling periodic point
zc0 is a solution of the equation Ψ(c0, z) = Rn

c0
(z)−z = 0. As ∂zΨ(c0, zc0) �= 0, by the

implicit function theorem there is a neighbourhood of (c0, zc0) where for each c we have
a unique zc with Rn

c (zc) = zc. An alternative geometric argument is to observe that
if repelling points of period m and n collide (m < n) then by continuity two points
on the period n cycle collide. At such a point w, Rn

c (z) − w has a double root and
derivative zero. Thus for nearby time the derivative was less than one in modulus,
a contradiction. This then shows that the repelling points move holomorphically
and therefore so does the Julia set. This is the reason why Julia sets seem to be
quasiconformally similar (because they are!). See the Figures 1 and 2 below for some
illustrations of this.

Finally we note that the extended λ–lemma is important for many other reasons
as well. As an instance it implies that a holomorphic perturbation of the complex
structure of a Riemann surface is necessarily induced by a quasiconformal mapping,
showing that quasiconformal mappings are indespensible tools in the study of Te-
ichmüller theory. It shows too that quasiconformal mappings are precisely those
mappings which are obtained by a holomorphic perturbation of the identity map-
ping.
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Figure 1
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Figure 2
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2. Quasiconformal Mappings

As a basic class of mappings we shall be talking about here are quasiconformal
mappings we take a few moments to give their definition and recall a few basic facts
from [L] and [V].

Let Ω ⊂ C be a planar domain and f : Ω → C be an orientation preserving
homeomorphism. Define

(1) Hf (z) = lim sup
r→0

max|h|=r |f(z + h) − f(z)|
min|h|=r |f(z + h) − f(z)| .

Then f is said to be quasiconformal if there is H < ∞ such that Hf (z) < H, z ∈
Ω. The essential supremum of Hf (z) is called the dilatation of f and the letter K
is usually reserved for this quantity. When K = 1 we obtain a planar conformal
mapping. Quasiconformal mappings have locally L2–integrable derivatives ∂zf and
∂zf , the change of variable formula works and f preserves sets of zero Lebesgue
measure. Furthermore, given a quasiconformal mapping f we set

(2) µf =
∂zf

∂zf

and note that µf is an element of the open unit ball of L∞(Ω) (as f is orientation
preserving, the Jacobian is positive a.e. so that |∂zf | < |∂zf |). The function µf is
called the complex dilatation of f . Conversely, given a µ in the unit ball of L∞(Ω),
there is a (unique up to normalisation) quasiconformal mapping f with µ as its
complex dilatation. The relationship between the complex dilatation and the number
K is

(3) K =
1 + ‖µ‖∞
1 − ‖µ‖∞

.

When a homeomorphism f : A → C is defined on a set without interior, the above
definition makes no sense. In this case the linear dilatation condition (1) is usually
replaced by the requirement that the mapping distorts cross ratios by a bounded
amount: Writing

(4) (z1, z2, z3, z4) =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)

we say a homeomorphism f defined on the set A is quasiconformal if

(5) |(f(z1), f(z2), f(z3), f(z4))| ≤ ϕ(|z1, z2, z3, z4|)

where ϕ : [0,∞) → [0,∞) is continuous increasing and onto.
In fact if A is a planar domain then (5) implies that the linear dilatation Hf (x) is

uniformly bounded and the converse holds when A = C. However in general domains
K = K(f) < ∞ implies (5) only locally. Therefore the notion of quasiconformality we
shall use in the sequel is slightly stronger than the usual assumption supHf (x) < ∞.
The results we obtain are thus a little stronger.
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3. The Extended λ–Lemma

Definition Let A be a subset of C. A holomorphic motion of A is a map f :
∆ × A → C such that

(i) for any fixed a ∈ A, the map λ → f(λ, a) is holomorphic in ∆
(ii) for any fixed λ ∈ ∆, the map a → f(λ, a) = fλ(a) is an injection and
(iii) the mapping f0 is the identity on A.

Note especially that there is no assumption regarding the continuity of f as a
function of a or the pair (λ,a). That such continuity occurs is a consequence of the
following remarkable λ–lemma of Mañé–Sad–Sullivan [MSS].

Theorem 3.1. If f : ∆ × A → C is a holomorphic motion, then f has an extension
to F : ∆ × A → C such that

(i) F is a holomorphic motion of A
(ii) each Fλ(·) : A → C is quasiconformal
(iii) F is jointly continuous in (λ, a).

Proof:- Let ρ denote the hyperbolic metric of the triply punctured sphere C −
{0, 1}. Since this metric is complete, given z, w ∈ C − {0, 1} a bounded hyperbolic
distance apart we see that |z| → 0 implies that |w| → 0. Thus there is a continuous
function η : R+ × R+ → R+ such that for each fixed M < ∞, η(M, ε) → 0 as ε → 0
and

(6) |w| ≤ η(M, |z|)
whenever z, w ∈ C − {0, 1} and ρ(z, w) < M . If x, y, z and w are distinct points of
A, the holomorphic motion f gives rise to the cross ratio function

(7) g(λ) = (fλ(x), fλ(y), fλ(z), fλ(w))

which is holomorphic in ∆ with values in C − {0, 1}. By the generalised Schwarz
lemma of Ahlfors, see eg. [N], the mapping g is a contraction of hyperbolic metrics.
That is

(8) ρ(g(λ), g(0)) ≤ ρ∆(λ, 0) = log
1 + |λ|
1 − |λ|

where ρ∆ is the Poincaré (hyperbolic) metric of the disk ∆. Since g(0) = (x, y, z, w)
we find

(9) |(fλ(x), fλ(y), fλ(z), fλ(w))| ≤ η(M, |(x, y, z, w)|)
with M = log 1+|λ|

1−|λ| . Therefore each fλ is uniformly continuous in A and so extends

continuously to Fλ : A → C. Permuting the x, y, z and w entries in the equation (9)
shows this extension is injective and so each Fλ(·) is a homeomorphism onto its image.
For each a ∈ A − A the function F (·, a) is holomorphic since it is the local uniform
limit of holomorphic functions; the joint continuity in (λ, a) follows since for every
r < 1 the family {Fλ(·) : λ ∈ r∆} is equicontinuous. Moreover, by definition equation
(9) establishes the quasiconformality of Fλ in A and hence the proof is complete. ✷

Using fairly sophisticated results from Teichmüller space theory Bers and Royden
extended Theorem 3.1 in two directions [BR]. Firstly they showed that actually each
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fλ(·), λ ∈ ∆ is the restriction of a quasiconformal self map of C and secondly they
provided a sharp dilatation estimate: There is an extension to C of fλ(·) whose
dilatation does not exceed

(10) K =
1 + |λ|
1 − |λ| .

Notice that the existence of a global quasiconformal extension follows from Theorem
3.1 if one could show that f(λ, a) was the restiction to A of a holomorphic motion of
C. Similarly the dilatation estimate can be obtained by showing that the Beltrami
coefficients of the quasiconformal mappings also vary holomorphically. The question
of whether or not each holomorphic motion of A is actually the restriction of a holo-
morphic motion of C was posed by Sullivan and Thurston [ST]. They showed that
there is a universal constant a > 0 such that if f is a holomorphic motion of a set A,
then f |{|λ| < a}×A is the restiction of a holomorphic motion F : {|λ| < a}×C → C.
Bers and Royden then further showed that a ≥ 1

3
.

Using innovative ideas from several complex variables Slodkowski proved that the
constant a above can indeed be taken to be equal to 1.

Theorem 3.2. Every holomorphic motion of a set A ⊂ C is the restriction of a
holomorphic motion of C.

As a consequence one directly obtains the complete version of the extended λ–
lemma.

Theorem 3.3. If f : ∆ × A → C is a holomorphic motion of A ⊂ C, then f has an
extension to F : ∆ × C → C such that

(i) F is a holomorphic motion of C
(ii) each Fλ(·) : C → C is a quasiconformal self homeomorphism of dilatation not

exceeding 1+|λ|
1−|λ|

(iii) F is jointly continuous in (λ, a)

As we shall see in the sequel, the proof of this theorem is a little indirect. In the
set up we have chosen the main steps are as follows:

(1) Standard compactness results and the λ–lemma , Theorem 3.1, proved above
reduce the problem to the case that A is a finite point set. (In this case the result is
called the holomorphic axiom of choice).

(2) For r < 1 extend the motion f : S1(r)×A → C to a diffeotopy Ψ : S1(r)×C →
C of the sphere (as only smoothness is required and as A is only a finite point set the
construction of Ψ is relatively straightforward).

(3) Use the solution to the nonlinear Riemann–Hilbert problem to show that a
smoothly varying family of smooth Jordan curves (parameterised by the circle) can
be realised as the boundary values of an essentially unique holomorphic motion.

(4) Foliate the plane by such Jordan curves (essentially arbitrarily) and show that
under the induced holomorphic motion they do not collide. This gives a holomorphic
motion of the plane which agrees with the original motion of A by uniqueness.

The technically difficult part of this proof is of course (3). The fact that any smooth
family of Jordan curves can be reparameterised to move holomorphically is in itself
already quite remarkable.



HOLOMORPHIC MOTIONS 35

4. Nonlinear Riemann–Hilbert Problem

As we have noted above an essential part of the proof of the extended λ–lemma is
the solution to the nonlinear Riemann–Hilbert Problem, Theorem 4.1 below. As far
as we can tell, this was first solved by Snirelman in 1972 [Sn]. Forstnerič reproved
this result in his paper [F] with a different approach and with better control on the
regularity. However, both proofs are based on the continuity method in one form or
another.

We give here a restatement of the result proved by Snirelman-Forstnerič best suited
to our ends and sketch the proof more along the lines of [F].

Theorem 4.1. Let {Cλ : λ ∈ S1} be a smoothly varying family of smooth Jordan
curves in the complex plane, each separating 0 from ∞. Then for every ζ ∈ C1 there
is a unique holomorphic function gζ : ∆ → C, continuous and nonzero in ∆ and with
vanishing winding number about 0, such that gζ(1) = ζ and for each λ ∈ S1

gζ(λ) ∈ Cλ

Moreover for each λ ∈ S1 the set {gζ(λ) : ζ ∈ C1} = Cλ and for each z ∈ ∆,
gζ(z) �= gη(z) when ζ �= η.

Sketch of Proof:- By a smoothly varying family {Cλ} of Jordan curves we mean
that there is a smooth map Φ : S1 ×C → C such that if we set Φλ(z) = Φ(λ, z), then

Φ−1
λ (S1) = Cλ

and each Φλ fixes 0 and ∞. We therefore seek a function g continuous in ∆ and
holomorphic in ∆ such that

(11) |Φ|(λ, g(λ)) = 1, λ ∈ S1.

As everything is smooth and as 0 is contained in the domains separated from ∞
by Cλ, it is clear we may assume that Φλ is the identity in a neighbourhood of 0.
Then there is t0 such that for all t < t0 there exists a family of solutions gt, namely
gt(z) ≡ ζ ∈ S1(t), with

(12) |Φ|(λ, gt(λ)) = t, λ ∈ S1.

We want to show that the set of t’s for which the above equation has solutions gt,
continuous in t and with the desired properties, is both open and closed. To see that
this set is open we use the implicit function theorem in a Banach space on which the
Hilbert transform is bounded. For our purposes the most convenient choice is

E = C1,α(S1)

the Banach space of functions on the circle whose first derivatives are Hölder contin-
uous with exponent α. Now assuming that we have solutions for 0 < t ≤ t0 define
F : R × E → E by

(13) F (t, u)(λ) = |Φ|(λ, gt0(λ) + (u + ıHu)(λ)X(λ)) − t

where Hu is the Hilbert transform of u (and so u+ ıHu admits a holomorphic exten-
sion to ∆ which is continuous in ∆) and where X ∈ E is a holomorphic function to
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be defined later. Then,

DuF (t0, 0)u = ∂z|Φ|(λ, gt0(λ))(u + ıHu)(λ)X(λ)

+ ∂z|Φ|(λ, gt0(λ))(u + ıHu)(λ)X(λ)

= 2� (∂z|Φ|(λ, gt0(λ))(u + ıHu)(λ)X(λ))

Now if we can choose X so that ∂z|Φ|(λ, gt0(λ))X(λ)) is real and nonvanishing, then
we obtain

(14) DuF (t0, 0)u = A(λ)u(λ)

from which it is clear that DuF (t0, 0) is invertible. But for t small ∂z|Φ|(λ, gt0(λ)) is
a nonzero constant and so by continuity (in t) it has vanishing winding number about
0 even for large t. Therefore we can write

(15) ∂z|Φ|(λ, gt0(λ)) = eα(λ)+ıβ(λ)

and simply choose

(16) X(λ) = e−ıβ(λ)+(Hβ)(λ) = e−ı(β+ıHβ)(λ).

Now briefly, by the implicit function theorem there is ε > 0 for which the equation
|Φ|(λ, gt(λ)) = t admits solutions gt ∈ E varying continuously in t for 0 < t < t0 + ε.
Similarly, as gt depends smoothly on the initial data gt0 and gt(λ) ∈ Φ−1

λ (S1(t)) ,
the values gt(λ) cover this Jordan curve as long as every initial solution admits the
continuation gt.

Next we consider the last part of the statement, the pointwise uniqueness of the
solutions to NRH; this part of the theorem is, of course, crucial in constructing
the holomorphic motions. By compactness it is clear that the set of t’s such that
gt,η(z) �= gt,ζ(z) for all z ∈ ∆, is open. To see that this condition is closed in t we
first apply Hurwitz’s theorem: the limit of nonzero holomorphic functions is either
nonzero or identically zero. Thus we only need to consider the cases z = λ ∈ S1.

In proving the boundary uniqueness we use the linear Riemann-Hilbert problem.
Namely, we have for each λ ∈ S1

�(a(λ)(gt,η − gt,ζ)(λ)) = 0,

where

a(λ) =

1∫
0

∂z|Φ|(λ, gt,η(λ) + s(gt,η − gt,ζ)(λ))ds.

Since ∂z|Φ|(λ, z) is smooth and nonzero when z �= 0, by the mean value theorem
a(λ) is nonzero when gt,η and gt,ζ are sufficiently close in Cα. Continuity in t proves
that then a(λ) has zero winding number about 0 and thus a(λ) = eα1(λ)+iβ1(λ) where
α1 and β1 are Hölder continuous. If gt,η − gt,ζ is not identically zero, by Hurwitz’s
theorem it was nonzero in the open unit disk. Therefore we obtain

�(log(gt,η − gt,ζ(λ)) =
π

2
− β1(λ).

The harmonic conjugate of β1 is continuous, hence bounded and it follows that
gt,η(λ) �= gt,ζ(λ) for all λ ∈ S1, at least when gt,η and gt,ζ are close enough. Thus
each value gt,η(λ) determines gt,η locally. But since gt,η(λ) must stay on the curve
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Φ−1
λ (S1(t)), continuity in t proves the global claim, that for different solutions of (12),

gt,η(λ) �= gt,ζ(λ) at every λ ∈ S1.
It now remains to show that the set of t’s for which there is a solution gt, is closed.

One should not immediately jump to the conclusion that this follows from a standard
compactness argument: We must wind up with a limit function for which the above
implicit function and uniqueness arguments work, in other words, the limit function
must be of the appropriate smoothness class C1,α. The major technical part of the
proof is therefore to find a’priori estimates for the solutions of equation (12). That
is assuming gt ∈ C1,α we must prove that

(17) ‖gt‖C1,α ≤ C0,

where C0 is an absolute constant independent of t.
Letting λ = eıθ and differentiating (12) with respect to θ gives

(18) ∂θ|Φ|(λ, gt(λ)) − 2� (λg′
t(λ)∂z|Φ|(λ, gt(λ)) = 0.

And as above ∂z|Φ|(λ, gt(λ)) = eα(λ)+ıβ(λ) so that

(19) 2�
(
λg′

t(λ)eı(β+ıHβ)(λ)
)

= e−(α+Hβ)(λ)∂θ|Φ|(λ, gt(λ)).

Now it will be enough to prove that for each p ∈ (1,∞)

(20) ‖e±Hβ(λ)‖Lp(S1) ≤ C(p) < ∞
with C(p) independent of t. Indeed as the Hilbert transform is bounded on Lp and
Φ is smooth equations (19) and (20) give

‖g′
t(λ)eı(β+ıHβ)(λ)‖L2p(S1) ≤ C1C(2p)

and so

(21) ‖g′
t(λ)‖Lp(S1) ≤ C1C(2p)‖eHβ(λ)‖L2p(S1) ≤ C1C(2p)2.

According to a theorem of Hardy and Littlewood [D p. 84] we then obtain a uniform
bound for ‖gt‖α, where α = 1 − 1

p
, which from the previous estimates yields the

desired bounds on ‖g′
t‖α.

Therefore to complete the proof of Theorem 4.1 we must obtain the estimate of
equation (20) for

(22) β = � (log(∂z|Φ|(λ, gt(λ)))) .

It is of course clear that the Lp–norm of (20) is at least bounded. To obtain the uni-
form estimate that we need, note that a continuity argument implies that ∂z|Φ|(λ, z)
is null homotopic as a map from Mt = {(λ, z) : |Φ|(λ, z) = t} to C\{0}. Therefore
one can write

� (log(z∂z|Φ|(λ, z))) = B(λ, z)

where B is continuous on Mt. Applying Mergeleyan’s Theorem we have

B = �(Pt) + Rt

on Mt, where Pt is a polynomial in λ, λ, and z and the remainder term can be made
small |R(λ, z)| < ε. By smoothness Pt varies continuously in t and as β ≡ 0 for t small
we can choose Pt with a constant degree m = deg(Pt) and such that the coefficients
have upper bounds also independent of t ∈ (0, 1]. For simplicity set

u(λ) = P (λ, gt(λ)) and v(λ) = R(λ, gt(λ))
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As gt is holomorphic in ∆ and continuous in ∆ by an explicit term by term calculation
we see that

(23) ‖Hu(λ)‖∞ ≤ C0‖gt‖m
∞

where C0 depends only on P and so can be bounded by a fixed constant. To estimate
the other term note that if we choose ε so small that pε ≤ π

2
, then |v(λ)| < ε implies

that

(24)

∫
S1

epHv(λ)|dλ| ≤ 1

cos(επ)

c.f. [D p. 57]. Finally, as

β(λ) = − arg gt(λ) + B(λ, gt(λ))

it follows that Hβ = log |gt| + Hv + Hu. And as |gt(z)| is bounded away from 0 and
∞ when t is not close to 0 we get (20). This now proves Theorem 4.1. ✷

It is the following consequence, in itself quite surprising, that we shall need.

Theorem 4.2. Let φ : S1 × C → C, φ(0) = 0 be a diffeotopy. Then the curves
φ(λ,S1(t)), 0 < t < ∞, can be uniquely reparameterised and extended to be a holo-
morphic motion Φ. That is, there is a holomorphic motion Φ : ∆ × C → C and a
foliation of C−{0} by Jordan curves Σt, 0 < t < ∞, each separating 0 from ∞, such
that for λ ∈ S1 and 0 < t < ∞
(25) Φ(λ, Σt) = φ(λ,S1(t)).

Proof:- Firstly Ct
λ = φ(λ, St) is a smoothly varying family of smooth Jordan curves

each separating 0 from ∞. If ζ ∈ Ct
1, apply Theorem 4.1 to the family {Ct

λ : λ ∈ S1}
and let gt

ζ(z) be the holomorphic fuction in ∆ solving the corresponding nonlinear
Riemann–Hilbert problem with gt

ζ(1) = ζ. Then define

(26) Ψ(z, w) = gt
ζ(z), if w = gt

ζ(0).

We claim that Ψ is a well defined holomorphic motion of the whole complex plane.
To see this choose distinct points ζ ∈ Ct

1 and η ∈ Cs
1 . If t = s, we see gt

ζ(z) �= gs
η(z)

as ζ → gt
ζ(z) is injective by Theorem 4.1. If t < s, gs

η is nonvanishing and gt
ζ(z) ∈ Ct

z

for |z| = 1. Hence the maximum principle implies that for t sufficiently small

|gt
ζ(z)| < |gs

η(z)|
for all z ∈ ∆. Then of course gt

ζ(z) �= gs
η(z) in ∆ and as gt

ζ(z) is continuous in ζ (by
the implicit function theorem argument of Theorem 4.1), we can again use Hurwitz’s
Theorem, that the limit of nonvanishing analytic functions is either nonvanishing
analytic or identically zero. It follows that the set of t < s for which gt

ζ(z) �= gs
η(z) is

both open and closed and so of course

gt
ζ(z) �= gs

η(z) whenever ζ �= η

Next note that Ψ(z, w) = gt
ζ(z) is holomorphic in z, injective in w and Ψ(0, w) = w;

thus it is a holomorphic motion of the set

(27) A = {w ∈ C : w = gt
ζ(0), 0 < t < ∞, ζ ∈ Ct

1}.
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But the mapping ζ → gt
ζ(0) extends to a homeomorphism of C onto A ∪ {0,∞}.

Thus A = C − {0} and Ψ defines a holomorphic motion of C.
Finally, let

Σt = {w ∈ C : w = gt
ζ(0), ζ ∈ Ct

1}
Then for λ ∈ S1

Ψ(λ, Σt) = φ(λ,S1(t))

so that {Σt : 0 < t < ∞} is a foliation of C − {0} consisting of Jordan curves each
separating 0 from ∞. Thus Ψ is a reparameterisation of φ.

5. The Completion of the Proof

The proof of Theorem 3.2 is now more or less complete. One first establishes the
following compactness result for holomorphic motions. It is quite straightforward
using the λ–lemma, Theorem 3.1.

Lemma 5.1. Let {An} be an increasing sequence of subsets of C and Φn a sequence
of holomorphic motions of C with

(28) Φn+1|An = Φn|An.

Then there is a limit holomorphic motion Φ : C → C such that Φ|An = Φn|An.

Next one proves the holomorphic axiom of choice. It simply says that a holomorphic
motion of a finite point set can be extended to include any other arbitrary point.

Theorem 5.1. Let fi : ∆ → C, i = 1, 2, . . . , n be holomorphic functions such that
for each z ∈ ∆ we have fi(z) �= fj(z), i �= j. Then for each zn+1 ∈ C − {fi(0) : i =
1, 2, . . . , n} there is a holomorphic function fn+1 : ∆ → C such that fn+1(0) = zn+1

and for all i = 1, 2, . . . , n and z ∈ ∆ we have fn+1(z) �= fi(z)

Proof:- A straightforward normalisation will imply that we can assume f1(z) ≡ 0.
Choose r < 1 and consider the diffeotopy of the finite point set A = {fi(r) : i =
1, 2, . . . , n} defined by

(29) φ(λ, fi(r)) = fi(rλ)

which is, as r < 1, parametrised smoothly by the circle |λ| = 1. It is easy to see
how to extend this diffeotopy of a finite point set to an ambient diffeotopy of C. For
instance one may integrate a suitable vector field (an extension of the vector field for
which φ already gives the integral curves) as in [S] p 350.

Now let Ψ : ∆×C → C be the holomorphic motion and Σt, 0 < t < ∞ the foliation
with

Ψ(λ, Σt) = φ(λ,S1(t)) λ ∈ S1, t > 0,

that was constructed in Theorem 4.2. As fi(rz) is already a solution to the nonlinear
Riemann–Hilbert problem

(30) g(λ) ∈ φ(λ,S1(t)) = Ψ(λ, Σt), λ ∈ S1,

where t = |fi(r)|, we have by uniqueness that Ψ(z, w) = fi(rz) for w = fi(0) and for
all i = 1, 2, . . . , n. In particular of course, Ψ(z, zn+1) �= fi(rz) whenever z ∈ ∆. The
result now follows by compactness as we let r → 1.✷
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The proof of Theorem 3.3 is now clear. Given a holomorphic motion Φ of a set A we
choose a countable dense subset {a1, a2, . . . , an, . . . } of A, set An = {a1, a2, . . . , an}
and define Φn = Φ|An. Extend each Φn to a holomorphic motion of the plane and
use the lemma above to wind up with a limiting holomorphic motion. It’s easy to
check (using Theorem 3.1) that the limit is an extension of the initial motion. Once
we have this we see that for each λ ∈ ∆ the map Φ(λ, ·) is quasiconformal by the
ordinary λ–lemma. But now the derivatives of Φ(λ, ·) are also easily seen to move
holomorphically and therefore so does the complex dilatation µλ. But µ0 ≡ 0 and
‖µλ‖∞ < 1 for all λ ∈ ∆. Therefore the Schwarz lemma gives

‖µλ‖∞ ≤ |λ|
from which we deduce that the dilatation at time λ is

Kλ =
1 + ‖µλ‖∞
1 − ‖µλ‖∞

≤ 1 + |λ|
1 − |λ| .
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