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The operation of “mating” two suitable complex polynomial
maps f1 and f2 constructs a new dynamical system by care-
fully pasting together the boundaries of their filled Julia sets so
as to obtain a copy of the Riemann sphere, together with a ra-
tional map f1 ⊥⊥ f2 from this sphere to itself. This construction
is particularly hard to visualize when the filled Julia sets K(fi)

are dendrites, with no interior. This note will work out an ex-
plicit example of this type, with effectively computable maps
from K(f1) and K(f2) onto the Riemann sphere.

1. INTRODUCTION

The operation of mating , first described by [Douady 83]
has been shown to exist for suitable pairs of quadratic
polynomial maps by [Tan Lei 90], [Rees 92], and
[Shishikura 00]. (See Section 2.) In an attempt to under-
stand this construction, this paper concentrates on one
very special example. We consider the (filled) Julia set
K = K(f) which is illustrated in Figure 1 and described
more precisely in Section 2. The mating f ⊥⊥ f exists
according to Shishikura. This means that we can form a
full Riemann sphere by pasting two copies of K = ∂K

together, in such a way that each copy of K covers the
full Riemann sphere, while the map f on each copy cor-
responds to a smooth quadratic rational map from this
sphere to itself. We will give a computationally effective
description for this particular example, showing just how
such a dendrite can map onto a sphere. The construction
is closely related to a well known measure-preserving area
filling curve, with associated fractal self-similar tiling,1

which is known as the “Heighway Dragon.” The resulting
rational map F ∼= f ⊥⊥ f , where F (z) = (i/2) (z+z−1),
can also be described as a Lattès mapping , that is as the
quotient of a rigid expanding map on a torus. (This is

1See Section 4.2 and Figures 7 and 16. This construction was
discovered by John Heighway, a physicist at NASA, circa 1966.
Compare [Davis and Knuth 65], [Edgar 90], and even [Crichton 90].
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FIGURE 1. The Julia set K = ∂K for f(z) = z2 + c ,
where c ∼= − 0.228 + 1.115 i .

not a new remark: it has been known to experts for many
years.) It is this juxtaposition of these two quite different
constructions which makes the explicit description possi-
ble. Section 3 will describe this example and also provide
an introduction to more general Lattès maps. Section 4
will characterize and compute the associated semiconju-
gacy from the angle doubling map on the circle to this
rational map F . Section 5 shows that this semiconjugacy
carries one-dimensional measure on the circle to two-
dimensional measure on the sphere, Section 6 discusses
associated fractal tilings, and Section 7 asks further ques-
tions. There are four appendices. The second describes
further examples, supplied by Shishikura, showing that
every quadratic Lattès mapping can be given the struc-
ture of a mating in one or more ways, and the last de-
scribes some exotic topological conjugacies between filled
Julia sets, suggested by Douady.

2. THE MATING CONSTRUCTION

2.1 Some Standard Definitions

(See, for example, [Milnor 99], as well as [Milnor 00]
or [Goldberg and Milnor 93].) Let f : C → C be a
polynomial map of degree d ≥ 2. The filled Julia set
K = K(f) ⊂ C can be defined as the union of all
bounded orbits. Its topological boundary ∂K is equal
to the Julia set of f . If K is connected, then its com-
plement is conformally isomorphic to the complement of
the closed unit disk, and this conformal isomorphism

ϕ : C � D → C � K

can be chosen so as to conjugate the dth power map on
C � D to the map f on C � K. That is,

ϕ(wd) = f
(
ϕ(w)

)
. (2–1)

If K is also locally connected, then according to
Carathéodory ϕ extends continuously over the bound-
ary, to yield a map from the unit circle ∂D onto the Ju-
lia set ∂K, still satisfying (2–1). It will be convenient to
parametrize the unit circle by the real numbers modulo
one. The resulting map

γ : R/Z → ∂K(f) ,

defined by

γ(t) = γf (t) = lim
r→1

ϕ(re2πit) ,

will be called the Carathéodory semiconjugacy from the
circle of reals modulo one to the Julia set. With this
notation, the semiconjugacy identity (2–1) in the degree
d case takes the form

γ(d · t) = f
(
γ(t)

)
. (2–2)

FIGURE 2. Julia set K = ∂K for the map f(z) = z2 + c
of Figure 1, showing selected external rays. Here c is
chosen in the upper half-plane so that f(c) + f◦2(c) = 0
or, equivalently, so that c3 + 2c2 + 2c + 2 = 0. The
landing point of the zero ray is called the β fixed point.
In this example, the 1/4-ray lands at the critical value c ,
and its image, the 1/2-ray, lands at −β , while the other
fixed point α is the landing point of the 1/7-, 2/7-, and
4/7-rays.
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Equivalently, if we define the external ray Rt = Rt(K) of
angle t to be the curve consisting of all points ϕ(re2πit) ∈
C � K with 1 < r < ∞ , then we can describe γ(t) as
the landing point of this ray, that is its limiting value as
r → 1. As an example, Figure 2 shows several examples
of external rays for the Julia set of Figure 1.

2.2 Topological Mating

Now suppose that f1 and f2 are quadratic polynomi-
als, for example of the form fj(z) = z2 + cj . If both
filled Julia sets Kj = K(fj) are locally connected, then
the topological-mating f1 ⊥⊥ f2 is a continuous map
from an associated compact space K1 ⊥⊥ K2 onto it-
self, constructed as follows. Let γj : R/Z → ∂Kj be
the Carathéodory semiconjugacy from the circle of reals
modulo one onto the Julia set of fj . Form the disjoint
union of K1 and K2 , and let K1 ⊥⊥ K2 be the quotient
space in which the image γ1(t) ∈ ∂K1 is identified with
γ2(−t) ∈ ∂K2 for every t ∈ R/Z . (More precisely, let ∼
be the smallest equivalence relation on the disjoint union
of K1 and K2 such that

γ1(t) ∼ γ2(−t) for every t ∈ R/Z ,

and let K1 ⊥⊥ K2 be the quotient topological space in
which each equivalence class is identified to a point.) Us-
ing the semiconjugacy identity γj(2t) = fj

(
γj(t)

)
, we

see that the map f1 on K1 and the map f2 on K2 fit
together to yield the required continuous map f1 ⊥⊥ f2

from this quotient space onto itself. In particular, there
are canonical semiconjugacies K1 → K1 ⊥⊥ K2 and
K2 → K1 ⊥⊥ K2 from f1 and f2 to f1 ⊥⊥ f2 .

In this generality, there is no reason to expect this
space K1 ⊥⊥ K2 to be particularly well behaved. None-
the-less, in many cases it turns out that K1 ⊥⊥ K2 is
a topological two-sphere and, furthermore, that we can
give this sphere a conformal structure so that f1 ⊥⊥ f2

becomes a holomorphic map, rational of degree two.
Here is an alternative description of K1 ⊥⊥ K2 which

provides some additional information. Let S2 be the
unit sphere in C×R . Let us identify the dynamic plane
for f1 with the northern hemisphere H+ of S2 and the
dynamic plane for f2 with the southern hemisphere H− ,
under the gnomonic2 projections

ν1 : C → H+ and ν2 : C → H− ,

2The gnomonic projection from a plane to the unit sphere has
the characteristic property, useful in navigation, of carrying straight
lines in the plane to great circle arcs in the sphere. In the case of
a plane not passing through the origin in R3 , it can be defined by
the simple formula ν(x) = x/‖x‖ .

FIGURE 3. The images of the external rays Rt(K1) and
R−t(K2) come together at a common point (e2πit, 0) on
the equator S1. By definition, these two rays collapse to
a single point γ̂(t) in the quotient space S2/

ray∼ , which
is homeomorphic to K1 ⊥⊥ K2 .

where
ν1(z) = (z, 1)/

√
|z|2 + 1 and

ν2(z) = (z,−1)/
√

|z|2 + 1 .

Note that ν2 can be described as the composition of ν1

with the 180◦ rotation about the x -axis

(x + iy , h) �→ (x − iy , −h) . (2–3)

If we assume that the polynomial f1 has leading coef-
ficient +1, then it is not hard to check that the im-
age of the external ray Rt(K1) in H+ has the point
(e2πit, 0) on the equator as a limit point. Similarly, if
f2 is also monic, then ν2(R−t(K2)) limits at this same
point (e2πit, 0) on the equator. It follows that the map
ν1 ◦ f1 ◦ ν−1

1 on the northern hemisphere and the map
ν2◦f2◦ν−1

2 on the southern hemisphere tend to the same
limiting values (z, 0) �→ (z2, 0) as we approach the equa-
tor. In fact, these two maps fit together so as to yield a
smooth map from the entire two-sphere to itself (see Fig-
ure 3.) Let us use the notation f1 
 f2 for this induced
map on S2 .

Define the ray equivalence relation to be the small-
est equivalence relation

ray∼ on S2 such that the clo-
sure of the image ν1(Rt(K1)), as well as the closure of
ν2(R−t(K2)), lies in a single equivalence class. Then it
is easy to see that the quotient space S2/

ray∼ is canon-
ically homeomorphic to the quotient space K1 ⊥⊥ K2

described above and that the map f1 
 f2 on S2 cor-
responds to the map f1 ⊥⊥ f2 on this quotient space.
However, this new description has several advantages. In
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⊥⊥ =

FIGURE 4. An example of mating, with f1 = f2 . (Compare [Haissinsky and Tan Lei 04].) The Julia set for f(z) = z2+λz ,
with λ = e2πi/3 (λ3 = 1), is shown above, and the Julia set for the mating F∼=f ⊥⊥ f is shown below. Here,
F (w) = w(w + λ)/(λw + 1). This figure shows five projections as the sphere rotates to the left. The image of one of the
two filled Julia sets has been shaded.

particular, it allows us to make use of the following clas-
sical result. (Compare [Daverman 86].)

Theorem 2.1. (R. L. Moore.) Let � be any equivalence
relation on the sphere S2 which is topologically closed.
(That is, we assume that the set of all pairs (x, y) with
x � y forms a closed subset of S2 × S2 .) Assume also
that each equivalence class is connected, but is not the
entire sphere. Then the quotient space S2/� is itself
homeomorphic to S2 if and only if no equivalence class
separates the sphere into two or more connected compo-
nents.

(Compare [Moore 25].) Further, under the conditions
of Moore’s theorem, when S2/� is a topological sphere,
it can be shown that the quotient map S2 → S2/� in-
duces isomorphisms of homology and, hence, imposes a
preferred orientation on this quotient sphere. We can
now formulate the following, with K1 ⊥⊥ K2 defined as
above.

2.3 Geometric Mating

A quadratic rational map F : Ĉ → Ĉ is called a geomet-
ric mating of the quadratic polynomials f1 and f2 , or
briefly a mating , if there exists a topological conjugacy
h from the map f1 ⊥⊥ f2 on the space K1 ⊥⊥ K2 to
the rational map F on the Riemann sphere Ĉ , where
h : K1 ⊥⊥ K2 → Ĉ is an orientation preserving home-

omorphism, holomorphic on the interior (if any) of K1

and K2 . Thus, h ◦ (f1 ⊥⊥ f2) = F ◦ h . We will often
write briefly F ∼= f1 ⊥⊥ f2 .

In all quadratic cases known to the author, if this ra-
tional map F exists at all, then it is unique up to conju-
gation by a Möbius automorphism, so that we can speak
of the unique geometric mating of f1 and f2 . However,
this uniqueness definitely fails in degree 4. (Compare
Appendix B.5).) The uniqueness question for matings is
part of a larger rigidity question: if two rational maps
are topologically conjugate under an orientation preserv-
ing homeomorphism which is holomorphic on the Fatou
set, when does it follow that they are holomorphically
conjugate? (Compare [Lyubich 95, Section 5].)

Here is a trivial example. Suppose that f2(z) = z2 , so
that K2 is the closed unit disk. Pasting the boundaries
of K1 and K2 together, as described above, we simply
obtain the Riemann sphere with the original polynomial
map f1 . In other words, any f1 with locally connected
Julia set can be mated with the standard map z �→ z2

in such a way that the resulting rational map

f1 ⊥⊥ (z �→ z2)

is holomorphically conjugate to f1 . For nontrivial exam-
ples, see 2.6 as well as [Wittner 88] and [Luo 95]. Note
that there exist shared matings, where a given rational
map can be described as a geometric mating in essentially
distinct ways. (See [Wittner 88] as well as Appendix B.5.)
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In order to describe some elementary properties of this
construction, we will need the following.

2.4 The Canonical Involution

To every two-fold covering or branched covering g : M →
M ′ there is associated the canonical involution τ = τg :
M → M, which interchanges the two preimages of any
point of M ′ , so that

g−1
(
g(x)

)
= {x , τ(x)}

for every x ∈ M . Here, M and M ′ could be arbitrary
manifolds, but for us g will always be a self-covering of
a real or complex one-dimnsional manifold, and the fixed
points (if any) of τ will be precisely the critical points of
g .

Consider the following examples. To any quadratic
polynomial in the form z �→ z2 + c , we associate the
involution τ(z) = −z that carries the Julia set onto it-
self and fixes the critical point. More generally, if F is
any quadratic rational map, then τ = τF is the unique
Möbius involution which fixes the two critical points. For
example, if F (z) = a(z + z−1) + b , then τ(z) = 1/z . We
will also make use of the angle doubling map g(t) = 2t
on the real manifold R/Z , with τg(t) = t + 1/2.

Given two such (possibly branched) coverings g :
M → M and f : N → N , a semiconjugacy h : M → N ,

with h◦g = f ◦h , is called τ -equivariant if h◦τg = τf ◦h .
As an example, if K is the filled Julia set of f(z) = z2+c ,
it is easy to check that the Carathéodory semiconjugacy
γ : R/Z → ∂K is always τ -equivariant. In fact, the
involution τ for f maps the entire ray Rt(K) onto
Rτ(t)(K) = Rt+1/2(K). As another example, a linear
map h(t) = kt from R/Z to itself is τ -equivariant if and
only if its degree k is odd.

Recall that the β fixed point of a map f(z) = z2 + c

with connected Julia set is defined to be the landing point
γ(0) of the ray R0(K).

2.5 Properties of Geometric Matings

Lemma 2.2. (Properties of Geometric Matings.) If F ∼=
f1 ⊥⊥ f2 is a geometric mating, then:

• The β fixed points of f1 and f2 are glued together
in K1 ⊥⊥ K2 , but no other point in K1 or K2 is
identified with these β fixed points.

• Similarly, the points τ(β) = −β in K1 and K2 are
glued together, but are not identified with any other
point.

• The critical points of f1 and f2 correspond to the
two critical points of F. In particular, these two
points always remain distinct under the mating.

• Furthermore, the two associated semiconjugacies
K1 → K1 ⊥⊥ K2 and K2 → K1 ⊥⊥ K2 are τ -
equivariant.

Proof: The first statement follows from the general the-
ory of external rays landing at a repelling periodic point.
Such rays are always periodic with a common period.
But, the zero-ray for a quadratic map is the only ray
of period one, so no other ray can land at the same
point β . Applying the involution τ which carries Rt(K)
to Rt+1/2(K), we obtain a corresponding statement for
τ(β).

If we assume that f1 and f2 are polynomials of the
form fj(z) = z2 + cj with critical point at the origin,
then the corresponding critical points of f1 
 f2 will
be at the north and south poles of S2 . In this case,
the canonical involution associated with f1 
 f2 is the
180◦ rotation τ(z, h) = (−z, h). Clearly, this rotation
is compatible with the ray equivalence relation on S2

and, hence, gives rise to a well-defined continuous invo-
lution τ ′ of the quotient space K1 ⊥⊥ K2 = S2/

ray∼ , with
(f1 ⊥⊥ f2) ◦ τ ′ = f1 ⊥⊥ f2 .

First, let us show that the north and south poles be-
long to different ray equivalence classes and, hence, corre-
spond to distinct points of K1 ⊥⊥ K2 . By construction,
two points of ν1(K1)∪ν2(K2) map to a common point of
K1 ⊥⊥ K2 if and only if there is a path made up out of
finitely many external rays which leads from one to the
other. If there was such a path leading from the north
pole to the south pole, then its image under rotation
would be another such path, and together these paths
would disconnect the sphere. Since we have assumed
that the mating exists, it follows by Moore’s criterion
that this is impossible.

To complete the proof, showing that τ ′ is indeed the
canonical involution associated with f1 ⊥⊥ f2 , we must
show that it has no fixed points other than the two criti-
cal points. In other words, we must show that the points
(z, h) and τ(z, h) = (−z, h) map to different points of
K1 ⊥⊥ K2 unless they both belong to the same ray
equivalence class as one of the poles. But, if there was a
ray path from (z, h) to (−z, h) which misses both poles,
then, together with its image under rotation, this path
would disconnect the sphere. Again, this is impossible.
It follows that the projection from S2 to S2/

ray∼ is τ -
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FIGURE 5. Picture of the Mandelbrot set boundary, together with selected external rays. Labels of the form p/q along
the cardioid indicate points c(λ) such that f(z) = z2 + c(λ) has a fixed point of multiplier λ = e2πip/q .

equivariant and that the poles of S2 map to the unique
fixed points of the canonical involution τF and, hence,
to the critical points of F .

2.6 Existence and Uniqueness Results: Tan Lei, Rees,
and Shishikura

Mary Rees and Tan Lei studied matings under the hy-
pothesis that both f1(z) = z2 + c1 and f2(z) = z2 + c2

have periodic critical orbit. They showed that the map
f1
f2 , as described above, is “Thurston equivalent” (see
[Douady and Hubbard 93]) to some rational map F if and
only if:

Condition NC: The points c1 and c2 do not
belong to complex conjugate limbs of the Man-
delbrot set.

When Condition NC is satisfied, F is described as a
“formal mating” of f1 and f2 . To explain this condi-
tion, note that for each complex number λ there is one
and only one polynomial f(z) = z2 + c having a fixed
point z = f(z) with multiplier f ′(z) = λ . In fact, since
z2 + c = z and λ = 2z , we can solve for c = c(λ) =

λ/2− (λ/2)2 . As λ varies over the unit circle, the corre-
sponding parameter c(λ) varies over the cardioid , which
is prominently visible in any picture of the Mandelbrot
set. Now, for each root of unity λ = e2πip/q 
= 1, it
turns out that there is a connected component M(p/q)
of M �(cardioid) which lies outside of the cardioid but is
attached to it at the point c(λ). The closure M(p/q) is
called the (p/q)-limb of M. The characteristic property
for polynomials f(z) = z2+c with c in this (p/q)-limb is
that there are q external rays Rtj

(K) landing at a com-
mon fixed point of f , with angles 0 < t1 < · · · < tq < 1,
such that f(Rtj

) = Rtk
where k ≡ j+p (mod q). These

angles tj for j = 1, 2, . . . , q are uniquely determined by
p/q . This common landing point is called the α -fixed
point of f . As an example, if c belongs to the (1/3)-
limb M(1/3), then the three external rays Rt(K) with
angles t = 1/7 , 2/7, and 4/7 all land at the α -fixed
point of K.

Now suppose that c1 belongs to the p/q -limb
M(p/q) while c2 belongs to the complex conjugate limb
M(−p/q) = M

(
(q − p)/q

)
. Then, there are at least

two distinct rays Rt(K1) and Rs(K1) landing at the
α -fixed point of K1 = K(z2 + c1). Similarly, the rays
R−t(K2) and R−s(K2) land at the α -fixed point of
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K2 = K(z2 + c2). In the sphere S2 of Figure 3, these
four rays fit together to form a closed loop which sepa-
rates the sphere. Hence, Moore’s criterion is not satisfied.
The quotient space K1 ⊥⊥ K2 is not a topological sphere,
and the geometric mating certainly cannot exist.

Rees sharpened this result. Still assuming that f1 and
f2 have periodic critical orbit and do not belong to com-
plex conjugate limbs, she showed that the rational func-
tion constructed by Rees and Tan Lei really is a geometric
mating of f1 and f2 . Using quasi-conformal surgery, it is
not difficult to extend this result to arbitrary hyperbolic
polynomials z2 + c with connected Julia set.

Shishikura extended this work to the postcritically fi-
nite case. Still assuming that c1 and c2 do not belong to
complex conjugate limbs, he showed that the geometric
mating exists and is unique up to holomorphic conju-
gacy whenever both maps have eventually periodic criti-
cal orbits. (In this generality, we can no longer say that
f1
f2 is Thurston-equivalent to a rational map. In fact,
Thurston’s algorithm, applied to f1 
 f2 , may not con-
verge in the conventional sense, using the Teichmüller
topology on the space of embeddings of the postcritical
set into Ĉ , which are defined up to Möbius automor-
phisms of Ĉ . However, it still converges in a weaker
sense, where we allow suitably restricted mappings of
the postcritical set into Ĉ .) Thus, for postcritically finite
quadratic polynomials, the geometric mating exists if and
only if Condition NC is satisfied if and only if K1 ⊥⊥ K2

is a topological sphere. (However, [Shishikura and Tan
Lei 00] have described a cubic example where the geo-
metric mating does not exist, even though K1 ⊥⊥ K2 is
a topological sphere.)

2.7 When Does Mating Exist?

In order to describe a possible extension of this Tan Lei-
Rees-Shishikura work to more general polynomials, it is
convenient to define the t -limb for an irrational number
0 < t < 1 as the single point c(λ) with λ = e2πit . The
corresponding polynomial z2 + c(λ) has either a Siegel
disk or a Cremer point with multiplier λ ∈ ∂D . Note
that the geometric mating of z2 + c(λ) and z2 + c(λ)
cannot exist, since no quadratic rational map can have
distinct fixed points of multipliers λ and λ−1 . (For
the topological invariance of these rotation numbers, see
[Năıshul 82].)

If f1 and f2 are quadratic polynomial maps, not be-
longing to complex conjugate limbs of the Mandelbrot
set, and if their Julia sets are locally connected, does such
a geometric mating f1 ⊥⊥ f2 always exist? Is it unique

up to a Möbius automorphism of Ĉ? (It had earlier been
conjectured that such a mating operation not only exists,
but depends continuously on the maps f1 and f2 . See
for example [Milnor 93]. However, [Epstein 03] has shown
that this is false: In many cases, the mating operation
between two hyperbolic components of the Mandelbrot
set does not extend continuously to the boundary.)

Here is a family of examples which is not covered by
the known results. Suppose that f1 and f2 are polyno-
mials of the form fj(z) = z2 + ajz with |aj | = 1. In
this case, the condition that f1 and f2 do not belong
to conjugate limbs of the Mandelbrot set reduces to the
inequality a1 a2 
= 1. A candidate rational map is given
by the formula

F (w) = w
w − a1

a2 w − 1
,

with fixed points of multipliers a1 and a2 at zero and
infinity, respectively. If J(f1) and J(f2) are locally con-
nected,3 then it seems quite likely that F is indeed a
geometric mating of f1 and f2 . In fact, in the case of
Siegel disks of constant type, this has been shown by
[Yampolsky and Zakeri 01], while in the parabolic case
it follows from [Haissinsky and Tan Lei 03]. A parabolic
example, with a1 = a2 = e2πi/3 , is shown in Figure 4.
(For other special cases in which geometric matings exist,
see [Luo 95].)

2.8 The Brolin and Lyubich Measures

According to [Lyubich 83], for any rational map F : Ĉ →
Ĉ of degree d ≥ 2, there exists a unique F -invariant
probability measure on Ĉ which has maximal entropy,
equal to log d . In the special case of a polynomial map,
this measure m was first studied by [Brolin 65] and is
known as the Brolin measure; but, in the general case I
will call it the Lyubich measure. It can also be charac-
terized as the unique invariant probability measure, sup-
ported on the Julia set J(F ), with the following prop-
erty:

If X ⊂ Ĉ is a measurable set, such that F |X is
one-to-one, then

m(F (X)) = dm(X) . (2–4)

3To make sense of “mating” for Julia sets that are not locally
connected, one would need some different definition. (Two possible
suggestions for an alternative definition are given in [Milnor 93] and
[Milnor 94].)
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As an example, if U ⊂ Ĉ is a simply-connected open
set containing no critical values, then each of the d con-
nected components of f−1(U) qualifies and, hence, has
measure equal to m(U)/d .

We will need the following:

Lemma 2.3. (The Push-Forward.) Let F1 and F2 be
quadratic rational maps with Julia sets J1 and J2 , and
let m1 and m2 be their Lyubich measures. If ϕ : J1 →
J2 is a continuous semiconjugacy from J1 onto J2 , and
if ϕ also satisfies ϕ ◦ τ1 = τ2 ◦ ϕ where τ1 and τ2 are
the canonical involutions, then the push-forward ϕ∗m1

is equal to m2 .

Proof: If U is a simply connected open set which con-
tains no critical values of F2 , then each of the compo-
nents U ′ and U ′′ = τ2(U ′) of F−1

2 (U) maps bijectively
onto U . Since ϕ is onto and F1 has degree 2, it fol-
lows easily that both ϕ−1(U ′) and ϕ−1(U ′′) map bijec-
tively onto ϕ−1(U). Thus, ϕ∗m1(U ′) = m1(ϕ−1(U ′))
and ϕ∗m1(U ′′) are both equal to ϕ∗m1(U)/2. Similarly,
any measurable subset of U ′ maps under F2 to a set with
twice the measure with respect to ϕ∗m1 . We must also
check that every critical value p of F2 has measure zero.
But, if p were aperiodic with ϕ∗m1(p) > 0, then its iter-
ated preimages F−k

2 (p) would be infinitely many disjoint
sets with the same positive measure, which is impossible.
If p is periodic, then τ(p) is aperiodic, and again its
measure must be zero. These properties suffice to char-
acterize the measure m2 , so it follows that ϕ∗m1 = m2.

Remark 2.4. It seems possible that this statement re-
mains true without the condition of τ -equivariance and
for Julia sets of arbitrary degree. I do not know how to
resolve this question.

Here is an application of Lemma 2.3: to any geometric
mating of two quadratic polynomials there is associated
the following commutative diagram of topological semi-
conjugacies,

R/Z
(−1)·−→ R/Z

↓ γ1 ↓ γ2

J(f1) J(f2)
↘ ↙

J(f1 ⊥⊥ f2)

, (2–5)

using the angle doubling map on R/Z (which is topolog-
ically conjugate to z �→ z2 on its Julia set S1 ). Since

each map satisfies the conditions of Lemma 2.3, it follows
that the Lebesgue measure on R/Z pushes forward to the
Brolin measure on either J(f1) or J(f2) , which in turn
pushes forward to the Lyubich measure on J(f1 ⊥⊥ f2) .
This diagram of semiconjugacies will play a central role
in Section 5.

3. THE EXAMPLE, A LATTÈS MAPPING

We now concentrate on one very explicit example. Let
c = c1/4 be the landing point of the 1/4-ray R1/4(M) for
the Mandelbrot set (Figure 5), and let f(z) = f1/4(z) =
z2 + c . According to the Douady-Hubbard correspon-
dence between parameter plane and dynamic plane, it
follows that the critical value c = f(0) ∈ K(f) is equal
to the landing point γ(1/4) of the ray R1/4(K) in the
dynamic plane. Therefore, (by 2–2), the critical orbit for
f has the form

0 �→ γ(1/4) �→ γ(1/2) �→ γ(0) ,

or in other words

0 �→ c �→ −β �→ β ,

where the fixed point β is the landing point of the zero-
ray for K(f) and τ(β) = −β is the landing point of the
(1/2)-ray. (Compare Section 2.4 and Figures 1 and, 2.)
From the resulting polynomial equation f◦2(c) + f(c) =
0, one sees easily that c = −0.22815549 + 1.115142508 i

is the unique root of the equation c3 + 2c2 + 2c + 2 = 0
in the upper half plane.

According to Shishikura’s Theorem, as described in
2.6, the geometric self-mating

F ∼= f1/4 ⊥⊥ f1/4

exists and is unique up to holomorphic conjugacy. To
fix our ideas, suppose that we choose a representative
of this holomorphic conjugacy class so that the critical
points are at ±1 and the image β̂ of the β -fixed points
is at infinity. Then, we will prove the following.

Lemma 3.1. The resulting rational function F is given by

F (z) = ± i

2
(z + z−1)

for some choice of sign. The critical orbits of this map-
ping F have the form

±1 �→ ± i �→ 0 �→ ∞ . (3–1)
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Proof: For any quadratic rational map F , normalized so
that the two critical points are at ±1, with one of the
three fixed points at infinity, it is not hard to check that
F has the form

F (z) = a(z + z−1) + b (3–2)

for some a 
= 0 and b . (Compare [Milnor 93].) In fact,
the canonical involution for F must be a Möbius involu-
tion which fixes the two critical points and, hence, must
be given by τ(z) = 1/z . Since infinity is a fixed point, the
point τ(∞) = 0 maps to infinity, and it follows that F

must have the form F (z) = (az2+bz+c)/z = az+b+c/z .
Setting F ′(±1) = 0, it then follows that a = c , as re-
quired.

Now, suppose that F commutes with some non-
identity Möbius automorphism σ : Ĉ → Ĉ which fixes
the point at infinity. Since σ cannot fix three distinct
points, it must interchange the two critical points and,
hence, must be the involution σ(z) = −z . Hence, F (z)
must be equal to −F (−z) = a(z + z−1) − b . Thus,
the coefficient b is equal to zero if and only if F com-
mutes with some Möbius automorphism which keeps in-
finity fixed and which necessarily interchanges the two
critical points.

In particular, an arbitrary geometric mating F ∼= f1 ⊥
⊥ f2 can be put in the normal form (3–2). In the special
case of a self-mating, so that f1 = f2 , if we assume that
this mating is uniquely defined, then there evidently ex-
ists an automorphism fixing the fixed point β̂ = ∞ and
interchanging the two critical points. It then follows that
F (z) = a(z + z−1) with b = 0. In our particular case,
the equation

F (F (±1)) = F (±2a) = 0

must also be satisfied. The equation F (z) = a(z+z−1) =
0 has solutions z = ±i , so it follows that 2a = ±i , as
required.

The distinction between the maps F (z) = (i/2)(z +
z−1) and F (z) = (−i/2)(z + z−1) is much more subtle.
For the moment, let us simply state the following without
proof. Recall that ct is the landing point of the ray
Rt(M) in the Mandelbrot set.

Assertion 3.2. The geometric mating of z �→ z2 + c1/4

with itself is given by F (z) = (i/2)(z + z−1), while the
geometric mating of the complex conjugate map z �→
z2 + c3/4 with itself is given by F (z) = (−i/2)(z + z−1).

See Appendix B.7 (An intuitive proof that this is the
right choice of sign can be derived by noting that Figures
12 and 13 have compatible orientations.)

This map z �→ (i/2) (z + z−1) is one of a collection of
examples which can be thoroughly understood using the
following constructions.

3.1 From Torus to Sphere

Following [Lattès 18], let us start with a lattice Λ ⊂ C ,
that is a free additive subgroup generated by two ele-
ments which are linearly independent over R and form
the quotient torus T = C/Λ. Now, form a further iden-
tification space by identifying each w ∈ T with −w , or
equivalently form the space of orbits for the group of
transformations

w �→ ± w + λ

of C , where λ ranges over the lattice Λ. The resulting
quotient space, which we denote by T/± , is a Riemann
surface of genus zero and, hence, is conformally isomor-
phic to the Riemann sphere. To see this, note that the in-
volution w �→ −w of T has just four fixed points, namely
the four points wj modulo Λ such that

wj ≡ − wj (mod Λ) if and only if

2wj ∈ Λ if and only if

wj ∈ 1
2
Λ .

These four fixed points in T are the critical points of
the projection map T → T/± . (As local uniformizing
parameter for the quotient T/± in the neighborhood of
the image of wj , we can use the expression (w − wj)2 ,
where w ranges over a neighborhood of wj in C .) Since
T → T/± is a map of degree two with four critical
points, the Riemann-Hurwitz formula asserts that the
Euler characteristic χ(T) = 0 can be computed from the
Euler characteristic of the quotient by the formula

χ(T) = 2χ(T/±) − 4 .

(This can be proved by triangulating the quotient with
the four critical values as vertices and by noting that each
simplex other than the four critical values is covered by
exactly two simplexes in T .) Thus, χ(T/±) = 2, as
required.

In fact, one specific isomorphism T/± → Ĉ is induced
by the Weierstrass ℘-function, which is associated with
the lattice Λ. This is a holomorphic mapping ℘ : C → Ĉ

which satisfies

℘(w) = ℘(w′) if and only if w′ ≡ ± w (mod Λ) .



64 Experimental Mathematics, Vol. 13 (2004), No. 1

Furthermore, ℘ is an even function, ℘(w) = ℘(−w),
with ℘(0) = ∞ . See Appendix A for details.

3.2 Lattès Mappings

Let η be any nonzero complex number with the property
that η Λ ⊂ Λ, and let κ be a complex constant. Then,
we can define a linear map L : T → T from the torus
T = C/Λ to itself by the formula

L(w) ≡ η w + κ (mod Λ) .

This map has degree d = |η|2 , since it multiplies areas
by the factor |η|2 . Note that every period p point w ≡
L◦p(w) has multiplier (L◦p)′ = ηp . If |η| > 1, then these
periodic points are repelling and it is easy to check that
they are everywhere dense; hence, the Julia set J(L) is
equal to the entire torus.

Now suppose that 2κ ∈ Λ, so that L(−w) ≡
−L(w) (mod Λ). Then L induces a holomorphic map
from T/± ∼= Ĉ to itself, also of degree d = |η|2 . More
explicitly, we can define F = FL to be the rational map
F = ℘ ◦ L ◦ ℘−1 : Ĉ → Ĉ , so that

F : ℘(w) �→ ℘(L(w)) .

In other words, the diagram

T
L−→ T

℘ ↓ ℘ ↓
Ĉ

F−→ Ĉ

(3–3)

is commutative. If the degree |η|2 is two or more, then
the resulting F , or any map holomorphically conjugate
to it, is called a Lattès map.

Remark 3.3. It is easy to check that the Lyubich mea-
sure for F (compare Section 2.8) is just the push-forward
under ℘ of the normalized Lebesgue measure on the
torus T . In particular, it follows that this Lyubich
measure has a density function ρ , so that m(S) =∫ ∫

S
ρ(x + iy) dx dy , where ρ is smooth except at the

four critical values of ℘ . (Compare Appendix A.4)

We are primarily interested in one particular degree
two example. However, it is almost as easy to describe
the general case. As the simplest example of this Lattès
construction we can take L(w) = 2w , with η = 2, so
that the induced mapping on the Riemann sphere has
degree 22 = 4. In this case there is no restriction at all
on the lattice Λ. Thus, as Λ varies, we obtain a one
complex parameter family of essentially distinct maps of

degree four, all with the entire Riemann sphere as their
Julia set.

We will first prove the following. By a simple critical
point of a rational map F we mean a point where the
local degree of F is equal to two. (Thus, a point ω 
= ∞
is a simple critical point if and only if F ′(ω) = 0 but
F ′′(ω) 
= 0.) By a postcritical point for F we mean any
F ◦k(ω) where ω is a critical point and k ≥ 1.

Lemma 3.4. Let V = ℘( 1
2Λ) be the set of critical values

for the holomorphic map ℘ : T → Ĉ , and let F = ℘ ◦L ◦
℘−1 with L as in 3.2 Then F (V ) ⊂ V . Furthermore,
V is equal to the set of all postcritical points of F , while
F−1(V ) � V = ℘

(
1
2η Λ

)
� ℘

(
1
2Λ

)
is the set of all critical

points of F . These critical points are all simple.

Proof: This follows easily by inspecting the diagram
(3–3), and noting that the local degree function satisfies

deg(L , w) · deg(℘ , L(w))
= deg(℘ ◦ L , w)
= deg(F ◦ ℘ , w)
= deg(℘ , w) · deg(F , ℘(w)) ,

where the local degree of L is always one, and the local
degree of ℘ is two at its critical points.

Remark 3.5. In fact, we can sharpen this statement into
a complete characterization of Lattès maps as follows:

A rational function is a Lattès map if and only
every critical point is simple and there are ex-
actly four postcritical points, none of which is
also critical.

The proof will be given in Appendix B.

For most rational maps, it is difficult to see any struc-
ture in the collection of multipliers of the various periodic
orbits. However, in the case of a Lattès map there is a
very simple description.

Lemma 3.6. If F is a Lattès map of the form ℘◦L◦℘−1 ,
with L(w) = ηw + κ , then the multiplier for a periodic
orbit z = F ◦p(z) is equal to η2p whenever this orbit is
contained in the postcritical set V of F and is equal to
±ηp otherwise.

(We cannot distinguish between +η and −η , since the
linear maps L and −L give rise to the same Lattès map.)
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Proof: Recall that ℘(w1) = ℘(w2) if and only if w2 ≡
±w1 (mod Λ). Therefore, for any λ0 ∈ Λ, differentiating
the identity ℘(w) = ℘(±w + λ0) we see that ℘′(w1) =
±℘′(w2) whenever ℘(w1) = ℘(w2). Now, if z = ℘(w1)
has period p and is not in V , so that ℘′(w1) 
= 0, then
applying the chain rule to the identity ℘ ◦L◦p = F ◦p ◦℘

we see that (L◦p)′(w1) = ηp is equal to ±(F ◦p)′(z), as
required.

In the case of a period p point with ℘(w1) ∈ V , so
that w1 ∈ 1

2Λ, we proceed as follows. The Taylor series
for ℘(w1 + h) = ℘(w1 − h) contains only even powers of
h , so we can use h2 as a local uniformizing parameter
for Ĉ in a neighborhood of ℘(w1). Since L◦p(w1 + h) =
w2 + ηph ≡ ±w1 + ηph (mod Λ), the local uniformizing
parameter h2 maps to η2ph2 , and the conclusion follows.

3.3 The Example

After this general discussion, we return to our partic-
ular example. Let Λ = Z[i] = Z + iZ be the lat-
tice of Gaussian integers, and let L(w) = (1 − i)w .
Then the condition that (1 − i)Λ ⊂ Λ is clearly sat-
isfied. Since |1 − i|2 = 2, the associated Lattès map
z �→ ℘◦L1−i ◦℘−1(z) is a well-defined quadratic rational
map. Let c1 and c2 be the critical points of this map.
(Using Lemma 3.4, it is not hard to check that these two
critical points are equal to ℘

(
(1±i)/4

)
.) It will be conve-

nient to work with a modified Weierstrass function of the
form ℘̂(w) = p℘(w) + q , where the complex coefficients
p 
= 0 and q are chosen so that

p c1 + q = + 1 and p c2 + q = − 1 .

Then, evidently, the map

F = ℘̂ ◦ L ◦ ℘̂−1

is holomorphically conjugate to ℘◦L◦℘−1 and has critical
points ±1. Therefore, proceeding as in Lemma 3.1, we
can set

F (z) = a(z + z−1) + b

for suitable coefficients a 
= 0 and b . To compute
the coefficient a , note that ℘̂(0) = ∞ is a postcritical
fixed point, with multiplier equal to (1 − i)2 = −2i by
Lemma 3.6. Since the multiplier at infinity using this
normal form is 1/a , this yields a = 1/(−2i) = i/2.
To compute b , note that the linear map L commutes
with the linear automorphism w �→ iw of the torus
T . It follows that F commutes with the correspond-
ing automorphism σ(z) = ℘̂

(
i℘̂−1(z), which must fix the

point at infinity and interchange the two critical points
and, hence, be given by σ(z) = −z . It follows as in
Lemma 3.1 that b = 0. Thus, ℘̂ ◦L ◦℘−1 coincides with
the map F (z) = (i/2)(z + z−1) of Assertion 3.2, with
F ∼= f1/4 ⊥⊥ f1/4 .

4. SEMICONJUGACIES FROM THE
ANGLE DOUBLING MAP

Suppose that F ∼= f1 ⊥⊥ f2 is a geometric mating be-
tween quadratic polynomials. It follows that there is a
commutative diagram of semiconjugacies

R/Z 2·

↙ γ1 ↘ γ2 ◦ −

K1 f1 K2 f2

↘ µ1 ↙ µ2

Ĉ F .

(4–1)

(Compare the diagram (2–5).) Here, γ2 ◦ − stands
for the semiconjugacy t �→ γ2(−t) from R/Z onto ∂K2 ,
and µj : Kj → Ĉ is the composition of the natural map
of Kj into K1 ⊥⊥ K2 composed with the homeomor-
phism K1 ⊥⊥ K2

∼=→ Ĉ , which conjugates f1 ⊥⊥ f2 to
F . Going either way around this diagram, we obtain a
semiconjugacy γ̂ : R/Z → Ĉ , onto the Julia set of F ,
where

γ̂(t) = µ1 ◦ γ1(t) = µ2 ◦ γ2(−t) . (4–2)

4.1 Definitions

We will call γ̂ the mating semiconjugacy which is associ-
ated with the mating F ∼= f1 ⊥⊥ f2 . It will be convenient
to say that a semiconjugacy γ : R/Z → J is primitive if
γ−1(γ(0)) is equal to the single point zero (mod Z).

A quadratic rational map F is called symmetric if
there exists a Möbius involution σ of Ĉ that commutes
with F and interchanges the two critical points of F .
(Compare [Milnor 93]. Such an involution is unique,
except in the very special case of the map z �→ 1/z2 ,
which cannot occur as a mating.) The semiconjugacy
γ will be called symmetric if F is symmetric and if
γ(−t) = σ(γ(t)). Recall that γ is τ -equivariant if
γ(t + 1/2) = τ(γ(t)), where τ is the canonical involu-
tion that interchanges the points of F−1(z). (See 2.4.)
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Lemma 4.1. The mating semiconjugacy γ̂ : R/Z → Ĉ

is a primitive and τ -equivariant semiconjugacy from the
doubling map on R/Z onto the Julia set of F . In the
special case of a self-mating with f1 = f2 , this semicon-
jugacy γ̂ is also symmetric.

Proof: It follows immediately from Lemma 2.2 that γ̂ is
primitive and τ -equivariant. As in Lemma 3.1, we may
assume that F is in the normal form

F (z) = a(z + z−1) + b ,

with the image of the critical points of f1 and f2 at −1
and +1, respectively, and with the image β̂ of the two
β fixed points at infinity. If we interchange the roles of
f1 and f2 , then F (z) will be replaced by −F (−z) =
a(z + z−1)− b , with the two critical points interchanged.
Thus, in the special case of a self-mating, with f1 = f2

hence γ1 = γ2 , we must have b = 0, so that F commutes
with the symmetry σ(z) = −z , which fixes the points β̂

and τ(β̂) and interchanges the two critical points. This
symmetry must correspond to the 180◦ rotation (2–3) of
S2 . Hence, µ1 = σ ◦ µ2 = −µ2 . The equation

γ̂(t) = µ1(γ1(t)) = µ2(γ2(−t)) = − µ1(γ1(−t))

then says that γ̂(t) = −γ̂(−t), which proves that γ̂ is
symmetric.

Now let us specialize to the map F (z) = (i/2)(z +
z−1) of Assertion 3.2 and Section 3.3. We will prove the
following.

Theorem 4.2. For this F , there is one and up to sign only
one semiconjugacy γ̂ : R/Z → Ĉ which is symmetric, τ -
equivariant, and primitive.

The proof, which gives an explicit construction of this
map γ̂ , will make no mention of mating. To begin the
argument, we will prove the following. Let γ̂ be any
symmetric τ -invariant semiconjugacy from the doubling
map on R/Z to this F .

Lemma 4.3. The value γ̂(1/8) is necessarily equal to ±1 .
If we normalize so that γ̂(1/8) = +1 , then we have the
following table, with t a multiple of 1/8 and with γ̂(t)
in the set of critical or postcritical points:

t ≡ 0 1/8 1/4 3/8 1/2 5/8 3/4 7/8
γ̂(t) = ∞ 1 i −1 0 1 −i −1 .

If we assume also that γ̂ is primitive, then these are the
only angles in R/Z which map to critical or postcritical
points of F .

Proof: Since γ̂ is symmetric, and since z �→ −z is the
only automorphism commuting with F , we have γ̂(−t) =
−γ̂(t); hence, the fixed point γ̂(0) must be the point
infinity. Hence, γ̂(1/2) must be equal to τ(∞) = 0, and
γ̂(1/4) must belong to F−1(0) = {±i} . Suppose, to fix
our ideas, that γ̂(1/4) = +i . Then γ̂(1/8) ∈ F−1(i) =
{1} . Further details of the argument are straightforward.

Let ℘̂ : T → Ĉ be the Weierstrass map associated with
the lattice Λ = Z[i] of Gaussian integers, normalized as
in Section 3.3 so that

F (z) = ℘̂ ◦ L ◦ ℘̂−1(z) = (i/2)(z + z−1) ,

where L(w) = (1− i)w . The four critical values of ℘̂ are
equal to the four postcritical points of F by Lemma 3.4.
It is not hard to see that the critical orbits correspond
to:

w ≡ ± (1 + i)/4 �→ 1/2 �→ (1 + i)/2 �→ 0 ,
(1 − i)/4 �→ i/2 �→ (1 + i)/2 �→ 0 ,

℘̂(w) = 1 �→ i �→ 0 �→ ∞ ,
−1 �→ −i �→ 0 �→ ∞ .

Note the identities

℘̂(iw) = − ℘̂(w) and
℘̂
(
w + (1 + i)/2

)
= 1/℘̂(w) . (4–3)

In fact, the first equation follows as in Section 3.3 since
multiplication by i maps Z[i] isomorphically onto itself,
and the second follows since the canonical involution Sec-
tion 2.4 for the degree two map w �→ (1 − i)w is given
by τL(w) = w + 1/(1 − i) = w + (1 + i)/2, while the
canonical involution for F is τF (z) = 1/z .

We want to lift γ̂ : R/Z → Ĉ to a map g : R/Z → T

with ℘̂ ◦ g = γ̂ . Suppose that we subdivide R/Z as a
cell complex with vertices at the four points 0, 1/4, 1/2,

and 3/4. Then, each vertex maps to a critical value of
℘̂ , which lifts uniquely, and we must have:

t ≡ 0 1/4 1/2 3/4 (mod Z) and
g(t) ≡ 0 1/2 (1 + i)/2 i/2 (mod Z[i]) .

(4–4)

However, each edge of this cell complex can be lifted
in two different ways; hence, there are sixteen possible
liftings in all. Whatever choice we make, the hypotheses
of Theorem 4.2 translate to the following four conditions,
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making use of (4–3):

• semiconjugacy: g(2t) ≡ ±(1 − i)g(t)(mod Z[i] ),

• symmetry: g(−t) ≡ ±i g(t),

• τ -equivariance: g(t + 1/2) ≡ ±g(t) + 1/(1 − i)

≡ ±g(t) + g(1/2),

• primitivity: g(t) ≡ 0 (mod Z[i] ) ⇐⇒
t ≡ 0 (mod Z) .

In fact, let us restrict to two out of the sixteen possible
liftings, as follows. Start with either of the two liftings
g restricted to the interval [0 , 1/4]. Then g(2t) ≡ η g(t)
for 0 ≤ t ≤ 1/8, where the coefficient η = ±(1 − i)
remains constant by continuity. Choose the lifting g on
[1/4 , 1/2] by requiring that g(2t) = η g(t) for 1/8 ≤ t ≤
1/4, with the same constant η . Finally, extend to the
interval [1/2 , 1] (mod Z) by setting

g(t + 1/2) ≡ g(t) + g(1/2) for all t.

This makes sense, since g(1/2)+ g(1/2) ≡ 0 (mod Z[i]) .
As a final step, note that any map g : R/Z → C/Z[i]

with g(0) ≡ 0 lifts uniquely to a map g̃ : R → C between
the universal covering spaces with

g̃(0) = 0 and g̃(t) ≡ g(t) (mod Z[i] ) for all t.

Here, the identity

g̃(t + 1) = g̃(t) + g̃(1)

is always satisfied. Evidently, the maps g and g̃ deter-
mine each other uniquely. For any g with the above four
properties, we will prove the following.

Lemma 4.4. This lifted map g̃ : R → C satisfies the
following four conditions:

(a) g̃(2t) = (1 − i)g̃(t) for 0 ≤ t ≤ 1/4 ,

(b) g̃(−t) = i g̃(t) for 0 ≤ t ≤ 1/4 ,

(c) g̃(t + 1/2) = g̃(t) + g̃(1/2) for all t , and

(d) g̃(t) ≡ 0 (mod Z[i] ) ⇐⇒ t ≡ 0 (mod Z) .

Proof: It is straightforward to check that conditions (c)
and (d) are satisfied. Similarly, it is straightforward to
check that (a) and (b) are satisfied up to sign. That is:

g̃(2t) = ε(1 − i) g̃(t) for t ∈ [0, 1/4] and
g̃(−t) = ε′i g̃(t) for t ∈ [0, 1/4] ,

where ε = ±1 and ε′ = ±1 are fixed signs. Combining
these facts with (c), we see that

g̃(1/2) = ε(1 − i) g̃(1/4) ,

g̃(−1/4) = ε′i g̃(1/4) , and

g̃(1/2) + g̃(−1/4) − g̃(1/4) = 0 .

Substituting the two equations on the left into the right-
hand one, we have

(ε(1 − i) + ε′ i − 1) g̃(1/4) = 0

and since g̃(1/4) 
= 0 by (d),

ε(1 − i) + ε′ i − 1 = 0 .

But this last equation implies that ε = ε′ = +1. Hence,
conditions (a) and (b) are satisfied also.

Now, let us temporarily forget condition (d) and study
functions satisfying the remaining three conditions.

Lemma 4.5. Given any constant g̃(1) ∈ C , there exists
one and only one continuous function g̃ : R → C satis-
fying conditions (a), (b), and (c) of Lemma 4.4.

Proof of uniqueness: Suppose that there were two func-
tions g̃ and h satisfying these same conditions, with
g̃(1) = h(1) and, hence, g̃(1/2) = h(1/2) by (c). Let
K be the maximum of |g̃ − h| on the interval [0 , 1/4].
Then, using (b) and (c), we see that |g̃(t)−h(t)| ≤ K for
all t , and using (a), we see that |g̃(t)−h(t)| ≤ K/|1−i| =
K/

√
2 for 0 ≤ t ≤ 1/4. This proves that K = 0, as re-

quired.

Proof of existence: Construct a sequence of continuous
functions g̃n : R → C as follows. Start with the linear
function g̃1(t) = k t , where k = g̃(1). Suppose induc-
tively that we have a continuous function g̃n which sat-
isfies g̃n(t+1/2) = g̃n(t)+k/2 for all t, with g̃n(0) = 0.
Construct g̃n+1 in three steps, as follows. Let

g̃n+1(t) = g̃n(2t)/(1 − i) for 0 ≤ t ≤ 1/4 ,

and note that (1 − i)g̃n+1(1/4) = g̃n(1/2) = k/2. Then,
extend over the interval [−1/4 , 1/4] by setting

g̃n+1(−t) = i g̃n+1(t) for 0 ≤ t ≤ 1/4 ,

and note that the difference g̃n+1(1/4) − g̃n+1(−1/4) =
(1 − i)g̃n+1(1/4) is also equal to k/2. Hence, there is a
unique extension g̃n : R → C that satisfies the required
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0 1/2

η/2-i/2

0 1/2

η/2

FIGURE 6. The images Gn = g̃n[0 , 1/2] for n = 1, 2, and 3, with Gn+1 shown as a dotted path. The “old” vertices,
which already existed in Gn−1 when n > 0, are indicated by heavy dots.

equation g̃n+1(t + 1/2) = g̃n+1(t) + k/2 for all real
numbers t . It is not difficult to check that

|g̃2(t) − g̃1(t)| ≤ |g̃2(1/4) − g̃1(1/4)| < |k|/
√

2

for all t , and it follows inductively that

|g̃n+1(t) − g̃n(t)| <

∣∣∣∣ k

(1 − i)n

∣∣∣∣ =
|k|√
2n

.

Thus, the sequence of functions g̃n converges uniformly
to a function g̃ , which clearly satisfies all of the required
conditions.

4.2 A Geometric Description: The Heighway Dragon

The proof of Lemma 4.5 has been completely construc-
tive and is easily implemented on a computer. (See Sec-
tion 4.) However, the formal construction has obscured
some fascinating fractal geometry. We can describe the
proof more geometrically as follows. (Compare the dis-
cussion of the “Heighway Dragon” in [Edgar 90].) The
function g̃ on the interval 0 ≤ t ≤ 1/2 is the limit of a
sequence of piecewise linear functions g̃n : [0 , 1/2] → C,

which are defined inductively, with the following prop-
erties: if we subdivide [0 , 1/2] into 2n−1 subintervals
of length 1/2n, then g̃n will be linear on each subin-
terval, with constant speed |dg̃n(t)/dt| =

√
2n . Hence,

the image Gn = g̃n[0 , 1/2] will be a union of 2n−1 line
segments, each of length 1/

√
2n .

To begin the inductive definition, let g̃1(t) = η t for
t ∈ [0 , 1/2], with η = 1− i , so that G1 = g̃1[0 , 1/2] is a
straight line segment leading from 0 to η/2, as indicated
by the solid line in Figure 6 (left). By definition, 0 will be
called an “old” vertex and η/2 a “new” vertex. For the
inductive step, suppose that Gn is given as a piecewise
linear path, where the vertices are alternately “old” and
“new.” To construct Gn+1 we replace any line segment
of Gn leading from v to v′ by a broken path, leading

from v to v′′ to v′ , where

v′′ =

{
1
2 (v′ + v) + i

2 (v′ − v) if v′ is a “new” vertex
1
2 (v′ + v) − i

2 (v′ − v) if v′ is an “old” vertex.

For the next stage of the construction, both v and v′ will
be considered as old vertices, while v′′ is a new vertex.
This completes the inductive construction.

With this geometric definition it again follows that
the sequence of functions g̃n : [0 , 1/2] → C converges
uniformly and geometrically. In fact, the sharp estimate

∣∣g̃n+1(t) − g̃n(t)
∣∣ ≤ 1

2
√

2n
for all t

can be verified by induction on n . Now, extending the
limit function g̃ over R so that g̃(t+1/2) = g̃(t)+g̃(1/2),
it is not difficult to check that the resulting function sat-
isfies all of the conditions of Lemma 4.5. With this geo-
metric description, we can also prove primitivity:

Lemma 4.6. This function g̃ : R → C , with g̃(1) = 1− i ,
satisfies the condition that

g̃(t) ≡ 0 (mod Z[i] ) if and only if t ≡ 0 (mod Z) .

Proof: Let us start with any line segment of length
s = 1/

√
2n in the graph Gn . Examining Figure 6, we see

that, passing to Gn+3 , this line segment will be replaced
by eight line segments of length s/

√
8, all lying within

a neighborhood of radius s/2 of the original. Similarly,
passing to Gn+3k , the original segment will be replaced
by 8k segments of length s/

√
8k , all lying within a neigh-

borhood of radius

s

2

(
1 +

1√
8

+
1√
82

+ · · · 1√
8k−1

)
.
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FIGURE 7. Successive approximations G5 , G11 , and G15 to the image G = g̃ [0, 1/2] ⊂ C . (Compare Figure 16.)

Passing to the limit as k → ∞ , the corresponding seg-
ment of G will lie within a neighborhood of radius

s

2(1 − 1/
√

8)
≈ s

1.29
< s

of the original line segment.
Now let us apply this argument to the vertical line seg-

ment g̃2[1/4, 1/2] of length 1/2, joining 1/2 to (1− i)/2.
This argument proves that the image g̃[1/4, 1/2] lies
within a neighborhood of radius strictly less than 1/2 of
the original segment. Hence, g̃[1/4, 1/2] cannot contain
any lattice point. Similarly, the image g̃(0, 1/4] cannot
contain any lattice point. For, if g̃(t) ≡ 0 (mod Z[i] )
with 0 < t ≤ 1/4, then, choosing k so that 1/4 ≤ 2kt ≤
1/2, it would follow by Lemma 4.4(a) that g̃(2kt) ≡
0 (mod Z[i] ) , which we have seen is impossible. The
case 1/2 ≤ t < 1 is handled with a similar argument.

Proof of Theorem 4.2: Let g̃ = g̃0 : R → C be the
function of Lemmas 3.4 and 3.6, with g̃0(1) = 1 − i ,
and let g0 be the induced function from R/Z to C/Z[i] .
Then we will first prove that the composition

γ̂0 = ℘̂ ◦ g0 : R/Z → Ĉ

is a primitive, symmetric, τ -equivariant semiconjugacy
from the doubling map on R/Z to the map F (z) =
(i/2)(z+z−1) on Ĉ . In fact, it follows immediately from
the construction that:

• γ̂0(2t) = F (γ̂0(t)) for 0 ≤ t ≤ 1/4,

• γ̂0(−t) = −γ̂0(t) for 0 ≤ t ≤ 1/4, and

• γ̂0(t + 1/2) = 1/γ̂0(t) for all t .

Using the last condition, it is not hard to check that
γ̂0(−t) = −γ̂0(t) for all t . It then follows easily that the
semiconjugacy equation γ̂0(2t) = F (γ̂0(t)) also holds for
all t . Since γ̂0 is primitive by Lemma 4.6, it has all of
the specified properties.

Note also that the image Γ = γ̂0(R/Z) must be
equal to the entire Riemann sphere. In fact, using the
semiconjugacy condition together with τ -equivariance,
we see that Γ is compact and fully F -invariant and
Γ = F−1(Γ). Since iterated preimages of any point of
the Julia set are dense in the Julia set, and since the
Julia set J(F ) is the entire Riemann sphere, this proves
that Γ = Ĉ .

Conversely, let γ̂ : R/Z → Ĉ be any primitive, sym-
metric, τ -equivariant semiconjugacy from the doubling
map to F . By Lemmas 4.3 and 4.4, the corresponding
lifted map g̃ : R → C must be a multiple of g̃0 , say

g̃(t) = k g̃0(t) for all t .

Now g̃(1/2) ≡ (1 − i)/2 (mod Z[i] ) by Section 4.1,
and g̃0(1/2) is equal to (1 − i)/2. Therefore, g̃(1/2) =
g̃0(1/2) + λ for some λ ∈ Z[i] , and we have

k =
g̃(1/2)
g̃0(1/2)

= 1 +
λ

(1 − i)/2
= 1 + (1 + i)λ .

In particular, this constant k must be a nonzero element
of the lattice Z[i] .

Case 1. If |k| = 1, then either k = ±1 and γ̂ = ℘̂ ◦ g̃ =
γ̂0 or k = ±i and γ̂ = ℘̂ ◦ g̃ = −γ̂0 .

Case 2. If |k| > 1, then 1/k 
∈ Z[i] . Since γ̂0 = ℘̂ ◦ g̃0

maps R/Z onto the Riemann sphere, we can



70 Experimental Mathematics, Vol. 13 (2004), No. 1

choose 0 < t < 1 so that g̃0(t) = ±1/k . It
follows that g̃(t) = ±1 ∈ Z[i] , hence γ̂(t) =
℘̂◦ g̃(t) = ∞ , contradicting the hypothesis that
γ̂ is primitive. Hence, Case 2 cannot occur,
which completes the proof of Theorem 4.2.

4.3 Some Related Semiconjugacies

For any constant k 
= 0 in Z[i] , the map

t �→ γ(t) = ℘̂(k g̃0(t))

is clearly another symmetric semiconjugacy from the dy-
namical system (R/Z , 2·) onto (Ĉ , F ). This semicon-
jugacy can also be written as

γ = (℘̂ ◦ Lk ◦ ℘̂−1) ◦ (℘̂ ◦ g̃0) = (℘̂ ◦ Lk ◦ ℘̂−1) ◦ γ0 ,

where Lk(w) = k w so that Fk = ℘̂◦Lk ◦ ℘̂−1 is a Lattès
map of degree |k|2, which commutes with F . More gen-
erally, for any constant k′ 
= 0 in Z, we can also consider
the semiconjugacy

t �→ γ(k′ t) = Fk ◦ γ0(k′t)

from R/Z onto Ĉ . Note, however, that this related
semiconjugacy is not primitive when either |k| > 1 or
|k′| > 1.

4.4 A Note on Computation

We conclude this section by noting that it is quite easy
to compute the function g̃(t). For any real number t0 ,
let us set

2t0 = ε t1 + k with

ε = ±1 , t1 ∈ [0 , 1/2] , and k ∈ Z .

Then, it follows easily from Lemma 4.4 that

g̃(t0) =
√

ε g̃(t1)/η + k η/2 , (4–5)

where η = 1 − i , taking
√

+1 to be +1 and
√−1 to be

+i . For computational purposes, we may assume that
t0 is a dyadic rational, say t0 = m/2n . Since t1 has
smaller denominator than t0 , and since g̃(0) is zero by
definition, this yields a recursive definition which is easily
implemented.

It is interesting to note that the correspondence t0 �→
t1 , restricted to the interval [0 , 1/2], is just the famil-
iar tent map on this interval. For an arbitrary rational
number t0 , note that the orbit t0 �→ t1 �→ t2 �→ · · · un-
der this tent map is eventually periodic. Hence, (4–5)

yields a finite set of linear equations which we can solve
for g̃(t0). It follows that g̃(t0) necessarily belongs to the
field Q[i] of Gaussian rational numbers.

Here is an example. Since the external rays
R1/7, R2/7, and R4/7 for the polynomial z �→ z2 + c1/4

of Section 3 all land at a common point, namely the
α -fixed point, we know that the values g̃(1/7), g̃(2/7),
and g̃(4/7) must all represent the same point in the quo-
tient space ℘̂(C) = Ĉ . In other words, we must have
g̃(1/7) ≡ ±g̃(2/7) ≡ ±g̃(4/7) (mod Z[i]) . In fact, com-
puting by the algorithm described above, it turns out
that

g̃(1/7) =
2 + i

5
and g̃(2/7) = g̃(4/7) =

3 − i

5
,

with g̃(1/7) ≡ ±g̃(2/7) as expected.

5. MEASURE PROPERTIES

We know from Lemma 2.3 and Remark 3.3 that:

• One-dimensional Lebesgue measure on R/Z pushes
forward, under the mating semiconjugacy γ̂ from
(R/Z , 2·) to (Ĉ , F ) , to the Lyubich measure for F.

• Two-dimensional Lebesgue measure on C/Z[i]
pushes forward under the normalized Weierstrass
map ℘̂ to this same Lyubich measure on Ĉ .

Since γ̂ is equal to the composition

R/Z
g−→ C/Z[i]

℘̂−→ Ĉ ,

this might suggest that the one-dimensional Lebesgue
measure on R/Z pushes forward under g : R/Z → C/Z[i]
to the two-dimensional Lebesgue measure on the torus.
However, this is not quite right. In fact, the map ℘̂ is
two-to-one, and the image g(R/Z) covers only about half
of the torus. The correct statement is as follows.

Lemma 5.1. Let {±1} × R/Z be the union of two dis-
joint circles, mapped to C/Z[i] by the correspondence
(±1 , t) �→ ± g(t) . Then the push forward m of one-
dimensional Lebesgue measure on {±1} × R/Z is equal
to twice the two-dimensional Lebesgue measure on the
torus.

Proof outline: If we subdivide R/Z into 2n intervals of
length 1/2n , then the approximation gn of 4.5 or 4.2
maps each of these to an interval of length s = 1/

√
2n in

the torus. Combining these with the corresponding 2n
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0 1

i 1+i

FIGURE 8. The left-hand figure shows the image g2(R/Z) ⊂ C/Z[i] , lifted to the universal covering space C . Here, as
in Figure 6, the “old” vertices are indicated by heavy dots. In the middle figure, the rotated image −g2(R/Z) has been
added. Evidently, the union g2(R/Z)∪−g2(R/Z) , lifted to C , forms a full rectilinear grid. In the right-hand picture, the
inductive construction of Figure 6 has been applied to each edge, to obtain g3(R/Z) ∪ −g3(R/Z) . The resulting picture
in the universal covering is isomorphic to that for g2(R/Z) ∪ −g2(R/Z) , except for a 45◦ rotation and a scale change of
1/

√
2. Continuing inductively, we get an analogous picture for any n ≥ 2.

intervals for −gn , we obtain a rectilinear configuration
consisting of 2n+1 edges of length s which subdivide the
torus into 2n squares of area s2 = 1/2n , as illustrated in
Figure 8. (It is important to note that there are twice as
many edges as squares.) Now consider a region U of area
A with piecewise smooth boundary in this torus. For
large values of n , the number of squares in U is asymp-
totic to A/s2 = 2nA . Since there are twice as many
edges as squares, the number of edges is asymptotic to
2n+1A , and the push forward of the Lebesgue measure on
{±1}×R/Z , evaluated on U, is asymptotic to this num-
ber of edges multiplied by the one-dimensional Lebesgue
measure 1/2n of each edge in the preimage. Hence, the
total is asymptotic to m(U) = 2A , as required.

Remark 5.2. This last figure illustrates the image
gn(R/Z) ∪ −gn(R/Z) without giving any clue as to
whether we must turn left or right upon reaching a ver-
tex, as we traverse one of the two copies of R/Z . In fact,
the required pattern is extremely complicated. It can
best be visualized by choosing a suitable approximation
to gn .

Lemma 5.3. The mating semiconjugacy γ̂ from R/Z onto
Ĉ can be uniformly approximated by a topological em-
bedding.4 Similarly, each map (±1 , t) �→ ±g̃n(t) from
{±1}×R/Z onto C/Z[i] can be uniformly approximated
by a topological embedding.

Proof: Examining the construction above, we see that
the image gn(R/Z) ∪ −gn(R/Z) never crosses itself. It

4Rees and Shishikura have shown that this statement is true
for any postcritically finite mating, but the following proof applies
only to our special example.

has many double points, but these are always places
where two segments of this image come together and then
bounce off at right angles, without crossing. Hence, by a
slight deformation, we can get rid of all of these double
points. For example, if we replace gn(t) by the aver-
age

(
gn(t) + gn(t + ε)

)
/2, then for ε sufficiently small

we obtain the required embedding which approximates
g . (Compare Figure 9.) The corresponding statement
for γ̂ = ℘̂ ◦ g follows easily. (See Figure 10.)

0 1/2

i/2 (1+i)/2

FIGURE 9. The image of an approximation to g9 : R/Z →
T/± , where T = C/Z[i] . The region shown is a funda-
mental domain for the action of {±1} on the torus, with
ramification points at the midpoints of the four edges.
The quotient T/± can be obtained from this region by
identifying each edge with itself under a 180◦ rotation
about its midpoint. The grid ±g9(R/Z) cuts this region
into 28 small squares, each of area 1/29 .
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FIGURE 10. An analogous approximation to ℘̂ ◦
g11(R/Z) ≈ γ̂(R/Z) on the Riemann sphere (orthonor-
mal projection). The image is a Jordan curve which cuts
the sphere into two simply connected regions, each made
up out of 29 approximate squares of Lyubich area 1/210 .
Note that this image becomes highly compressed and dis-
torted around the critical values of ℘̂ , where Lyubich
measure tends to be concentrated. (The sphere has been
rotated so that two of these four critical values are visi-
ble.)

Although the area filling curve γ̂ : R/Z → Ĉ (or
g : R/Z → T/±) has many self-intersections, we will
show that it is one-to-one almost everywhere. We
must first consider the corresponding question for the
Carathéodory semiconjugacy γ : R/Z → J(f).

Let f : C → C be any polynomial which is postcrit-
ically finite. To simplify the exposition, we assume also
that f has no attracting cycles, so that the Julia set J(f)
is equal to the filled Julia set K(f).

Definition 5.4. The minimal Hubbard tree H0 of f is
the smallest connected subset of J(f) which contains
the orbits of the critical points. We will also need the
enlarged trees Hn = f−n(H0) ⊂ J(f). Here are some
basic properties:

Lemma 5.5. Each of these sets H0 ⊂ H1 ⊂ H2 ⊂ · · · is a
finite topological tree, with f(Hn) = Hn−1 for n > 0 and
f(H0) = H0 . Furthermore, the union

⋃
Hn is dense

in J(f) . If two distinct external rays land at a point
z ∈ J(f) , then z must belong to some Hn . If we ex-
clude Chebyshev5 maps such as f(z) = z2 − 2 , for which
H0(f) = J(f), then each Hn is a set of Brolin measure

5See Appendix B.1.

zero in J(f). It follows that each γ−1(Hn) has Lebesgue
measure zero in R/Z and that the Carathéodory semicon-
jugacy γ : R/Z → J(f) is one-to-one almost everywhere
in the sense that γ−1

(
γ(t)

)
= {t} for Lebesgue almost

every t .

To the naive eye, the Hubbard tree seems to occupy a
large part of the Julia set. (Compare Figures 1, 2, 11,
and 12.) However, in terms of Brolin measure, it occupies
a negligibly small part.

Proof of Lemma 5.5: The first statement is straightfor-
ward. The union is dense since the preimages of any
point are dense in the Julia set J(f). If two rays land at
z , then it follows from the Theorem of F. and M. Riesz
that these two rays, together with their landing point, cut
J(f) into two nondegenerate subsets. Since the union of
the Hn is dense, some Hn must intersect both of these
subsets, hence z ∈ Hn . Finally, since the Brolin measure
m is f -invariant, we have m(H0) = m(H1), hence the
difference H1�H0 has measure zero. If H0 
= J , then the
forward images of H1 � H0 cover H0 . Otherwise, if H0

contained a point z which is not in any f◦n(H1 � H0),
then all of the iterated preimages of z would belong to
H0 ; hence, the closure H0 = H0 would be the entire
Julia set.

It is not difficult to check, using Section 2.8, that
the image of any set of Brohlin measure zero also has
Brohlin measure zero. It follows that H0 has measure
zero. Therefore, every Hn has measure zero. Since the
push-forward of Lebesgue measure on R/Z is the Brolin
measure on J(f), the last statement follows.

β

−β

0

α

c

FIGURE 11. The Hubbard tree H0 = H0(f1/4) ⊂ J(f1/4) .
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FIGURE 12. Enlarged Hubbard trees Hn = f−n(H0) for n = 1, 2, and 3.

Remark 5.6. [Zakeri 00] has proved the more general
statement that γ : R/Z → J(f) is one-to-one almost
everywhere provided only that f is quadratic and not
a Chebyshev map, with J(f) locally connected. As an
immediate corollary to his result we have the following:

Corollary 5.7. If F ∼= f1 ⊥⊥ f2 is a geometric mating
between non-Chebyshev quadratic polynomials, then the
mating semiconjugacy γ̂ : R/Z → Ĉ is one-to-one almost
everywhere, using Lebesgue measure on R/Z and Lyubich
measure on J(F ) ⊂ Ĉ . If I ⊂ R/Z is any closed line
segment of length � , it follows that the image γ̂(I) is
a compact set of Lyubich measure � , with boundary of
measure zero.

Proof: Let γ1 and γ2 be the Carathéodory semiconjuga-
cies for f1 and f2 . By Zakeri’s statement Remark 5.6,
there are subsets X1 and X2 of measure zero in R/Z

so that γ−1
j (γj(t)) is the single point t for t 
∈ Xj . It

follows easily that γ̂−1(γ̂(t)) = {t} for t 
∈ X1 ∪ (−X2).
Therefore, the image X = γ̂(X1 ∪ (−X2)) is a set of
Lyubich measure zero in Ĉ , such that γ̂−1(z) is a single
point for every z 
∈ X .

Now, given an interval I ⊂ R/Z , since γ̂−1 ◦ γ̂(I) is
equal to I together with a set of measure zero, it follows
that m(γ̂(I)), which is equal to the Lebesgue measure of
γ̂−1γ̂(I), must be equal to �(I). If I ′ is the complemen-
tary interval R/Z � I , then, since m(γ̂(I))+m(γ̂(I ′)) =
1, it follows that the common boundary must have mea-
sure zero.

Corollary 5.8. The map g̃ : R → C of 4.6 carries
any closed line segment of length � to a compact set of
Lebesgue area equal to �/2 . The topological boundary of
this set has Lebesgue measure zero.

Proof: This follows by applying Lemma 5.5 or Re-
mark 5.6 to the mating F ∼= f1/4 ⊥⊥ f1/4 of Section 3.

6. FRACTAL TILING WITH HUBBARD
TREE BOUNDARIES

Let F ∼= f1 ⊥⊥ f2 be any geometric mating, where the
Julia sets of f1 and f2 are full, so that J = K and so
that the Julia set J(F ) is the entire sphere Ĉ . Then, cor-
responding to any partition of R/Z into non-overlapping
intervals Ij , we get a partition of Ĉ into compact subsets
Tj = γ̂(Ij). Note that any overlap Tj ∩ Tk has Lyubich
measure zero. In particular, such intersections have no
interior.

The simplest partition divides R/Z into the two inter-
vals [0, 1/2] and [1/2, 1]. The corresponding sets T1 and
T2 both map onto the whole sphere under F and map
to each other under the canonical involution τ, which
fixes both critical points. In the symmetric case, when
f1 = f2 , they also map to each other under the symme-
try involution, which interchanges the two critical points.
For a Lattès mating, this tiling of Ĉ lifts to a tiling of
the branched covering space C .

The common boundary ∂T1 = ∂T2 = T1 ∩ T2 can
be described as follows. By the spine Sj of the Julia
set Jj = J(fj) we will mean the unique arc Sj ⊂ Jj

that joins the β fixed point to its preimage −β . (This
definition makes sense for any quadratic Julia set that
is locally connected and full.) Recall the notations from
(4–1) in Section 4. We have maps µj : Kj → Ĉ with

γ̂(t) = µ1 ◦ γ1(t) = µ2 ◦ γ2(−t) ,

and with F ◦ µj = µj ◦ fj .

Lemma 6.1. The intersection T1∩T2 is equal to the union
Ŝ = µ1(S1) ∪ µ2(S2) of the images of the spines of the
two Julia sets.

Note that these two spine images certainly meet at
their endpoints β̂ and τ(β̂). If µ1(S1) and µ2(S2) met
only at these endpoints, then T1 and T2 would be Jordan
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µ(β)

µ(−β)

µ(  )c

FIGURE 13. Image µ1(H1) of the symmetric Hubbard tree in the complex plane, using a normalization with the two
critical points at zero and infinity. This image is topologically embedded (see Corollary C.6) as a subset of measure zero.

domains, but in practice the situation is more compli-
cated. For example, for the mating f1/4 ⊥⊥ f1/4 of Sec-
tion 3, since the rays of angle 2/5 and −2/5 ≡ 3/5 both
land on the spine in Figure 2, it follows that µ1(S1) and
µ2(S2) meet also at the points γ̂(2/5) = µ1(γ(2/5)) =
µ2(γ(3/5)). Similarly, they meet at the sequence of
points γ̂(tn) and at the sequence of points γ̂(1/2 − tn),
where tn = 1/(2n · 10) for n ≥ 0. These intersections
between the two boundary curves explain the pinchings
which are visible in Figures 7, 14, 15, and 16. See Ap-
pendix C for details.

Proof of Lemma 6.1: If J = J(f) is full and locally
connected, then the union

S(J) ∪ R0(J) ∪ R1/2(J) ⊂ C

cuts the complex plane into two open sets, one containing
all rays Rt(J) with 0 < t < 1/2 and the other contain-
ing all rays Rt(J) with 1/2 < t < 1. It follows that the
intersection γ[0, 1/2]∩ γ[1/2, 1] , for the associated semi-
conjugacy γ = γf , is precisely equal to the spine S(J) .
Now consider a mating F ∼= f1 ⊥⊥ f2 with f1 and f2 as
above. Evidently, the associated γ̂ : R/Z → Ĉ satisfies
the following:

The image γ̂(t) is equal to γ̂(t′) if and only
if there exists a finite chain

t = t0 , t1 , . . . , tn = t′

so that, for every i between 1 and n , ei-
ther γ1(ti−1) = γ1(ti) or γ2(−ti−1) =
γ2(−ti) .

In particular, if this condition is satisfied with 0 ≤ t ≤
1/2 ≤ t′ ≤ 1, then there must exists some i with 0 ≤
ti−1 ≤ 1/2 ≤ ti ≤ 1, and it follows that γ̂(t) belongs
either to µ1(S1) or to µ2(S2), as required.

Similarly, if we partition R/Z into four equal inter-
vals [j/4 , (j + 1)/4], then we obtain a corresponding
partition of the Riemann sphere into four tiles. The ana-
logue of Lemma 6.1 is the statement that the union of
the boundaries of these four tiles is equal to Ŝ ∪ F−1(Ŝ)
or, in other words, is equal to the union of the set
µ1(S1 ∪ f−1

1 (S1)) with the corresponding set for f2 . In
fact, the set S1 ∪ f−1

1 (S1), together with the rays of an-
gle 0, 1/4, 1/2, and 3/4, cuts the complex plane up into
four regions, and the discussion proceeds as above.

For the special case F ∼= f1/4 ⊥⊥ f1/4 of Sec-
tion 3, the situation is particularly simple, since the set
S(f) ∪ f−1(S(f)) is just the symmetric Hubbard tree
H1 of Figure 12. Hence, the union of the boundaries of
the regions in Figure 14 is made up out of two copies
of the set µ(H1) of Figure 13 . If these two copies in-
tersected only at the points ±β̂ and γ̂(±1/4), then they
would cut the sphere up neatly into four Jordan domains.
However, as noted above and in Appendix C., there are
many other intersections, and the situation is much more
complicated. These extra intersections occur precisely at
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FIGURE 14. Tiling of the Riemann sphere by the sets γ̂[0, 1/4] , γ̂[1/4 , 1/2] , γ̂[1/2 , 3/4] , and γ̂[3/4, , 1] . Here, γ̂ is the
semiconjugacy of Theorem 4.2, associated with the mating f1/4 ⊥⊥ f1/4 of Lemma 3.1.

FIGURE 15. Corresponding tiling lifted to C via the ℘ -function. (The number of colors has been doubled, since each
tile lifts to the torus in two different ways.) The illustrated square is somewhat larger than a fundamental domain for
the lattice Z[i] . The pattern is invariant under 180◦ rotations about the critical points of ℘̂ . Furthermore, a suitably
chosen translation or rotation will carry regions of one color into regions of any other color.
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FIGURE 16. A picture of the dragon ĝ[0, 1/2] of Figure
7, subdivided into images ĝ[1/2n , 1/2n−1] in order to il-
lustrate the dynamics. Each of these regions (except the
last) maps isomorphically onto the next under multipli-
cation by 1− i . The last maps isomorphically onto a set
iĝ[0, 1/2] − i which can be rotated isomorphically onto
the whole set ĝ[0, 1/2] .

the angles

t = · · · 1/40 , 1/20 , 1/10 ,

1/5 , 2/5 , 9/20 , 19/40 , · · · . (6–1)

Under the associated Weierstrass function ℘̂ : T → Ĉ ,
each of these four tiles lifts in two ways. Thus, we obtain
a tiling of the torus T by eight Heighway dragons, as
illustrated in Figure 15 . Similarly, if we subdivide each
[j/4 , (j+1)/4] into 2n equal intervals, then each dragon
of area 1/8 will be subdivided into 2n dragons of area
1/(8 · 2n). See Figure 16 to get some idea of how these
dragons map under multiplication by 1 − i . (For the
theory of such self-similar tilings, compare [Kenyon 96].)

7. FURTHER QUESTIONS

The basic question raised by this paper is the follow-
ing: what is the relationship between semiconjugacy and
mating? First, one can ask: does the semiconjugacy
γ̂ : R/Z → Ĉ associated with a mating F ∼= f1 ⊥⊥ f2

uniquely determine the polynomials f1 and f2 and the
mating homeomorphism K1 ⊥⊥ K2

∼=→Ĉ? This seems
very likely, but I don’t have a proof.

What conditions on a semiconjugacy are needed in or-
der to conclude that it comes from some mating? We
know that γ̂ must be primitive and τ -equivariant, with
γ̂(2t) = F (γ̂(t)). However, A. Douady has pointed out to
me that these conditions are not sufficient. His example
is based on the following observations.

There exist quadratic polynomials f and g that are
topologically conjugate on their filled Julia sets,

h : K(g)
∼=→ K(f) with h ◦ g = f ◦ h ,

even though g is not topologically conjugate to f on
the whole complex plane. Some examples are described
in Appendix D.. Given such an h , we can construct
an exotic semiconjugacy η : R/Z → ∂K(f) by setting
η = h ◦ γg . Now, if the mating F ∼= f1 ⊥⊥ f2 is defined
with f = f1 , then, in place of the mating semiconjugacy
γ̂(t) = µ1◦γ1(t) = µ2◦γ2(−t), we can consider the exotic
semiconjugacy η̂ = µ1◦η from R/Z to J(F ). There is no
reason to expect that this η̂ is the semiconjugacy associ-
ated with any mating. Taking account of such examples,
Douady suggests the following further requirement:

Almost Embedding Condition. It must be
possible to uniformly approximate the semicon-
jugacy γ̂ : R/Z → J(F ) by topological embed-
dings of the circle into the sphere. (Compare
Lemma 5.3 and Figure 10.)

We can then ask: are the primitive τ -equivariant semi-
conjugacies satisfying this Douady almost embedding con-
dition exactly the ones which arise from matings?

Even in the special case of the mating f1/4 ⊥⊥ f1/4,

which has been studied above, there remain many ques-
tions. Is it necessary to assume symmetry in order
to prove Theorem 4.2? What semiconjugacies from
(R/Z , 2·) to (Ĉ , F ) actually exist? Furthermore, can
one carry out a similar program for the other Lattès mat-
ings described in Appendix B.4? How much of this pro-
gram can be carried out for more general matings?

A. APPENDIX: THE WEIERSTRASS ℘ -FUNCTION

Let Λ be some fixed lattice in C , and let T be the quo-
tient torus C/Λ. It will be convenient to use the term
Weierstrass ℘-function loosely to mean any holomorphic
function ℘ : T → Ĉ of degree two that satisfies

℘(−w) = ℘(w) and ℘(0) = ∞ .
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Evidently, any such ℘ induces a conformal isomorphism
between the quotient T/± and the Riemann sphere. It
will be convenient to write the Laurent series for ℘ as

℘(w) = (a/w)2 + b +
∞∑
1

ckw2k ,

where a 
= 0. We can then set ℘(w) = a2 ℘0(w) + b ,
where ℘0 is the standard Weierstrass function, satisfying
℘0(w) = 1/w2 + O(w2). (Compare [Ahlfors 66].)

A.1 A Rapidly Converging Series

After a linear change of the variable w , we may assume
that the lattice Λ is generated by 1 and τ , with τ ∈ C�

R . One choice of ℘ -function for the lattice Λ = Z + τ Z

is then given by the series

℘1(w) =
∑
n∈Z

η(w + nτ) , where

η(w) = 1 + cot2(πw) .

(A–1)

This series converges very rapidly. In fact, we will prove
the asymptotic estimate

|η(u + iv)| ∼ 4/e2π|v| , (A–2)

which holds uniformly in u as |v| → ∞ . (Note that
the constant e2π ≈ 535.49 is quite large.) Since η(w) =
η(−w) = η(w + 1), it follows that the sum of this series
satisfies

℘1(w) = ℘1(−w) = ℘1(w + 1) = ℘1(w + τ) .

It is often convenient to make the substitution

E = e2πiw , so that

cot(πw) = i
eπiw + e−πiw

eπiw − e−πiw
= i

E + 1
E − 1

,
(A–3)

hence

η(w) = 1 −
(E + 1
E − 1

)2

=
−4E

(E − 1)2
=

4
2 − E − E−1

.

In particular, note that

η(w) = ∞ if and only if

E = 1 if and only if

w ∈ Z .

It follows that ℘1 has poles only at the points of Z+τZ .
If w = u + iv , then |E| = e−2πv . As v tends to +∞ , E
tends rapidly to zero, hence

η(w) ∼ − 4E and |η(w)| ∼ |4E| = 4/e2πv .

This proves (A–2) as v → +∞ , and the proof when
v → −∞ is similar. Thus, the series (A–1) converges. Its
sum clearly gives rise to an even, degree two map from T

to Ĉ , with ℘1(0) = ∞ . Therefore, ℘1(w) = a2 ℘0(w)+ b

for suitable a 
= 0 and b . In fact, since

η(w) = 1/(πw)2 + O(1) as w → 0 ,

it follows that a = 1/π . For the computation of b , see
Lemma A.1 below.

A.2 Remark on Computation

To actually compute, one uses the series

℘1(w) = −4
∑
n∈Z

cnE
(cnE − 1)2

=
∑ 4

2 − cnE − (cnE)−1
, where

c = e2πiτ ,

(A–4)

with E as in (A–3). For the application in Section 4, it
was convenient to choose a specific Weierstrass function
℘̂ by specifying the values ℘̂(w1) and ℘̂(w2) at two des-
ignated points w1 and w2 of C/Λ. Any such function
can be evaluated as ℘̂(w) = α ℘1(w)+β , where the coef-
ficients α and β can be computed by solving the linear
equations ℘̂(wj) = α ℘1(wj) + β .

A.3 The Inverse Function

Given distinct points v1, v2, and v3 in the complex
plane, and given a constant a 
= 0, consider the ellip-
tic integral

w(z) = a

∫ z

∞

dζ√
4(ζ − v1) (ζ − v2) (ζ − v3)

. (A–5)

We can make sense of this many-valued function as fol-
lows. Let T be the smooth projective variety consisting
of all pairs (z, r) ∈ C2 with

r2 = f(z) , where f(z) = 4(z − v1)(z − v2)(z − v3) ,

together with one point at infinity. Then T is a two-fold
branched covering of Ĉ under the projection (z, r) �→
z . There are four branch points, hence T is a surface
of genus one by the Riemann-Hurwitz formula. Given
any smooth path P in T which leads from the point at
infinity to (z, r), the integral

w = a

∫
P

dz/r = a

∫
P

2 dr/f ′(z) (A–6)
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is well-defined. (If we exclude the point at infinity, note
that we can use z as local parameter except at the three
points where r = 0 and that we can use r as a local
parameter except at the two points where f ′(z) = 0.
The ramification point at infinity is more complicated
and will be discussed in the proof of A.1.) If we pass to
the universal covering space T̃ , then this integral does
not depend on the choice of path, so we obtain a well-
defined holomorphic mapping from T̃ to C ,

(z̃ , r̃) �→ w(z̃ , r̃) for (z̃ , r̃) ∈ T̃ .

Now, map the fundamental group π1(T ) ∼= Z ⊕ Z into
C by mapping any closed loop in T to the integral (A–
6) around this loop. Then, the image Λ ⊂ C of π1(T )
is an additive group Λ with two generators. In fact, Λ
must be a lattice, that is its generators must be linearly
independent over R . For otherwise, if both generators
were contained in a real one-dimensional sub vector space
RΛ ⊂ C , then the correspondence (z, r) �→ w (mod RΛ)
would be an open mapping from the compact set T to the
quotient vector space C/RΛ, which is impossible. Thus,
the quotient C/Λ is also a torus, and we have a holomor-
phic mapping from T to C/Λ that induces an isomor-
phism of fundamental groups. But any holomorphic map
from one torus to another is necessarily linear, since the
first derivative is a well-defined holomorphic map from
torus to C and, hence, is constant. This proves that our
correspondence

(z , r) �→ w(z̃ , r̃) = a

∫ (z,r)

∞
dz/r (mod Λ)

maps the Riemann surface T biholomorphically onto the
torus C/Λ.

We will prove the following.

Lemma A.1. The inverse mapping

℘ : w(z̃ , r̃) �→ z ∈ Ĉ

is a Weierstrass function of the form ℘(w) = a2℘0(w) +
b , with a as in (A–5 and with b equal to the average
(v1 + v2 + v3)/3 of the finite critical values.

Proof: To understand behavior of the integral (A–5) near
infinity, we introduce a local uniformizing parameter t ,
where

z = 1/t2 and r =
√

f(1/t2) = 2
(
1 − 3b t2/2 + · · ·

)
/t3 ,

with b = (v1 + v2 + v3)/3. A brief computation shows
that

w = a

∫
dz/r

= −a

∫
dt/(1 − 3b t2/2 + · · · )

= −a t
(
1 + b t2/2 + · · ·

)
,

hence

(a/w)2 =
1
t2

(
1 − bt2 + O(t4)

)
= z − b + O(t2) ,

or z = a2/w2 + b + O(w2), as required.

A.4 The Preferred Area Form on ℘(T)

If we push forward the Lebesgue area form du dv on the
torus under the map ℘ : T → Ĉ , then we obtain an area
form ρ(x+iy) dx dy on the Riemann sphere. Since dw =
a dz/

√
f(z) , the density function is easily computed as

ρ(z) = 2|a2/f(z)| .

(The factor of two arises since every point of the sphere
has two preimages on the torus, counting multiplicity.)
Thus, ρ is smooth except at the three finite critical values
of ℘ . Using Remark 3.3, we obtain the following.

Corollary A.2. The Lyubich measure for any Lattès map-
ping

F (z) = ℘ ◦ L ◦ ℘−1(z)

with finite postcritical points v1, v2, and v3 is given by
the area form ρ(x + iy) dx dy, where

ρ(z) =
k

|(z − v1)(z − v2)(z − v3)| .

Here the normalizing constant k is equal to |a|2/2 di-
vided by the area of T .

Note that there are infinitely many such Lattès maps
for any such torus; however, we obtain this same Lyu-
bich measure for all of them. As one example, using the
specific Weierstrass map ℘̂ : C/Z[i] → Ĉ , with critical
values ±i and 0, it follows that the Lyubich measure
for the rational map F (z) = (i/2)(z + z−1) is given by
ρ(x + iy) dx dy with density

ρ(z) =
∣∣∣∣ a2/2
z3 + z

∣∣∣∣ .
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A.5 The Centered Spherical Metric

We conclude this appendix with a digression. The stan-
dard spherical metric

2|dz|/(1 + |z|2)

on the Riemann sphere can be obtained by pulling back
the usual Riemannian metric on the unit sphere in three-
space under stereographic projection

→
s : Ĉ

∼=−→ S2 ⊂ R3 such that

→
s (x + iy) =

(2x , 2y , x2 + y2 − 1)
x2 + y2 + 1

.

A Möbius transformation z �→ (az + b)/(cz + d) will
be called a Möbius rotation if it preserves this metric.
Its matrix of coefficients then belongs to the projective
unitary group, with

d = a and b = −c ,

up to a constant factor. The antipodal map for this metric
is given by z �→ −1/z .

Definition A.3. We will say that a rational map F is cen-
tered if the centroid, with respect to the Lyubich measure
m , of the image of its Julia set under stereographic pro-
jection to S2 is equal to the origin:∫ ∫

Ĉ

→
s (z) dm(z) =

→
0 .

Intuitively, this means that the interesting features of its
Julia set are distributed in a balanced way around the
sphere S2 . Using the methods of [Douady and Earle 86],
we see that every rational map is conjugate to one which
is centered and this centered map is unique up to conju-
gation by a rotation. Pulling back the standard spherical
metric by this conjugacy, we conclude that there is a pre-
ferred spherical metric for any rational Julia set.

In the case of a quadratic rational map, note that the
critical points are always antipodal with respect to this
preferred metric. To see this, suppose that the critical
points are at 0 and ∞ , so that the canonical involu-
tion τF corresponds to the 180◦ rotation of S2 about
its poles. Since Lyubich measure is invariant under τF ,
it follows that the centroid

∫ ∫ →
s (z)dm(z) lies on the

axis through the poles. A suitable scale change, replac-
ing F (z) by F (cz)/c , will then move this centroid to the
origin. (Note, however, that the critical values of F can
be arbitrarily close to each other in the preferred metric.)

In the special case of a symmetric quadratic map, it is
not hard to check that the normal form z �→ a(z + z−1)
is always centered. However, in general, the operation of
“centering” a rational map seems computationally awk-
ward.

Similarly, we can say that a Weierstrass ℘ -function is
centered if ∫ ∫

T

→
s
(
℘(u + iv)

)
du dv =

→
0 ,

so that the push forward of Lebesgue measure is dis-
tributed in a balanced way around the unit two-sphere.
Evidently, a Weierstrass function is centered if and only
if all of its associated Lattès maps are centered. Any
℘ -function can be centered by composing it with some
Möbius transformation, which is unique up to rotation.
In fact, this centering operation for Weierstrass func-
tions is computationally straightforward: to every lattice
T = C/Λ there is associated a commutative group con-
sisting of the three translations L : w �→ w+λ/2 of order
two, together with the identity map. These give rise to
three commuting involutions

z �→ ℘ ◦ L ◦ ℘−1(z)

of the Riemann sphere, each of which has two easily com-
puted fixed points. The map ℘ is centered if and only if
the fixed points of each of these involutions are antipodal,
so that the involution is a 180◦ rotation. To achieve this
condition we can, for example, compose ℘ with a Möbius
transformation, which carries these three pairs to {±1} ,
{±i} , and {0,∞} respectively. In order to satisfy the
usual requirement that ℘(0) = ∞ , we can then compose
with a further Möbius rotation.

B. APPENDIX: LATTÈS MAPS AND MATINGS

We first discuss Lattès maps of arbitrary degree and
then specialize to the quadratic case. According to
Lemma 3.4, every Lattès map F has the following two
properties:

• F is a rational map of degree d ≥ 2 with only sim-
ple critical points, so that there are exactly 2d − 2
critical points;

• F has exactly four postcritical points, and none of
these four points is also critical.

Conversely, we have the following, as promised in Re-
mark 3.5.
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Lemma B.1. Any F with these two properties is a Lattès
map.

Proof: First note that every immediate preimage of one
of the four postcritical points is either critical or post-
critical. In other words, if V is the set of postcritical
points, then F−1(V ) � V is the set of all critical points.
In fact, there are 4d elements of F−1(V ) counted with
multiplicity, where d is the degree and where each crit-
ical point must be counted with multiplicity two. Since
there are 2d− 2 critical points by the Riemann-Hurwitz
formula, and 4 postcritical points, we can account for all
2(2d − 2) + 4 = 4d of the elements of F−1(V ). Hence,
every point in this set must be either critical or postcrit-
ical.

Proceeding as in Section A.3, we form the two-fold
branched covering T of Ĉ , branched over the four post-
critical points. Now, however, it will be more convenient
to assume that the critical and postcritical points are all
finite, defining T to be the set of all (z, r) ∈ C2 with

r2 = p(z) , where p(z) =
∏

vj∈V

(z − vj) ,

together with two points at infinity corresponding to the
two branches of the function

√
p(z) as |z| → ∞ , with

r ∼ +z2 or r ∼ −z2 respectively. By the Riemann-
Hurwitz formula, χ(T ) = 0, hence T is conformally
isomorphic to C/Λ for some lattice Λ. Choosing this
conformal isomorphism so that the zero point in C/Λ
corresponds to the postcritical point v1 ∈ V , it follows
that the involution (z, r) �→ (z,−r) of T must corre-
spond to some involution of C/Λ, which can only be
w �→ −w (mod Λ).

We must show that F lifts to a holomorphic map
L : T → T , which is unique up to composition with
the involution (z, r) �→ (z,−r). First, consider the local
problem, near some point (z0 , r0) ∈ T . There are four
cases, as follows:

(a) If z0 is neither a critical point nor a postcritical point
nor a pole of F , then p(F (z0)) 
= 0. Hence, we can
simply set

L(z, r) =
(
F (z) , ±

√
p(F (z))

)
, (B–1)

making some consistent choice of sign throughout a
neighborhood of (z0 , r0).

(b) If F (z0) = ∞ , the argument is similar.

(c) Now, suppose that z0 is a critical point, with
F (z0) = vj . Then the Taylor expansion for F

around z0 has the form F (z0 + h) = vj + c2h
2 +

c3h
3 + · · · with c2 
= 0. Since p′(vj) 
= 0, the Taylor

expansion for p ◦ F has the form

p ◦ F (z0 + h) = c′2h
2 + c′3h

3 + · · ·

with c′2 
= 0. Again, we can make a consistent choice
of sign in (B–1) for z = z0 +h in some neighborhood
of (z0 , r0).

(d) Finally, if z0 ∈ V is a postcritical point, then, since
the derivative p′(z0) is nonzero, we can solve locally
for z as a smooth function z = p−1(p(z)) = p−1(r2).
Furthermore, (p ◦ F )′(z0) 
= 0, so the composition
r �→ p ◦ F ◦ p−1(r2) has Taylor series of the form
r �→ c2r

2 + c4r
4 + · · · with c2 
= 0. Therefore, we

can set

L(z , r) =
(
F (z) , ±

√
p ◦ F ◦ p−1(r2)

)
,

again making a consistent choice of sign throughout
some neighborhood.

Thus, near any point z0 ∈ Ĉ there are exactly two pos-
sible liftings, and these local liftings form an unbranched
two-sheeted covering of the Riemann sphere Ĉ . Since Ĉ

is simply-connected, this means that there exists a global
lifting L : T → T . Since every holomorphic map from
a torus to itself is linear, it follows that F is indeed a
Lattès map.

B.1 Chebyshev Maps

The theory of Chebyshev maps is quite similar to the the-
ory of Lattès maps. Let M = C/Z be the infinite cylin-
der, and let M/± be the quotient space in which each w

(modulo Z) is identified with −w . The analogue of the
Weierstrass ℘ -function for this quotient is the function
w �→ 2 cos(2πw), which maps M/± biholomorphically
onto the complex plane C . Equivalently, the function
w �→ e2πiw maps M biholomorphically onto C � {0} ,
and if we identify z = e2πiw with 1/z = e−2πiw, then
the correspondence z �→ z + z−1 = 2 cos(2πw) maps the
quotient space biholomorphically onto C . For any inte-
ger d ≥ 2 the linear map w �→ dw (mod Z) from M to
itself (or z �→ zd from C�{0} to itself) induces a monic
polynomial map

2 cos(θ) �→ Φd(2 cos θ) = 2 cos(d θ) ,

or equivalently

z + z−1 �→ Φd(z + z−1) = zd + z−d ,
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FIGURE 17. Graph of Φ7(x) = x7 − 7x5 + 14x3 − 7x in
the square [−2, 2] × [−2, 2] .

which is called the degree d Chebyshev map. As exam-
ples,

Φ2(z) = z2 − 2 ,

Φ3(z) = z3 − 3z , and

Φ4(z) = z4 − 4z2 + 2 .

The analogue of Lemma B.1 is the following statement:

Lemma B.2. A polynomial map f of degree d is linearly
conjugate to ±Φd if and only if it has d − 1 distinct
critical points and exactly two postcritical points in the
finite plane C , neither of these postcritical points being
also critical.

Proof outline: After a linear conjugation, we may assume
that the postcritical points are ±2. Form the two-fold
branched covering z �→ s = z + z−1 , branched over
s = ±2. Proceeding as in the proof of Lemma B.1,
the polynomial s �→ f(s) lifts to a rational function
z �→ F (z), which has critical points and critical values
only at zero and infinity. Such a rational function, with
F (2) = ±2, must be given by F (z) = ±z±d , and it fol-
lows that f(s) = ±Φd(s).

It is not difficult to check that the Julia set J(±Φd)
is equal to the interval [−2 , 2]. Conversely:

Lemma B.3. Any degree d polynomial f whose Julia set
is homeomorphic to an interval (or more generally to a
finite topological tree) is linearly conjugate to ±Φd .

Proof: Since J is connected, it contains all finite crit-
ical points. Define the valence v(z) at a point z ∈ J

to be the number of connected components of J � {z} ,
and note that v(z) is equal to v

(
f(z)

)
multiplied by the

local degree of f at z . It follows that the tree J must
actually be a simple arc. For otherwise there would be at
least one point z with v(z) ≥ 3. Hence, taking iterated
preimages, there would be infinitely many such points,
which is impossible. It now follows easily that the local
degree is two if z is a critical point, which must belong
to the open arc and map to an endpoint, and is one oth-
erwise. The d − 1 critical points cut J into d closed
intervals, each of which maps onto J . It follows that
both endpoints must be postcritical, and the conclusion
then follows from Lemma B.2.

B.2 Algebraic Description of Lattès Maps

Let us identify T with the quotient torus T = C/Λ for
some lattice Λ ⊂ C and write this linear map as

L(w) = ηw + κ (mod Λ) .

As in Section 3.2, we must have ηΛ ⊂ Λ and 2κ ∈ Λ.
Without loss of generality, we may assume that 1 ∈ Λ
and, hence, that η , η2 , η3 , . . . ∈ Λ. In other words, Λ
must contain the additive group Z[η] generated by all
the powers ηk , for k ≥ 0. Since this additive group is
finitely generated, it follows that η must be an algebraic
integer, satisfying a polynomial equation with integer co-
efficients and with leading coefficient one. There are now
two possibilities:

(a) If η is a rational integer, η ∈ Z , then there is no re-
striction at all on the lattice Λ. The maps L : T → T

and F : Ĉ → Ĉ have degree d = η2 ≥ 4. In par-
ticular, these rational maps F are nonrigid; there is
an entire one-parameter family of topologically con-
jugate maps that are distinct from the analytic point
of view.

(b) Otherwise, the additive group Z[η] ⊂ C has rank
two, and it follows that η is a quadratic algebraic
integer, satisfying an equation of the form

η2 − cη + d = 0 (B–2)

with integer coefficients. In particular, it follows that
Z[η] = Z+ηZ . Here the constant d = |η|2 ≥ 2 is the
degree, and c is the real part of 2η . Note that η is
an invariant of the Lattès map only up to sign, since
the two linear maps L(w) and −L(w) give rise to the
same F = ℘ ◦ L ◦ ℘−1 . To eliminate this ambiguity,
we will often list η2 rather than η . Changing the
sign of η if necessary, we may assume that c ≥ 0.
Since η is assumed to be nonreal, the discriminant



82 Experimental Mathematics, Vol. 13 (2004), No. 1

c2 − 4d must be negative, hence

0 ≤ c < 2
√

d . (B–3)

B.3 The Degree Two Case

We will show that there are exactly seven distinct Lattès
maps of degree two, up to holomorphic conjugation.
(More precisely, there are three pairs of complex conju-
gate Lattès maps, plus one real Lattès map.) First note,
using (B–2) and (B–3), that either

c = 0 , η2 + 2 = 0 , with η2 = −2 , or

c = 1 , η2 − η + 2 = 0 , with η2 = (−3 ± i
√

7)/2 , or

c = 2 , η2 − 2η + 2 = 0 , with η2 = ± 2i . (B–4)

Thus, there are five distinct possibilities for η2 . (Corre-
spondingly, η can take the values ±i

√
2 , ±(1± i

√
7)/2,

and ±(1 ± i).)
Next, we must ask which lattices are possible, for a

given η . By a scale change we can always assume that
the minimum distance between distinct lattice elements
is equal to 1, so that |λ| ≥ 1 for all nonzero λ ∈ Λ.
Furthermore, by rotating the coordinates we can then
assume that 1 ∈ Λ and hence that Z[η] ⊂ Λ. In the
degree two case these two conditions suffice to guarantee
that Λ = Z[η] . In fact, in each of the cases listed in
(B–4), it is not hard to choose a compact fundamental
domain for Z[η] that is strictly contained in the open
unit disk. Hence, it is not possible to add more points
to the lattice Z[η] without violating the condition that
|λ| ≥ 1 for λ 
= 0.

Finally, fixing the multiplier η and the lattice Λ =
Z[η] , we must consider the additive constant κ ∈ 1

2Λ.
This is not an invariant of the Lattès map. In fact, if we
replace L(w) = ηw + κ by

L(w + λ/2) − λ/2 = η w + κ′ with

κ′ = κ + (η − 1)λ/2 ,

then we obtain a holomorphically conjugate Lattès map,
provided that λ/2 is a fixed point of the involution
w �→ −w (mod Λ) or, in other words, provided that
λ ∈ Λ. In the cases c = 0 and c = 2, it is not hard
to check that every element of 1

2Λ can be written as
(η − 1)λ/2 (mod Λ) for some λ ∈ Λ. Hence, in these
cases we can always choose the origin in C/Λ so that
κ = 0. However, when η = ±(1±√−7)/2, the equation
(η − 1)λ/2 ≡ 1/2 (mod Λ) has no solution λ ∈ Λ.

Hence, the two linear maps

L(w) = ηw and L(w) = ηw + 1/2

give rise to distinct Lattès maps.
The census of quadratic Lattès maps can now be tab-

ulated as follows. Here, the bottom two lines of the table
give the number of postcritical fixed points for F and
the information as to whether or not F admits a holo-
morphic conjugacy that interchanges its critical points.

Lemma B.4. Up to holomorphic conjugacy there are ex-
actly seven distinct Lattès maps of degree two, corre-
sponding to seven linear maps L(w) = η w + κ with the
following descriptions:

η2 = −2 (−3 ± i
√

7)/2 (−3 ± i
√

7)/2 ±2i
κ = 0 0 1/2 0

postcrit. f.p. 1 2 0 1
symmetric? no yes yes yes.

Proof: The number of postcritical fixed points is the most
elementary and easily computable invariant for a Lattès
map. If there is just one postcritical fixed point, then (in
the degree two case) it is easy to check that we must have
the following schematic diagram for the critical orbits:

•

c1 �→ • �→ • • c2

.

Here, the cj are the two critical points, and the four
heavy dots are the four postcritical points. If there are
two postcritical fixed points, then the diagram splits into
two parts as follows:

c1 �→ • �→ • • • c2 .

Finally, if there are no postcritical fixed points, then there
must be a postcritical cycle of period two, and the dia-
gram takes the following form:

c1 �→ • �→ • ↔ • • c2 .

To distinguish between these three possibilities for the
seven examples of Lemma B.4, it is simply necessary to
compute the mapping w �→ η w + κ on the four element
set 1

2Λ/Λ ∼= V . This computation will be left to the
reader.

In each case, we can give explicit examples of rational
maps in the Lattès conjugacy class as follows. This will
also enable us to decide which of these maps are sym-
metric.
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First, suppose that η2 = −2. Putting the critical
points at ±1 and the postcritical fixed point of multiplier
η2 at infinity, the map must have the form

F (z) = (z + z−1)/η2 + b = − (z + z−1)/2 + b

for some constant b . Thus, the critical points ±1 map
to b∓ 1, which must map to the preimage 0 of ∞ . This
yields the two equations 2b = (b∓ 1) + (b∓ 1)−1 , with
solutions b = ±√

2. Thus, F is a rational map with real
coefficients. For example, taking b = +

√
2, we have

F (z) = − (z + z−1)/2 +
√

2 (B–5)

with critical orbits ±1 �→ √
2 ∓ 1 �→ 0 �→ ∞ . Since

b 
= 0, this map is not symmetric.
Next, suppose that η2 = (−3±i

√
7)/2, with two post-

critical fixed points. Any quadratic rational map with
fixed points of multiplier α and β can be put in the nor-
mal form z �→ z(z + α)/(βz + 1), with these designated
fixed points at zero and infinity. (Compare [Milnor 93].)
In the special case α = β , this map commutes with the
involution σ(z) = 1/z and, hence, is symmetric. In our
case, the map has two postcritical fixed points of multi-
plier η2 . Hence, it has the form

F (z) = z
z + η2

η2z + 1
with η2 = (−3 ± i

√
7)/2 (B–6)

and commutes with σ(z) = 1/z . Now consider the com-
position

F ◦ σ(z) = σ ◦ F (z) =
η2z + 1

z(z + η2)
. (B–7)

Evidently, this map has exactly four postcritical points,
with a postcritical cycle 0 ↔ ∞ of multiplier η4 . Hence,
it is the required Lattès map, corresponding to L(w) =
η w + 1/2. Evidently, this map is also symmetric.

Finally, suppose that η2 = ±2i . Then, as described
in Section 3, we can put the critical points at ±1 and
the postcritical fixed point of multiplier η2 at infinity, to
obtain the symmetric normal form

F (z) = (z + z−1)/η2 , with η2 = 2i (B–8)

and with critical orbits ±1 �→ ∓ i �→ 0 �→ ∞ . This
completes the proof of Lemma B.4.

B.4 Lattès Matings

This section will give examples of matings which satisfy
the conditions of Lemma B.1 and, hence, can also be de-
scribed as Lattès mappings. I am indebted to Shishikura

for providing the following table, which gives more ex-
amples and more precise information than I was able to
obtain. Recall the notation

fp/q(z) = z2 + cp/q ,

where cp/q is the landing point of the p/q -ray in the
Mandelbrot set. (Compare Figure 5.) The first two
columns of this table list pairs p/q and r/s for a mat-
ing fp/q ⊥⊥ fr/s , while the remaining two columns list
the constants η2 for the associated linear map L(w) =
η w + κ . Here, only the examples with η2 in the up-
per half-plane have been listed. In each case, a com-
plex conjugate Lattès mating can be obtained by chang-
ing the signs of the angles. For example, the mating
f1/4 ⊥⊥ f1/4 of Section 3, with η = 1 − i , η2 = −2i ,
corresponds to the complex conjugate of the first en-
try. With these conventions, here is Shishikura’s list:

p/q r/s η2 κ
3/4 3/4 2i 0
1/12 5/12 −2 0
5/6 5/6 (−3 + i

√
7)/2 1/2

1/6 5/14 (−3 + i
√

7)/2 0
3/14 3/14 (−3 + i

√
7)/2 0

3/14 1/2 (−3 + i
√

7)/2 0
5/6 1/2 (−3 + i

√
7)/2 0

.

B.5 A Nonunique Mating

Kevin Pilgrim has pointed out that this discussion leads
to an example in degree four where the analytic struc-
ture is not at all uniquely defined. Let F be the de-
gree two Lattès map of (B–5) with multiplier η = i

√
2.

Then, F ◦F is the degree four Lattès map with multiplier
η2 = −2 ∈ Z . Thus, F ◦ F belongs to a one-parameter
family of Lattès maps which are topologically conjugate
but analytically distinct. Since F ∼= f1/12 ⊥⊥ f5/12 , it
follows that the topological mating

(f1/12 ◦ f1/12) ⊥⊥ (f5/12 ◦ f5/12) ∼= F ◦ F

can be provided with a compatible analytic structure in
uncountably many distinct ways.

The last four rows of this table describe another note-
worthy example: they show that the Lattès map (B–6)
with two postcritical fixed points can be presented as a
mating in four essentially different ways. Furthermore,
three of these mating structures are nonsymmetric, even
though the map itself is symmetric. Thus, there are
seven different mating structures for this Lattès map if
we mark the critical points and hence distinguish between
fp/q ⊥⊥ fr/s and fr/s ⊥⊥ fp/q .
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We will first give a case-by-case discussion, proving
the following and giving a rough idea as to which mat-
ing corresponds to which Lattès map. (The more diffi-
cult question as to precisely which mating corresponds to
which Lattès map will be postponed until Section B.7)

Lemma B.5. Each of these seven matings yields a rational
map that can be given the structure of a Lattès map.

Proof: The discussion will be divided into three cases,
according to the number of postcritical fixed points.

Case 0. For f5/6 ⊥⊥ f5/6 we have

γ̂(5/6) �→ γ̂(2/3) ↔ γ̂(1/3) γ̂(−5/6) .

Thus, both critical orbits end on a common cy-
cle of period two. There is no postcritical fixed
point.

Case 1. The mating f3/4 ⊥⊥ f3/4 is clearly symmetric,
with postcritical orbits

γ̂(3/4) �→ γ̂(1/2) �→ γ̂(0) and

γ̂(−3/4) �→ γ̂(1/2) �→ γ̂(0) ,

with just one postcritical fixed point. (Compare
Section 3.) Similarly, the mating f1/12 ⊥⊥ f5/12

has postcritical orbits

γ̂(1/12) �→ γ̂(1/6) �→ γ̂(1/3) ,

where γ̂(1/3) = γ̂(2/3) is a fixed point, since
c5/12 belongs to the 1/2-limb of the Mandel-
brot set, and

γ̂(−5/12) �→ γ̂(1/6) �→ γ̂(1/3) .

(The proof that this example is not symmet-
ric is nontrivial. Note that f1/12 ⊥⊥ f5/12 =
f1/12 ⊥⊥ f7/12 since c5/12 = c7/12 ∈ R .)

Case 2. For the mating f5/6 ⊥⊥ f1/2 we have

γ̂(5/6) �→ γ̂(2/3) and

γ̂(−1/2) �→ γ̂(0) .

Here, γ̂(2/3) is a fixed point because c1/2 be-
longs to the 1/2-limb. Note that

f1/2(z) = z2 − 2 ,

f1/6(z) = z2 + i , and

f5/6(z) = z2 − i .

(Compare B.6.) For f1/6 ⊥⊥ f5/14, we have

γ̂(1/6) �→ γ̂(1/3) and

γ̂(−5/14) �→ γ̂(2/7) ,

where γ̂(1/3) is fixed because c−5/14 belongs to
the 1/2-limb and γ̂(2/7) is fixed because c1/6

belongs to the 1/3-limb. For f3/14 ⊥⊥ f3/14,

γ̂(3/14) �→ γ̂(3/7) and

γ̂(−3/14) �→ γ̂(−3/7) ,

using the fact that c3/14 belongs to the 1/3-
limb while c−3/14 belongs to the 2/3-limb.
Similarly, for f3/14 ⊥⊥ f1/2 we have

γ̂(3/14) �→ γ̂(3/7) and

γ̂(1/2) �→ γ̂(0) .

Since all of these maps have exactly four post-
critical points, the conclusion follows from
Lemma B.1.

B.6 Generalized Lattès Maps

If we allow a mild generalization of the concept of Lattès
map, then there is one more example which is also a mat-
ing. Let ωn be the nth root of unity exp(2πi/n) with
n equal to 3, 4, or 6, and consider the ωn -symmetrical
lattice Λn = Z[ωn] , that is

Λ4 = Z[i] or Λ3 = Λ6 = Z
[( ± 1 + i

√
3
)
/2

]
.

The group of nth roots of unity acts by multiplication on
the torus Tn = C/Λn , and the quotient Tn/(t ≡ ωn t)
is a Riemann surface of genus zero. Now any η 
= 0
in Z[ωn] acts by multiplication on this quotient surface,
yielding a rational map of degree |η|2, which I will call a
generalized Lattès map. Like the ordinary Lattès maps,
these have a bounded flat orbifold metric.6 On the other
hand, like Chebyshev maps or the negatives of Chebyshev
maps, they have only three postcritical points. In fact,
these are the only maps with these properties. Compare
[Douady and Hubbard 93, Section 9.2].

Among these generalized Lattès maps, there is only
one of degree two, corresponding to the case n = 4 and
η = 1±i . (Here the sign doesn’t matter since ω4(1−i) =
1 + i .) The resulting quadratic rational map has critical
orbit diagram

c1 �→ c2 �→ • �→ •
6For a discussion of orbifold structure, see, for example, [Douady

and Hubbard 93] or [Milnor 99, Section 19].
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03/41/2 01/2

1/4

3/4

FIGURE 18. (a) Schematic diagram for the mating f1/4 ⊥⊥ f1/4 , and (b) a simplified version.

FIGURE 19. This shows (a) Figure 18(b) lifted to the torus and (b) the preimage of E1 lifted to the torus.

and can be represented, for example, as z �→ −(2 + z +
z−1)/4. It is not hard to see that this map can also be
realized as the mating of our familiar polynomial f1/4

with the Chebyshev polynomial f1/2(z) = z2 − 2.
Matings with the Chebyshev map f1/2(z) = z2−2 de-

serve special mention. First, these are the only matings
such that the associated γ̂ : R/Z → J(F ) is not one-to-
one almost everywhere, but rather satisfies γ̂(t) = γ̂(−t).
(Compare Remark 5.6.) Also, they are closely related
to self-matings. C. Petersen has pointed out that for
any quadratic rational map which is symmetric (that is
satisfies σ ◦ F = F ◦ σ as in 4.1), we can collapse the
Riemann sphere under the involution σ to obtain a new
rational map, which we may denote by F/σ , on the quo-
tient Riemann surface Ĉ/σ ∼= Ĉ . If we use the normal
form F (z) = a(z+z−1) with σ(z) = −z , then we can in-
troduce the coordinate Z = z2 on Ĉ/σ , with associated
map

Z �→ F
(√

Z
)2

= a2 (Z + Z−1 + 2) .

Here the two critical points z = ±1 for F correspond to
the single critical point Z = +1, while a new preperiodic
critical point appears, namely Z = −1 �→ 0 �→ ∞ .
Conversely, any quadratic rational map having a critical
point for which the second forward image is a fixed point
arises in this way from a symmetric map.

If F ∼= f ⊥⊥ f is a self-mating, then it is easy to check
that the associated F/σ can be identified with f ⊥⊥ f1/2 .
As noted above, the matings f3/14 ⊥⊥ f1/2

∼= f5/6 ⊥⊥
f1/2 can be given a Lattès structure. On the other hand,
the mating f1/4 ⊥⊥ f1/2 does not have a Lattès structure
in the classical sense, but does have a generalized Lattès
structure.

B.7 The Algorithm

Here is an outline of a slightly modified form of
Shishikura’s procedure for determining exactly which
mating corresponds to which Lattès map. It is best car-
ried out with a set of colored markers and a quantity
of blank paper. Start with a schematic diagram, as in
Figure 18(a), for the two Julia sets Jp/q and Jr/s em-
bedded in the sphere S2 . (Compare Figure 3.) Then
make a simplified version which includes only the follow-
ing key features: the equator (represented by the circle
in Figure 18(b)) with points in the critical and postcrit-
ical ray classes marked and with any ray pair Aj join-
ing one of these marked points to another within the
northern or southern hemisphere drawn in. (These are
the dotted curves in the figure.) Note that each such
Aj corresponds to a single point in the quotient sphere
Kp/q ⊥⊥ Kr/s = S2/

ray∼ . Choose four base points among
these marked points, one in each postcritical ray equiva-
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lence class. These cut the equator into four arcs, which
we number consecutively as E1 through E4 . (In the fig-
ure, each Ej is indicated by an arrow with j heads.)
Next, form the two-fold covering torus T , branched over
these four points. Then each Ei will be covered by a
simple closed curve Êi in T , where Ê1 and Ê3 are dis-
joint but cross Ê2 and Ê4 transversally. The universal
covering of T can be identified with the complex num-
bers. In this universal covering, we obtain a grid of non-
intersecting curved lines covering Ê1 and Ê3 crossed by
curved lines covering Ê2 and Ê4 . Figure 19(a) repesents
a single fundamental parallelogram for this torus. We
can identify the vertices of this fundamental domain (the
circled points in the figure) with four points of the lattice
Λ, say 0 and 1 on the real axis and ξ and ξ + 1 in the
upper half-plane. This lattice can also be identified with
the homology group H1(T; Z).

The smaller squares in Figure 19 represent alternately
the northern and southern hemispheres of S2 . Now lift
each of the dotted arcs Aj of Figure 18 to each of the
two rectangles corresponding to its hemisphere, as indi-
cated in Figure 19(a). Next, determine the preimage of
E1 under the angle doubling map from the equator to
itself. Lift both components of this preimage to T in
two ways, and join them up by following the lifted arcs
Aj as necessary, to form a simple closed curve or pair
of simple closed curves Ê′

1 in T (Figure 19(b)). We see
from the resulting picture that, in this case, the induced
linear map on H1(T; Z) ∼= Λ ⊂ C caries the diagonal
homology class ξ + 1 to the horizontal class ±2. Here
we could choose either sign; let us take the plus sign to
fix our ideas. It follows that the corresponding muliplier
is given by η = 2/(ξ + 1). Now do the same for E2 . A
similar argument shows that the linear map carries ξ− 1
to 2ξ . Thus, η = 2ξ/(ξ − 1) = 2/(ξ + 1). Since ξ lies
in the upper half-plane, we can solve uniquely for ξ = i

and η = 1− i . (Compare Assertion 3.2 and Section 3.3.)

C. APPENDIX: EXTERNAL ANGLES AND
THE HUBBARD TREE

This will be a brief outline of how one computes the exter-
nal angles of points on the Hubbard tree H0 = H0(f1/4).
(For much more detail on how one computes such things,
see [Douady 86].) Let us start with a schematic diagram
of H0 as shown in Figure 20. Here, the two sides of each
edge in H0 have been labeled separately since an exter-
nal ray must land on one side or the other (if we exclude
the four vertices). For any external ray which lands at a
point z ∈ H0, we obtain an infinite sequence of symbols

A

F

BC

E
D

c

−β

β

α

FIGURE 20. Diagram of the Hubbard tree for f1/4 , with
labels for the two sides of the three edges.

in {A,B,C,D,E, F} by following its orbit under f1/4 .
The possible transitions between these six symbols under
the map f1/4 can be described briefly by the diagram

C → E → A → A ∪ B ∪ C

B → D → F → B ∪ C ∪ F ,

or equivalently by the following diagram:

D ← B ← A
↘ ↑ ↓ ↖

F → C → E .
(C–1)

(Compare Figure 21. As an example, A maps onto the
union A ∪ B ∪ C , but B maps only to D .) For each
ray landing at an interior point z of some edge in H0 ,
there is a different ray that lands at the same point z

from the opposite side of this edge. Its symbol sequence
is obtained from the original sequence by permuting the
six symbols according to the scheme

A ↔ F , B ↔ C , and D ↔ E . (C–2)

This corresponds to a rotation of the transition diagram
(C–1) by 180◦ .

Now replace each of these six symbols by a zero or one
accordingly as it lies above or below the path from −β

to β , so that

A , B , C , D �→ 0 and E , F �→ 1 .

Then, we obtain the following transition diagram:

0 ← 0 ← 0
↘ ↑ ↓ ↖

1 → 0 → 1
. (C–3)

Starting anywhere in this diagram and following the ar-
rows, making an arbitrary choice whenever there is more
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A B C D E F

A

B

C

D

E

F

FIGURE 21. Graph of a piecewise linear circle map which
represents the allowed transitions between edges in Figure
20. This graph has a jump discontinuity, since nothing
in F maps to D or E .

than one outward arrow, we obtain an infinite sequence
of zeroes and ones, which represents the binary expansion
of a corresponding external angle. The angles obtained in
this way are precisely those whose rays land on H0 . As
an example, the sequence FFBD repeated periodically,
denoted briefly by FFBD , leads to the periodic binary
expansion .1100 = 4/5, hence the 4/5-ray lands on H0 .
If we apply the involution (C–3), we obtain the periodic
sequence AACE , corresponding to .0001 = 1/15. Thus,
the 1/15 and 4/5-rays land at exactly the same point of
H0 . (See Figure 2.)

We would like to know when the rays Rt and R−t

both land on H0 . As one example, note that the sequence
BDFF corresponds to .0011 = 1/5. We have just seen
that the ray R−1/5 = R4/5 lands on H0 . Thus, the 1/5-
and the −1/5-rays both land on the tree H0 . (They land
at different points since the first lands on edge B while
the second lands on F . Compare Figure 2.) Similarly,
the 2/5 and −2/5-rays land on H0 , as do the 1/10- and
−1/10-rays, the 1/20- and −1/20-rays, and so on. These
coincidences lead to infinitely many intersections between
the images µ1(H0) and µ2(H0) in Ĉ and, hence, to the
complications seen in Figures 7, 14, 15, and 16. Here is
a precise statement. (Compare (6–1) in Section 6.)

Lemma C.1. The external rays Rt and R−t for J(f1/4)
both land on the Hubbard tree H0 ⊂ J(f1/4) if and only

if t is either 0 , 1/2 , or an angle of the form ±1/(2n 5)
or ±(1 − 1/(2n 5))/2 with n ≥ 0 .

Proof: Note that the bit sequence for −t is obtained from
the sequence for t by reversing all bits, so that 0 ↔ 1. In
the case of a ray Rt landing on H0 , we see by inspecting
(C–3) that the sequence 1011 can never occur in the
binary expansion of t . Now suppose that R−t lands on
H0 . Then the dual sequence 0100 cannot occur in the
expansion of t . Comparing (C–1) and (C–3), this implies
that the symbol C cannot occur in the symbol sequence
for t . It follows that the sequence 101 cannot occur in
its binary expansion and that 1 0n1 with n > 2 cannot
occur except as an initial segment. Now suppose that
both Rt and R−t land on H0 . Then the sequence 010
cannot occur, and 0 1n0 with n > 2 can occur only as an
initial segment. It is now straightforward to check that
the only possible sequences are

.1n1100 ↔ .0n0011 and .10n0011 ↔ .01n1100

with n ≥ 0, corresponding to the angles listed.

Remark C.2. Generically, there are two external rays
landing on each point of H0 . The only exceptions are
the fixed point α and its iterated preimages where three
rays land, and the three points c �→ −β �→ β where
only one ray lands. The angle of an external ray de-
termines its symbol sequence except in the case of the
iterated preimages of α and β . As examples, the two
symbol sequences BDF and ACE both determine the
angle .001 = 1/7 with γ(1/7) = α , while the two symbol
sequences ACEA �→ .0010 and ABDF �→ .0001 both
correspond to the ray R1/8 that lands at γ(1/8) = 0.

If two different rays land on a common point z , recall
from Lemma 5.5 that z must belong to the union

⋃
Hn

of the iterated preimages of H0 . We can supplement
Lemma C.1 as follows:

Lemma C.3. If both Rt and R−t land on
⋃

Hn , then
either t is a dyadic rational p/2m or else the binary
expansion of t is eventually periodic with period 0011 .
In the latter case, there is a unique angle s 
≡ t with
γ(s) = γ(t), and its binary expansion has eventual pe-
riod 0100 . Similarly, there is a unique u 
≡ t with
γ(−u) = γ(−t), and its binary expansion has eventual
period 1011 .

More explicitly, since .0011 = 1/5 and .0101 = 4/15,
it follows that the orbits of t and s under angle doubling
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are eventually periodic, of the form

t �→ 2t �→ · · · �→ 1/5 �→ 2/5
�→ 4/5 �→ 3/5 �→ 1/5

s �→ 2s �→ · · · �→ 4/15 �→ 8/15
�→ 1/15 �→ 2/15 �→ 4/15 .

The same is true for −t and −u .

Proof of Lemma C.3: After doubling the angles suffi-
ciently often, we may assume that both γ(t) and γ(−t)
belong to H0 , so that Lemma C.1 applies. The proof is
then straightforward.

Now consider the mating F ∼= f1/4 ⊥⊥ f1/4 and the
associated semiconjugacy

γ̂ : (R/Z , 2·) → (Ĉ , F ) .

It follows from Section 2.2 that γ̂(t) = γ̂(t′) if and only
if there exists a chain t = t1 , t2 , . . . , tn = t′ such that

either γ(ti) = γ(ti+1) or γ(−ti) = γ(−ti+1) (C–4)

for each i between 1 and n − 1. Here we may assume
that the ti are distinct and that the + and − conditions
alternate, since otherwise t and t′ could be joined by a
shorter such chain.

Corollary C.4. For this particular mating, it suffices to
consider chains of length n ≤ 3 in order to test whether
γ̂(t) = γ̂(t′) .

Proof: Given a chain t1 , t2 , t3 , t4 of length four satisfy-
ing (C–4), first suppose that t2 is not a dyadic rational.
Then it follows from Lemma C.3, applied to t1 , t2 , t3 ,
that the binary expansion of t2 has eventual period 0011
while the binary expansion of t3 has eventual period 0001
or 0111. But, Lemma C.3 applied to t2 , t3 , t4 shows
similarly that t3 must have eventual period 0011, yield-
ing a contradiction. Now suppose that t2 is a dyadic
rational, with say γ(t1) = γ(t2) = z . Then the orbit
of z must pass through the critical point, since other-
wise we would obtain two distinct rays landing at the
β -fixed point. It follows that the orbit of γ(−t2) does
not pass through the critical point, hence the condition
γ(−t2) = γ(−t3) cannot be satisfied with t2 
≡ t3 . This
contradiction completes the proof.

Remark C.5. We can use this same argument to ver-
ify the condition of Moore’s Theorem 2.1 as applied to
this particular mating. Recall that the ray equivalence

relation on the two-sphere was defined as the smallest
equivalence relation

ray∼ such that the closure of each
ν1(Rt(J)) ∪ ν2(R−t(J)) lies in a single equivalence
class. (Compare Figure 2.) The arguments above show
that each ray equivalence class has one of the following
four forms, where each edge represents such a ray pair
closure, joining a point of ν1(J) to a point of ν2(J):

.
Each end vertex in one of these four graphs represents
the image under ν1 or ν2 of a point in J where only one
external ray lands, while each interior vertex represents
the image of a point where two different rays land. Thus,
the first three graphs represent chains of length one, two,
and three. In the last two graphs the vertices are all
eventually periodic. The eventual periods involve only
angles with denominator 5 and 15 in one case and 7 in
the other (corresponding to the α fixed point).

Since none of these four graphs can separate the plane,
we see that the conditions of Moore’s Theorem are sat-
isfied, so that (S2/

ray∼ ) = J ⊥⊥ J is indeed a topological
sphere. (Of course, this is only one step in Shishikura’s
proof in which this topological-mating can be given a
holomorphic structure.)

Here is another consequence. (Compare Figure 13.)

Corollary C.6. The symmetric Hubbard tree H1 = H0 ∪
(−H0) is embedded injectively into the Riemann sphere
by the map µ1 : J(f1/4) → J(F ) = Ĉ .

Proof: If γ(t) and γ(t′) are two distinct points of H1

that map to the same point under µ1 , then γ̂(t) = γ̂(t′),
hence t and t′ are joined by a chain satisfying (C–4).
If there is more than one ray landing at γ(t) and at
γ(t′), then combining these with a chain from t to t′ we
get a chain of length ≥ 4, contradicting Corollary C.4.
On the other hand, if only one ray lands on γ(t), then
t ∈ {0 , 1/4 , 1/2 , 3/4} . Hence, only one ray lands on
γ(−t) also, and the equivalence class is a singleton.

Note, however. that the preimage H2 = f−1(H1) is
not mapped injectively, since γ(3/8) and γ(7/8) are dis-
tinct points of H2 but γ(−3/8) = γ(−7/8) = 0; hence,

µ1(γ(3/8)) = µ1(γ(7/8)) .
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C.1 A Note on Computation

In order to actually plot an image of the Hubbard tree,
it is convenient to work with an associated circle map,
as graphed in Figure 21. For each point of the asso-
ciated circle which parametrizes H0 , it is not difficult
to iterate this circle map and, hence, compute the bi-
nary expansion of the corresponding angle t . It is then
easy to plot the image µ1(γ(t)) = ℘(ĝ(t)), using Sec-
tion 4 and Appendix A.2. (See Figure 13.) It is much
harder to compute the point γ(t) itself, since the oper-
ation of following an external ray to locate its landing
point is rather slow. One quite general method for plot-
ting Hubbard trees of full Julia sets has been suggested
to me by Zakeri: first, make a raster file for the Julia
set; then, use an algorithm to search for a minimal path
between specified pixels within this set. A quite differ-
ent procedure was actually used for Figures 11 and 12, as
follows. Given any dyadic rational t0 with binary expan-
sion t0 = .b1b2 · · · bn , let tk = .bk+1 · · · bn ≡ 2kt0 , and let
zk = γ(tk). Since zk+1 = f(zk) and zn = β , we can try
to solve for

zk = ± √
zk+1 − c ∈ f−1(zk+1)

by backwards induction. The problem is to make the cor-
rect choice of sign at each step. Inspecting Figure 2, we
see that to a first approximation the point zk lies in the
left half-plane if and only if its angle tk lies in the inter-
val [1/8 , 5/8]. This observation gives a simple rule for
choosing the sign and yields a good first approximation
to the required picture. However, this choice of sign may
well be wrong when zk is very close to the origin. To
make a correct choice in this case, one needs the observa-
tion that J is asymptotically self-similar near the prepe-
riodic point 0 with expansion factor of

√
f ′(β) =

√
2β .

(Compare [Tan Lei 00].) Further details will be omitted.

D. APPENDIX: SOME NONSTANDARD
TOPOLOGICAL CONJUGACIES

I am indebted to A. Douady for pointing out that there
exist topological conjugacies between filled Julia sets that
cannot be extended over any neighborhood in C . This
appendix will describe the simplest such examples.

For any rational number 0 < p/q < 1, let c(p/q) be
the “center point” for the p/q -limb of the Mandelbrot
set (or more precisely the center point for that hyper-
bolic component in the p/q -limb, which is an immediate
satellite attached to the central cardioid). Let K(p/q)
be the filled Julia set for the corresponding polynomial

z �→ z2 + c(p/q). This polynomial has a periodic criti-
cal orbit of period q . Furthermore, the periodic Fatou
components are arranged around their common bound-
ary point α in a cyclic order as if they corresponded
under a rotation through the angle of p/q ∈ R/Z . (Com-
pare Figure 22 for the case p/q = 2/5.)

Theorem D.1. If 0 < p/q < p′/q < 1 are distinct frac-
tions in lowest terms with the same denominator, then
there exists a unique topological conjugacy K(p/q) →
K(p′/q) that is holomorphic on the interior. However,
this conjugacy cannot be extended as a homeomorphism
over any neighborhood of K(p/q) .

(Compare [Branner and Fagella 99] for a quite dif-
ferent homeomorphism between K(p/q) and K(p′/q),
which is compatible with the embedding into C but not
with the dynamics.)

Proof: To prove Theorem D.1, we will show how to con-
struct K = K(p/q) as a topological space, together with
its dynamics, given only the denominator q , without any
reference to the numerator p . In fact, let K0 be the
union of the closures of the bounded periodic Fatou com-
ponents of f , and let Kn = f−n(K0). We will first give
a description of K0 which depends only on q and then
extend inductively to give a corresponding description of
Kn . Finally, we will show that the entire filled Julia set
can be described as the inverse limit of an appropriate
sequence of maps K0 ← K1 ← K2 ← · · · .

First, note that the closure U of an arbitrary bounded
Fatou component U is canonically homeomorphic to the
closed unit disk D . In the case of a periodic Fatou com-
ponent, this canonical homeomorphism can be identified
with the Böttcher coordinate for the first return map f◦q .
In the case of an arbitrary component U , simply choose
the smallest n, so that f◦n(U) is periodic, and then use
the homeomorphism f◦n : U → f◦n(U) to pull back the
Böttcher coordinate. In all cases but one, note that the
map f : U → f(U) preserves this canonical coordinate.
However, in the exceptional case when U is the central
component, a point in U with coordinate w maps to a
point in f(U) with coordinate w2 .

Let us number the closures of the periodic Fatou com-
ponents as

K0,1

∼=→ K0,2

∼=→ · · · ∼=→ K0,q → K0,1 ,

where K0,q is the central component containing the crit-
ical point and K0,1 contains the critical value. Then,
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FIGURE 22. Filled Julia set K(2/5) for the center point of the 2/5-limb of the Mandelbrot set. The periodic Fatou
components have been labeled so that f(Ui) = Ui+1 , with 0 ∈ U0 = U5 .

K0 is equal to the union K0,1 ∪ · · · ∪ K0,q . Since each
K0,j is canonically homeomorphic to D , and since the
K0,j intersect only at their common root point α , which
has coordinate +1 in each K0,j , this yields the required
description of K0 , together with the map f |K0 , without
any reference to the numerator p .

Next, we will construct K1 = f−1(K0) = K0 ∪ τ(K0).
Here, τ is the involution z �→ −z , so that f ◦ τ = f .
Then, K1 can be obtained from K0 by adjoining new
copies K1,j = τ(K0,j) of D to K0 for 1 ≤ j < q . Each
of these new disks is to be attached by identifying its
root point with coordinate +1 to the point τ(α) ∈ K0,q ,
which has coordinate −1 in K0,q . The map f extends
over K1 by setting f

(
τ(z)

)
= f(z) for all τ(z) ∈ K1,j =

τ(K0,j).
Now suppose inductively that we have constructed

K0 ⊂ K1 ⊂ · · · ⊂ Kn together with the map f |Kn
:

Kn → Kn−1 , which is exactly two-to-one except at the
critical point. Suppose further that Kn is obtained from
Kn−1 by adjoining closed topological disks Kn,j for 1 ≤
j ≤ 2n−1(q − 1), where these disks are attached by their
root points to corresponding points z(n, j) ∈ ∂Kn−1 .
Then, each f−1

(
z(n, j)

)
consists of two points in ∂Kn ,

which we will call z(n+1 , 2j−1) and z(n+1 , 2j) respec-
tively. Form Kn+1 from Kn by attaching a copy Kn+1 , k

of D at each of these 2n(q − 1) points z(n + 1 , k), and
extend f |Kn

to a map from Kn+1 to Kn which carries
both Kn+1 , 2j−1 and Kn+1 , 2j onto Kn−1 , j , preserving
the canonical homeomorphism with D . This completes
the inductive construction.

Let rn : Kn → Kn−1 be the retraction that col-
lapses each attached disk Kn,j to its point of attachment
z(n, j), while fixing every point of Kn−1 , and let K̂ be
the inverse limit of the sequence

K0
r1←− K1

r2←− K2
r3←− · · · .

Then, K̂ is a compact topological space. Using the com-
mutative diagram

Kn+1
f−→ Kn

↓ rn+1 ↓ rn

Kn
f−→ Kn−1

,

we see that the maps f |Kn : Kn → Kn−1 give rise to a
map f̂ : K̂ → K̂ in the limit.

We must show that this limit K̂ can be identified
with the original filled Julia set K = K(p/q). (Com-
pare [Douady 93].) Let O ⊂ K0 be the critical orbit of
period q ≥ 2. Then, the Riemann surface C � O has a
Poincaré metric, which is strictly expanding on the Julia
set and also on every disk Kn,j with n > 1. (More pre-
cisely, there exists a constant k > 1 so that ‖f ′(z)‖ ≥ k

for every z in the compact set
⋃

n>1

⋃
j Kn,j , using the

Poincaré metric at z and f(z) to define the norm of such
a derivative.) Let dn be the maximum of the diameters
of the disks Kn,j in this metric. Then, the sequence
d1 > d2 > d3 > · · · tends geometrically to zero, and it
follows easily that every sequence of points

z0

r1
z1

r2
z2

r3
z3

r4 · · ·
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converges to a unique point of K . This yields the re-
quired homeomorphism K̂

∼=→ K .
Since this description of K = K(p/q) makes no men-

tion of p , it yields a homeomorphism K(p/q)
∼=→ K(p′/q)

which is holomorphic on the interior and compatible with
the dynamics. For p 
= p′ it cannot be extended as a
homeomorphism over any neighborhood of the α fixed
point, since the various K0,j are arranged in a different
cyclic order around α in these two filled Julia sets.
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