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Introduction 

Classifying Riemann surfaces is a problem that has fasci- 
nated mathematicians for more than a century. Real an- 
alytic, complex analytic, and geometric solutions have 
been found using a variety of techniques. In this article I 
shall examine several approaches; I shall restrict myself 
to the situation where the surface is a torus or a punc- 
tured torus and make the description very explicit. 

Moduli Spaces for Riemann Surfaces 

A Riemann surface is a topological surface with a com- 
plex analytic structure on it; that is, the surface is covered 
by a set of charts so that the relation between the maps de- 
fined on overlapping neighborhoods is complex analytic. 
If $1 and $2 are two Riemann surfaces, it can happen that 
there exist homeomorphisms from $1 to $2, and yet none 
of these homeomorphisms is complex analytic. In other 
words, $1 and $2 have the same underlying topological 
surface but are distinct as Riemann surfaces. It turns out 
that, unless the underlying surface is the 2-sphere or the 
2-sphere minus 1, 2, or 3 points, there is a continuum 
of distinct Riemann surfaces with the same underlying 
surface. How then might we characterize the set of all dis- 
tinct Riemann surfaces for a given topological surface S? 
This set is known as the moduli space of the surface and 
is denoted Mod(S). To put the characterization problem 
more concretely: 

�9 Can we realize Mod(S) as some natural geometric 
object (e.g., as a real analytic manifold, or perhaps 
even as a complex analytic manifold)? 

�9 Can we find parameters (these are the "moduli ') ,  
at least for some large open subset of this manifold, 
so that as we vary the parameters there is some as- 
pect of the complex structure of the corresponding 
Riemann surfaces that is visibly varying with the 
parameters? 

This article looks at several examples that illustrate what 
the problem is about and some of the methods that have 
been used to attack it. The geometric key is that a com- 
plex analytic homeomorphism is con formal; that is, it pre- 
serves angles locally. It is an easy exercise in calculus to 
show that if a map is complex analytic and invertible at 
a point, then the angle between two curves intersecting 
transversally at that point, measured as the angle be- 
tween their tangents, is equal to the angle between the 
image curves at the image point. Maps that distort angles 
cannot be complex analytic. 

First Simple Example Let )~ be a real number in the 
unit interval / = {0 < ,~ < 1}, and consider the cyclic 
group 

G~ = {g~ : z ~ ~ z ,  n �9 Z} 
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of conformal homeomorphisms of the punctured plane, 
C* = C - {0}, to itself. The natural map C* --+ C * / G ~  -~ 
S~ maps the half-open annulus A~ = {IAJ < Jz I < 1} one- 
to-one onto the quotient S;~. Because ~]1 : z ----+ ,~Z maps 
the unit circle one-to-one onto the inner boundary  of A~, 
we see that S;~ is topologically a torus: The image a of 
the unit circle and the image fl of the real axis are a pair 
of generators for its homology. Projecting the complex 
structure from C onto S;~ makes it a Riemann surface. 

When A is close to 1, fl is very short, so we get a very 
"skinny" torus, and as ), decreases, the torus gets "fat- 
ter." Because complex analytic maps preserve conformal 
geometry, this distortion is reflected in the complex struc- 
ture, so it is plausible that we get a whole cont inuum of 
different complex structures as A varies in the interval. 

Now suppose that A is no longer real but is a complex 
number  re  i~ in the punctured unit disk, D* = {z : 0 < 
]z I < 1}. Define the group G~, the quotient C * / G ~  ~- S;~, 
and the annulus A~ as above. The element g~ E G~ still 
identifies the inner boundary  of A~ with the outer bound- 
ary, but now the inner circle is twisted by the angle/9 be- 
fore it is glued. This twisting distorts the complex struc- 
ture of the quotient, so for fixed r and varying/9, there is 
another whole cont inuum of different structures. In fact, 
classical theorems from elliptic function theory tell us 
that every possible complex structure on the torus is ob- 
tained from some ), E D*. Thus, D* is a good candidate 
for our natural realization of Mod(S) and A is a natu- 
ral parameter. However, D* is not quite Mod(S) because 
many different k's may  give rise to the same structure. 
We shall return to this question after the next section. We 
shall see that the parameter space D* is, in fact, a cover- 
ing space of Mod(S). It is typical that the moduli  space 
is difficult to find; one often has to settle for a covering 
space. 

Second Simple Example A more usual  representation 
of the torus is obtained by considering the group Gr = 
{gm,n (Z) = z + m + n r  : m ,  n E Z}, where r is in the upper 
half-plane U, and forming the quotient C ---, C / G r  -~ 
Sr .  The parallelogram Pr spanned by 1 and r,  with its 
opposite sides glued, is the analogue of the annulus. The 
complex structure on the torus is inherited from C and 
depends on G~-. As uniform stretching doesn ' t  change 
the complex structure, the quotient of C by the group 
{z  -+ z + r m  + r n r  : m ,  n E Z}, where r is any positive 
scalar, determines a torus equivalent to Sr .  The space 
of moduli  is the collection of groups G~-, r E U. The 
parameter space U is, therefore, another covering space 
of Mod(S) that is easy to find and to work with. To find 
Mod(S) one has to see how different choices of generators 
for the groups G~ are related. For these groups one knows 
how to do this: The classical modular  group P S L ( 2 ,  Z) 
relates pairs of generators. 

The plane C is simply connected and is the universal 
cover of the torus. The exponential maps  the parallelo- 
gram P~ onto the annulus A;~ for A = exp(2rrir). Because 
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the parameters r and - 1 / r  give rise to equivalent tori, so 
do the parameters k = exp(2rcir) and k' = exp( - -2rr i / r ) .  
If r = i t ,  for t > 0 real and large, A is real and very smal l  
so the underlying torus is fat. On the other hand, k' is real 
and close to 1, so the underlying torus is skinny. Thus, 
a torus that is fat from one perspective is skinny from 
another. 

The relation between r and A also shows that the pa- 
rameter space D* is an intermediate covering space be- 
tween U and Mod(S). 

Boundary Behavior In our examples, the plane do- 
mains in which the parameter spaces are embedded have 
boundaries. This means that if our parameter reaches the 
boundary,  something has h a p p e n e d - - t h e  construction 
of the torus no longer works. 

Let us look at what  happens when  A = re  i~ tends to 
the boundary  of D*. The absolute value of the parameter, 
r = ]AI, is measuring the size of the annulus. The open 
arc from 1 to A projects to a closed curve fl on the torus 
S;~. If 8 = 0, so that A = r, the length of fl on S;~ is J log rI; 
as r ---+ 0, it becomes infinite. On the other hand, suppose 
/9 = 2rcip/q for p / q  rational, and consider the collection 
of arcs 

{(r,  1), (re  i~ ei~ (re 2~~ e2i~ (rg (q-1)i8, e(q-1)i8)}.  

They project to a closed curve on S;~ that I again call ft. 
Now if r --+ 1, the arcs get short, fl becomes "pinched," 
and its length on S;~ goes to zero. In either case, there is no 
longer a torus; it has become a doubly infinite cylinder. 

Now let us look at the parameter space U. What  hap- 
pens as r approaches the rational points on the bound-  
ary of U? Suppose r = p / q  + it, p, q E Z ,  t E R +. Draw 
the parallelogram P~ spanned by 1 and r; it contains 
the vertical line joining the origin and - p  + qv  = qit, 
which projects to a closed curve fl on & .  As t --+ 0, fl 
is "pinched," and when t = 0, &- has degenerated to a 
doubly infinite cylinder again. 

It is much  more difficult to describe what  is degener- 
ating on &- as we approach the irrational points on the 
boundary. If we write r = r + it,  where r is irrational and 
t > 0, the projection fl of the vertical line in the parallel- 
ogram joining 0 and - r  + r = i t  never closes up on &- 
and, hence, is an open curve of infinite length. If we call 
a the projection of the generator joining 0 and 1, we see 
that what  is getting shorter is the length of the segment 
of fl between its successive intersections with c~. 

Third Example: A First Taste of Hyperbolic Geometry 
In our first example, we can think of the annulus A;~ as the 
torus cut open along a curve. The domain C* is "tiled" by 
more annuli  An = gn(Ax); the annuli  An don ' t  overlap 
and together fill out  all of C*. The group G;~ is a discrete 
group of conformal self-maps of C*. 

In our second example, we can think of the paral- 
lelogram Pr as the torus cut along a pair of simple 
curves that intersect exactly once. The group of trans- 
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Figure 1. The hyperbolic quadrilateral. 

lations G; determines a collection of parallelogram tiles, 
Pm,n = gm,n(P~), that do not overlap and fill out all of 
C. Again G~ is a discrete group of conformal self-maps 
of C. 

We can apply this idea of "tiling" to obtain techniques 
that work not only on tori but also on more complicated 
Riemann surfaces. We cut the surface up to obtain a piece 
P of complex plane; we then try to find a group G of 
conformal maps to obtain a collection {gP} of images of 
P that fill up some simply connected domain f~ in the 
plane without overlap; each element of G should be a 
conformal self-map of fL 

I illustrate again with a simple example. Start with 
a torus, and take a pair of simple closed curves on it 
intersecting in the point ~7. Now remove the point ~7 to 
obtain a punctured torus. Cutting along the curves gives 
us a quadrilateral with its corners removed. As we try 
to make our tiling, we see that because f~ is simply 
connected, the removed corners will have to be on the 
boundary of the domain f~ we are tiling. It follows that 
f~ will have to have at least four boundary points, and 
hence, by the Riemann mapping theorem, cannot be com- 
plex analytically equivalent to either C or C*. 

Let us get very specific. Suppose that P (see Fig. 1) is 
the region inside the upper half-plane U bounded by the 
semicircles 

C, = {]z + 1/21 = 1/2} A U and 

C2 = { I z -  1/21 = 1/2} A U 

and by the semi-infinite vertical lines 

h = { { R z = l } n U  and / 2 = { ~ z = - I } N U .  

Now consider the linear fractional transformations 
2 z + 1  z + l  

- - -  h ( z )  - 

z + l  ' z + 2 '  

and let G = (g, h} be the group they generate. 
We easily compute 

g ( - 1 ) = c c ,  g ( 0 ) = l  and g ( ( - 1 + i ) / 2 ) = 1 + i ,  

so g maps the semicircle C1 onto the vertical line h. More- 
over, it maps P onto a quadrilateral gP adjacent to P 
along h.  It does not overlap P, and its vertices are again 
on R. Similarly we see that h maps the vertical line I2 
to the semicircle C2; and that hP is a quadrilateral with 
vertices on R, not overlapping P, and adjacent to P along 
the semicircle. The group G is a discrete group of confor- 
mal self-maps of U, and because P has zero angles, one 
may show that the images of P under G do, in fact, tile 
U. 

This example gives us a once-punctured torus, and 
it has a complex structure inherited from U. Now we 
can puncture any torus (the torus being homogeneous, 
it doesn't  matter where we puncture it), so there is again 
a whole family of possible complex structures for the 
punctured torus. How can we introduce parameters into 
the group we just constructed to vary it and obtain these 
other punctured tori? 

In the late nineteenth century, Poincar6 [1] discovered 
a technique which he, Fricke [2], and others used on this 
problem. It was used again by a number of people in 
the mid-1960s, including Ahlfors [3], Bers [4], Fenchel 
[5], Maskit [6], and the author [7-9]; in the 1970s, it was 
enlarged and developed further by Thurston, Sullivan, 
and Gromov [10]. What Poincar6 remarked on was that 
the group of linear transformations 

(az+b)/(cz+d),  a,b,c, dER ,  ad -bc>O,  

are not only conformal homeomorphisms of U but are 
also isometries with respect to the hyperbolic metric on U. 

The hyperbolic metric is defined by ds = Idzl/,~z. 
Geodesics are circles orthogonal to the real axis (and ver- 
tical lines). The distance from any point inside U to a 
point on R tO {oo} is infinite. 

In our second example, where we tile the plane by 
parallelograms, we may convince ourselves that we can 
choose the basic parallelogram in any shape by choos- 
ing the lengths of the sides and the angle between them. 
These lengths and the angle determine generating trans- 
lations for the group. Because rescaling doesn't change 
the complex structure of the quotient, we may always 
assume one of the lengths is 1. Then, as the angles of a 
parallelogram add up to 2rr, four copies fit around each 
corner, and we can tile the plane. 

In our punctured torus example, the quadrilateral P is 
bounded by hyperbolic geodesics, but they have infinite 
length. Moreover, they meet at 0 angles at the boundary. 
Are there hyperbolic geometric invariants sitting inside 
P somewhere? Does it have a "hyperbolic shape"? The 
answer is yes! 
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The hyperbolic isometry g(z) fixes exactly two points 
on R and leaves the hyperbolic geodesic A a joining them 
invariant. This geodesic is called the axis of g. Unlike the 
Euclidean case, the hyperbolic distance between z and 
g(z), du(z,g(z)), is not the same for all z E U. This dis- 
tance is minimal for any z E As; the minimum distance 
Ig is called the translation length of g. Similarly the isome- 
try h has an axis An and a translation length lh; o n e  sees 
that A a and Ah intersect in exactly one point. 

Suppose now that we try to construct an arbitrary hy- 
perbolic quadrilateral P with four infinite sides, meeting 
in vertices on the real axis, and such that there are hy- 
perbolic isometries g and h identifying the pairs of oppo- 
site sides. It is a theorem, certainly known to Fricke and 
Fenchel, but first published by the author [8], that 

�9 the "shape" of such a hyperbolic P is determined 
by the translation length of either isometry, lg or lh, 
and the angle 0 between the axes Aa and Ah, and 

�9 there is a P and a group for any given shape. 

Only one length is necessary in this case because there 
are no isometries that change scale. 

In sum, we have constructed a simply connected cov- 
ering of the moduli space of a punctured toms param- 
etrized by two real variables, {(lg, 0) E R + x (0, 7r)}. 
These parameters have a geometric interpretation on the 
surface. There is also a simple way to write these param- 
eters as real analytic functions of the coefficients of the 
generators of the group. 

An important point here is that the methods of Exam- 
ples I and 2 do not generalize to surfaces of higher genus, 
but these methods do. 

Complex Modul i  Spaces 

The parameters for conformal structures on Riemann 
surfaces that we found above using hyperbolic geomet- 
ric methods have many desirable properties. They are in- 
trinsically defined; we can explicitly compute the polyg- 
onal tile and, hence, the group they determine; they work 
for arbitrary Riemann surfaces. 

In the first two examples, we see how the complex 
structure on the torus depends on the parameter as 
a complex variable, so these parameter spaces have a 
rich structure. The methods, however, depend on ellip- 
tic function theory and work only for tori. In the third 
example, where the methods do generalize, the complex 
structure on the punctured torus depends on the parame- 
ters as independent real variables, so the parameter space 
has less structure. Ideally one would like to find a method 
for constructing parameter spaces for general Riemann 
surfaces so that the parameters are complex and the de- 
pendence of the geometry of the Riemann surface on 
these complex variables can be understood. 

The Punctured Torus Revisited Here is another com- 
plex representation of the moduli space of a punctured 
torus that will generalize. 
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For # C U, consider the group G a = (g, ha) where 

1 
g ( z ) = z + 2 ,  ha(z )=  - + # .  

z 

Using techniques originated by Maskit (e.g., [6], VII), 
one can show that for appropriately chosen #, there is 
a simply connected domain f~(Ga) such that the group 
G a is a discrete group of conformal automorphisms and 
f~(Ga)/G a is a punctured torus. 

To get an indication of how this works, choose # = 3i 
and let P be the region (see Fig. 2) 

�9 between the vertical lines ~z = -1, ~z = 1 and the 
circles IzI = 1 and Iz - 3il = 1, 

�9 with vertices -1,  1, 1 + 3i and -1 + 3i. 

The map g(z) takes the left side of P to the right side 
and maps P to a translate adjacent along the right side. 
The map h(z) takes the lower semicircular boundary 
onto the upper one and maps P to a quadrilateral ad- 
jacent along the upper semicircle. This is the start of 
our tiling. It is not obvious, but it follows from Maskit's 
theory that the images of P under G3i do not overlap. 
As we generate these images of P, they fill out some do- 
main f~(G3i) in C, which, by construction, is invariant 
under G3i. 

Unlike Example 3, where the images of the tile P 
filled out the recognizable upper half-plane, the do- 
main f~(G3i) is not easily described; in fact, f~(Ga) is 
different for different choices of #. To get some idea 
of what the domains ft(Ga) can look like, in Figures 
3, 4, and 5 I show the computer pictures made by Ian 
Redfern at Warwick University for the groups G a wi th  
# = 3i, # = 0.0533 + 1.9i, and # = 0.5001 + 1.667i. The 
domain f~(Ga) is the complement of the closed circles; 
its boundary is quite intricate. 

1.5 

, , , , , ,  . .  

-1 -0.5 

y 

0.5 1 1.5 2 

Figure 2. The tile P for C.~. 



Figure 3. ~ ( ~ ) .  

Figure 4. ~(Go.os.~lm). 
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Figure  5. ~'~(~.50o1+1.667i). 

Figure  6. The  M a s k i t  e m b e d d i n g  w i t h  p l ea t i ng  coordinates .  
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The Maskit Parameter Space. To show that the specific 
group G3i gives us another way to represent a particu- 
lar punctured torus by forming the quotient ~ (G3i)/G3i 
requires Maskit's combinatorial theory for groups that 
represent Riemann surfaces. To show that every punc- 
tured torus can be represented by some group in the fam- 
ily {Gu} takes a different set of techniques, from partial 
differential equations and the theory of quasi-conformal 
mappings developed by Ahlfors and Bers in the early 
1960s (see, e.g., [3, 4, 11]). I will not explain these theo- 
ries, but just report that for the punctured torus they tell 
us that: 

�9 there is a simply connected domain A4 c U such 
that for # c M there is a domain fl(Ga) on which 
the group G~ acts as a group of conformal homeo- 
morphisms and such that ~(G~)/G~ represents a 
punctured toms, and 

�9 every punctured torus is represented by some 
# E M .  

In the first example, the cyclic group depending on 
a parameter ~ E D*, we saw that the boundary of the 
disk was a natural boundary because the tori had degen- 
erated. Similarly, the Maskit parameter space A,~ is em- 

b e d d e d  as a domain inside the upper half-plane and the 
tori must degenerate as we approach its boundary. How 
can we find or describe this boundary? Using Maskit's 
techniques one can prove that the half-plane ~# > 2 is 
contained in de/. Therefore, the boundary OA/I in C is 
in the horizontal strip 0 < ~# _< 2. Wright [12] used 
experimental techniques to compute this boundary and 
came up with the picture in Figure 6. This picture was the 
jumping-off point for the author's ongoing collaboration 
with Caroline Series on complex moduli spaces [13-17]. 

Hyperbolic Geometry Again--  This Time in Three Di- 
mensions When Poincar6 realized that linear fractional 
transformations with real coefficients were isometries of 
the hyperbolic plane, he also realized that linear frac- 
tional transformations with complex coefficients were 
isometries of hyperbolic 3-space. Hyperbolic 3-space can 
be modeled by the upper half-space H 3 = {(z, t) : z c 
C, t c R+}. The hyperbolic metric there is given by 
ds = v/idz] 2 + dt2 /t. Geodesics are circles orthogonal to 
the base C, and hyperbolic planes are hemispheres or- 
thogonal to the base C. 

Linear fractional transformations map circles and 
straight lines in C onto circles and straight lines; in fact, 
each is a product of an even number of reflections in 
lines and inversions in circles. Given a circle in C, we can 
view it as the equator of a sphere in R 3. An inversion in 
the circle extends naturally to an inversion in the sphere. 
Similarly, reflections in lines in C extend to reflections in 
the planes through them orthogonal to C. The isometry of 
H 3 corresponding to a linear transformation is a product 
of these extended inversions and reflections. One checks 
that since there are an even number, the upper half-space 

is preserved. It is an exercise to check that the metric is 
preserved. 

Fenchel [5] and Greenberg [18], in the early 1960s, be- 
gan to use techniques of 3-dimensional hyperbolic geom- 
etry to study groups representing Riemann surfaces. The 
idea was that because the group was discrete, one could 
look at the quotient 3-manifold, HB/G. It is a manifold 
with boundary, and the Riemann surfaces represented 
by the group are the boundary components. 

Let us see how this works in our third example, the 
group G = (g, h). The action of G on U can be extended 
to H 3 and to the lower half-plane L. Reflect the circles 
Ci and the lines Ii, i = 1, 2, in the real axis. These re- 
flections determine a region/~ in L, and L/G is again a 
punctured toms. Note that the surfaces U/G and L/G 
are antiholomorphically equivalent, for the maps on lo- 
cal neighborhoods are given by complex conjugation. 
The hemispheres over the circles Ci and the vertical half- 
planes over the lines Ii, i = 1, 2, bound a region R C H3; 
and g identifies the hemisphere over C1 with the plane 
over h ,  while h identifies the plane over/2 with the hemi- 
sphere over C2. The polyhedron R is a tile for the group G 
acting on H 3. The quotient (U U L U H 3)/G is a 3-manifold 
whose boundary consists of a pair of antiholomorphi- 
cally equivalent punctured tori. As we shall see, not all 
groups of linear fractional transformations acting on H 3 
act so symmetrically with respect to the real line, nor are 
the relations among their boundary surfaces so easy to 
determine. 

In the early 1970s, Marden [19] studied the relation- 
ship between groups of linear fractional transformations 
acting on H 3 and the topological properties of their quo- 
tient 3-manifolds, and in the late 1970s, Thurston [10] 
introduced revolutionary new techniques involving this 
hyperbolic geometry to attack classification problems for 
both Riemann surfaces and 3-manifolds. 

Convex Hulls and Pleated Surfaces Let us return to 
the family of groups {G~} for # E .Ad. For each group we 
have an open plane domain f~(Ga) invariant under Ga. 
The boundary, A(Ga) = 0f~(Ga), is a closed Ga-invariant 
set called the limit set of Ga. Let us turn our attention 
to it. 

One of Thurston's ideas was to consider the (hyper- 
bolic) convex hull C in H 3 of the set A(G~) and to study its 
boundary. This boundary is also G~-invariant, and one 
can prove that there is a G~-invariant component of this 
boundary, OC(G~), that is homeomorphic to f~(G~). The 
quotient, OC(G~)/G~, is, therefore, again a punctured 
toms. 

Thurston saw that OC had certain geometric properties 
that were very useful. It is a surface in H 3 made of pieces 
of hyperbolic plane joined along geodesic curves that, 
because of the convexity, can only meet on (~ = OH 3 in 
points of A(G~). The quotient surface S~ = OC(G~)/G~ 
is, therefore, also made up of pieces of hyperbolic plane 
joined along nonintersecting geodesics. Thurston called 
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such surfaces pleated, and the geodesics along which they 
are pleated, the pleating locus. 

Before we see how to extract information about the 
groups G~ from these ideas, let us see why they don't 
give any new information about the groups of Example 
3. There, the set 12 is always U and the limit set A is the real 
line. The convex hull of A is the vertical plane above A and 
so is equal to its boundary. There is only one hyperbolic 
plane and so no geodesic where two planes are joined; 
the pleating locus is, therefore, empty. 

Figure 4 is a picture of A(G0.0533+l.9i). This limit set 
is very intricate and its convex hull C has interior. To 
get a sense of what C looks like, note that by definition 
the hyperbolic geodesic joining any pair of points in A 
belongs to C, as does the hyperbolic triangle spanned by 
any three points in A. If four or more points of A lie in 
a circle C, the convex polygon they span is in a plane 
and in C. If, moreover, there are no points of A inside C, 
then the hyperbolic plane spanned by C intersects OC in 
a hyperbolic convex polygon. 

If we look carefully at Figure 3, 4, or 5, we see a pat- 
tern of closed circles and other overlapping circles with 
missing boundary arcs. The interiors of these circles con- 
tain no points in A. The boundary of the convex hull in 
H 3 consists of the intersection of the hyperbolic planes 
spanned by all the circles that we see. The full planes 
spanned by the closed circles belong to cqC. Over the 
other circles, the piece of the plane belonging to c9C is 
an infinite-sided convex polygon. When a pair of circles 
intersect, the planes spanning them intersect in a circu- 
lar arc that is a boundary curve of the polygon on each 
plane. It is a geodesic with its endpoints in the limit set; 
c9C is "bent" along this geodesic at an angle equal to the 
angle between the circles. The set of geodesics formed by 
the intersecting planes is the pleating locus. 

In computer pictures for various groups Gg E .&l 
made by Wright and Redfern, and particularly for those 
groups near the boundary, one could see patterns of cir- 
cles in the limit sets A(Gg), and we thought that there 
should be meaning to the patterns. For example, note that 
the patterns in Figures 3, 4, and 5 are decidedly different. 
What Series and I realized is that whenever a pattern of 
circles appears in A(G~), the quotient S~ is pleated along 
some simple closed curve and the curve is determined 
by the pattern! 

The fundamental group of the punctured toms, zrl (S), 
is also generated by a pair of simple closed geodesics 
intersecting once, but it is a free group not an abelian 
group. We know from Maskit's theory that for # E .At, 
the domain f~(Ga) is simply connected; it follows that 
G~ is isomorphic to 7rl (S). The "forgetful map" from S 
into the unpunctured toms, defined by forgetting the 
puncture, shows that each simple closed curve on S is 
also a simple closed curve on the unpunctured toms. It 
induces a projection on fundamental groups 

zrl (S) ~ Z + Z, 

from which we see that there are many elements in 7rl (S) 
that project to (pa + qfl). 

It is an interesting fact, proved by Series [20], that there 
is a unique simple closed geodesic 7v/q in the inverse 
image of (pa + qfl). Moreover, there is a unique conju- 
gacy class in G~ containing a shortest cyclically reduced 
representative for that geodesic. Hence, there is a canon- 
ical word Wv/q in Gg associated to each simple closed 
geodesic on the punctured toms. These words may be 
enumerated recursively using continued fractions. 

Pleating Curves and Moduli Given a linear fractional 
transformation, (az + b)/(cz + d), we may assume with- 
out loss of generality that ad - bc -- 1. The trace of the 
transformation, a + d, is then well defined, and conjugate 
transformations have the same trace. 

If we look at words in Gg, they are compositions of the 
maps g and h a, so their coefficients and their traces are 
polynomials in # with integral coefficients. 

The crucial observation [13] that relates the com- 
plex parameter # to the geometry of the hyperbolic 3- 
manifold H3/Ga is 

THEOREM 1. Whenever the quotient of the convex hull 
boundary Sa is pleated along the curve %/q, the trace polyno- 
mial Tr Wp / q ( # ) is real-valued. 

We also prove 

THEOREM 2. For any pair of relatively prime integers, 
(p, q), there is some # E .M such that S~ is pleated along 
7p/q" 

These theorems together give this picture of the pa- 
rameter space: 

Enumerating Simple Closed Curves on the Punctured 
Torus Consider the unpunctured torus with simple 
closed geodesics a and fl intersecting once. We may as- 
sume a is the projection of the line in C joining 0 and 1, 
and fl is the projection of the line joining 0 and T. Every 
simple closed geodesic on the torus then has the form 
pa + qfl and is the projection of a line joining 0 to p + q~- 
for relatively prime integers p and q. For each such pair, 
(p, q), we have a family of parallel lines projecting onto 
a family of parallel geodesics. 

THEOREM 3. The space A4 is foliated by real analytic curves 
7Jr, r E R, a dense subfamily of which is defined by properly 
chosen branches of the curves defined by 

.~ Tr Wp/q(#) = 0 

(the "vertical" curves in Fig. 6). These curves meet the bound- 
ary of .M at points where the torus has degenerated because 
the curve %/q has been pinched. 

The final piece of the relationship between the complex 
and geometric parameters is given by 
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THEOREM 4. There is a family, {lr(#)}~cR, of analytic 
maps from Ad to C that vary continuously with r. The value 
l~ (#), for r rational and # E 7~, equals the appropriately nor- 
malized length of the pleating locus. The pairs ( r, l~ (#)) define 
a new set of coordinates for 34. 

The level curves lr(#) = const are the "horizontal" 
curves in Figure 6. 

We have generalized these techniques to twice- 
punctured  tori and expect them to generalize to arbitrary 
surfaces [15, 17]. 
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