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ON THE QUASICONFORMAL SURGERY
OF RATIONAL FUNCTIONS

By Mitsuniro SHISHIKURA

ABSTRACT. — The method of quasiconformal surgery for rational functions, considered as complex analytic
dynamical systems, is developed. This applied to give the sharpest estimates for the numbers of cycles of
stable regions corresponding to D. Sullivan’s classification. As another application, rational functions having
Herman rings are constructed.

Introduction

Consider a complex analytic dynamical system on the Riemann sphere, which is defined
by a rational function of degree greater than one. Each connected component of the
complement of its Julia set is called a stable region. D. Sullivan [17] proved that every
stable region is eventually cyclic, and that cyclic stable regions can be classified into five
types —attractive basin, superattractive basin, parabolic basin, Siegel disk and Herman
ring.

One of the aims of this paper is to give the sharpest estimates for the numbers of
such cycles (Corollary 2, Theorem 3 and 4). As a consequence, we shall show that a
rational function of degree d cannot have more than 2(d —1) cycles of stable regions. -
This answers a question in [17]. Moreover, it has at most d—2 Herman rings, hence if
d=2, there is no Herman ring.

These results are obtained by means of surgeries based on the theory of quasiconformal
mappings, which we call the quasiconformal surgeries (or qc-surgeries). Such surgery
technique was first introduced by A. Douady and J. H. Hubbard for polynomial-like
mappings (see [7] and [8]). We will formulate it and apply it in several cases. In this
paper, we treat mainly three kinds of surgeries:

(1) To perturb a rational function so that all of its indifferent periodic points become
attractive (Theorem 1). (Such a perturbation was expected by P. Fatou [9] in 1920);

(2) To decompose a rational function which has Herman rings into ones having Siegel
disks;

(3) To construct a rational function having Hermann rings from ones having Siegel
disks. [This is the counter procedure of (2).]

These three are combined to prove the estimates. Also, the third yields, for any p, a
rational function of degree 3 with Herman rings of order p (Theorem 5).
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2 M. SHISHIKURA

In paragraph 1, we review the theory of complex analytic dynamical systems on the
Rieman sphere, and prepare some terms and notations. Main theorems are stated
precisely in paragraph 2. In paragraph 3, we provide our fundamental lemma for qc-
surgery, which is applied in following sections.

The surgery (1) and its applications (Theorem 1 and Proposition 1) are given in
paragraphs 4 and 5. The surgery (2), together with the dispositions of Herman rings
and its inverse images, is discussed in paragraph 6. Combining these results, we give
the estimates (Theorem 2 and Theorem 3) in paragraphs 7 and 8. In paragraph 9, we
demonstrate the surgery (3) and prove Theorem 5 and 6. Finally, in paragraph 10, we
show that our estimates are optimum, by constructing examples.

This paper is based on the author’s Master’s Thesis (in Japanese, 1985) at Kyoto
University. See also [16].
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1. Preliminaries

1.0. Let f(z) be a rational function of z with complex coefficients. We consider the
dynamical system f: C — C, where C=C \U {00} is the Riemann sphere. The degree of f,
deg f, is the maximum of degrees of its denominator and of its numerator, provided they
are relatively prime. Assume d=deg = 2. We write f"=f° fo... ¢ f(n-th iteration).

N —

n

1.1. Let zeCT be a periodic point of f of period p, i.e. fP(z)=z and fI(z) #z
(0 <j < p). The multiplicator of z is

- (7Y (@ (f z # o0)
Tl (AofPoA)(0)  (if z= o0, where A (z)=1/z).

We say that z is attractive (resp. indifferent, repulsive, non-repulsive), if [K] <1
(resp.=1, > 1, £ 1). Moreover z is rationally indifferent (resp. irrationally indifferent),
if A=e?"® where B8R is rational (resp. irrational). (See 1.5 for further definitions.)

We call {z, f(z), ..., fP"'(z)} a cycle, and use the terms attractive, indifferent, etc.
also for cycles.

1.2. A point z is called a critical point of f, if fis not one to one on any neighborhood
of z. If z # oo and [ (2) # oo, it is equivalent to f” (z)=0. A rational function of degree
d has 2(d—1) critical points (counted with multiplicities).

1.3. A point zeC is normal (with respect to f), if {f": n =0} is equicontinuous on
some neighborhood of z. The set of all normal points is called the stable set of f,
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SURGERY OF RATIONAL FUNCTIONS 3

denoted by D/, and each of its connected components a stable region. The complement
J,=C—Dy is the Julia set of f. These sets have the following properties (see [3], [4], [9]
and [12]):

(a) Both J, and D, are completely invariant, i.e. f(J,) =] =f"1! (J), etc.

(b) The Julia set coincides with the closure of the set of repulsive periodic points.

(c) Each stable region is mapped by f onto some stable region.

We say that a stable region D is cyclic, if f7(D)=D for some p > 1. The least such
p is called the order of D.

1.4. Tueorem (D. Sullivan [17]). — Each stable region is eventually cyclic, i.e. if D is
a stable region of f, fN(D) is cyclic for some N = 0.

Moreover, let D be a cyclic stable region of order p, then (D, f"lD) is of one of the
following types:

(AB) attractive basin: there exists an attractive periodic point z, of period p in
D. When n— o0, f"7(z) - z, uniformly on every compact set in D.

(PB) parabolic basin: there exists a rationally indifferent periodic point z, on the
boundary 0D, such that f?(z;)=2z,, (f?) (zo)=1. When n— o, f*?(z) - z, uniformly
on every compact set in D.

(SD) Siegel disk: f’"|D is conformally conjugate to an irrational rotation on the unit
disk A={{eC: |Z;‘ < 1}, i. e. there exist a conformal mapping ¢: D — A and an irrational
number 8 such that ¢ f?=¢?"® ¢ on D. We call 0 (mod 1) the rotation number and
zo=0 1 (0) the center.

(HR) Herman ring: f"fD is conformally conjugate to an irrational rotation on an
annulus {{: r <|{| <1}, for some 0 <r < 1. The rotation number is defined as in
(SD), in addition, up to sign.

Remark. — In (AB), if the multiplicator of z, is 0, D is called a superattractive basin,
(SAB). We have (SAB) included into (AB), although D. Sullivan did not.

If D is attractive basin (resp. a parabolic basin, etc.), we call D, f(D), ..., f?~ (D)
an AB-cycle (resp. a PB-cycle, etc.).

1.5. RELATION TO PERIODIC POINTS. — In each of (AB), (PB) and (SD), there is an
associated periodic point z,, which is attractive, rationally indifferent, irrationally indiffe-
rent, respectively. Conversely if z, is an attractive periodic point (resp. a rationally
indifferent periodic point), there is an AB-cycle (resp. a finite number of PB-cycles) which
has z, as the limit point. However, if z, is an irrationally indifferent periodic point,
there is not always an SD-cycle containing z,.

For example, let 6 be an irrational number satisfying the following Diophantine
condition:

there exist positive constants C and o such that
(1.1 |0-p/q| > Clq°,  for p,qeZ, q=1.

If f has a periodic point z with multiplicator e*"‘®, then f has a Siegel disk whose center
is z (c¢f. Siegel [15]).
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4 M. SHISHIKURA

Irrational numbers satisfying the Diophantine condition form a full-measure set of R.

On the contrary, there is a dense set of irrational numbers such that if 8 belongs to it,
a periodic point with multiplicator e?**® cannot be the center of a Siegel disk, for any
rational function (c¢f. Cremer [6], and also [3]). Let us call an irrationally indifferent
periodic point a Siegel point if it is the center of a Siegel disk, and a Cremer point
otherwise. Siegel-cycles and Cremer-cycles are similarly defined.

Note that Herman rings have nothing to do with periodic points.

1.6. RELATION TO CRITICAL POINTS. — It is classically known that each AB-cycle or PB-
cycle contains at least one critical point (see [9], [17] and also Lemma 5). Hence the
number of AB-cycles and PB-cycles is at most 2(d—1).

It is also known [9] that the boundary of a Siegel disk or a Herman ring is contained
in the closure of the forward orbits of critical points. Moreover it is conjectured that
every SD-cycle has at least one critical point on its boundary (and as for an HR-cycle at
least two corresponding to its boundary components) (see Herman [11]).

1.7. NoraTions. — Let D be a subset of C. Define:
N, (f; D)=the number of attractive cycles of f, entirely contained in D.
If D=C, we omit D. If there is no confusion about f, we omit f.

Similarly, define n;,4i¢r, Mrap Mirrs Mcremers Mam» Mpps Nsp and nyg for indifferent cycles,
rationally indifferent cycles, irrationally indifferent cycles, Cremer-cycles, AB-cycles,
PB-cycles, SD-cycles and HR-cycles, respectively.

Also we define
n.(f, D) =the number of the critical points of f contained in D, where critical points
are counted with multiplicities.

Remark. — The arguments from now on goes, even if critical points are counted
without multiplicities.

1.8. Let y be an oriented Jordan curve in C. Then C—v is divided into two connected
components. We call the component which lies on the left-hand side of y the interior
of v, denoted by Int vy, and the other the exterior of vy, denoted by Ext 7.

Let A be an annulus i.e. a doubly connected region. Fix an orientation of A, by
choosing a generator of its fundamental group. We can define similarly its interior and
exterior as the components of C—A.

2. Main theorems

We prove the following theorems.

THEOREM 1. — Let f be a rational function of degree d. Denote by z,, . . ., zy all non-
repulsive periodic points of f. There exist, for 0 < & < g,, rational functions f, of degree d
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SURGERY OF RATIONAL FUNCTIONS 5

and points 75, . . ., 25 of C such that:

(i) When £ — 0, f, — f uniformly and z¢ — z; with respect to the metric of C;

(i) If f(z)=2zp f.(z))=2}. Each z; is an attractive periodic point of f, with the same
period as z;.

Therefore,

Roeer (D) 2 ayger () + Minaige (F)-

COROLLARY 1:
(2.1) Moeer () + Minaiee (f) < 2(d—1).

Remark. — As mentioned in paragraphs 1.5 and 1.6, P. Fatou [9] proved that

Myty TPy S Mg+ hpg =10 (Df) £2(d-1).

After that, he surmised (2.1) (see [9, 2° mémoire], p. 66), but he succeeded only in showing
that one can perturb f so that at least half of indifferent cycles become attractive. So it
has been known that

1
Lo + En'ndiff é 2(d—' 1)

1

Concerning polynomials, A. Douady and J. H. Hubbard have obtained a result similar
to Theorem 1 and the estimate

Norie (P> ©) +Mipgiee (P, C) = d—1

for a polynomial p of degree d, instead of Corollary 1. (See [3] and Example in
paragraph 3, Remark in paragraph 4.) Their method, however, does not work for
rational functions having no attractive cycle.

THEOREM 2. — For any rational function f of degree d,
(2.2) n,(Dp)+n, +2nug <2(d—1).

As noted above, nyg+npg < 1.(D), and by the definition, n;, =ngp+ N eme  There-
fore, we have

COROLLARY 2:

(2.3 Nap+Npp +Ngp + 2 Myg + Aeremer = 2(d—1).

Remark. — D. Sullivan [17] has already shown, combining diverse estimates, that
Rap+Npg+hsp+hgr < 8(d—1). Then, he asked whether, in this estimate, 8(d—1) can
be replaced by 2(d—1). Corollary 2 solves this problem affirmatively (or equally
Problem 7.8 of [3]).

Remark. — If the conjecture in paragraph 1.6 was true, one could get directly (2.3)
with ngpeme, Omitted.
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6 M. SHISHIKURA

Theorem 2 implies nyg < d—1. But we know more precisely:

THEOREM 3:
(2.4) Ngr < d—2.

In particular, a rational function of degree 2 has no Herman ring.

Concerning the number of cycles of the respective types, the estimates (2.3) and (2.4)
are best possible. In fact, we have:

THEOREM 4. — Suppose that m,y, mpg, etc. and d are nonnegative integers satisfying
(2.3) and (2.4), with n,y, etc. replaced by m,g, etc. Then there exists a rational function
of degree d satisfying m,z=n,5(f), etc.

Remark. — See Herman [10], Question VII.7.(2). Theorem 3 and 4 give an answer
to his question.
In the proof of Theorem 4, we construct a rational function which has Herman rings

from those having Siegel disks, using the qc-surgery. The same technique applies to
prove:

THEOREM 5. — Let p = 1. There exist rational functions f,, fg satisfying (A) and (B),
respectively, where we give all the Herman rings suitable orientations, which are respected
by fa or fg.

(A) fa has a cycle of Herman rings Ay, ..., A, of order p such that A; < ExtA,, for
i #J.

(B) fs has a cycle of Herman rings A, and A, of order 2 such that A, < ExtA, and
A, c IntA,.

Moreover. f (resp. fy)) can be chosen to he of degree 3 (resp. degree 4).

Fig. 1. Herman rings A, yielded by Theorem 3. The rings are idicated only
by invariant curves in them. The arrows signify their orientations.

See Figure 1 for the disposition of A, A numerical experiment related to (A) with
p=2is reported in [16].

Remark. — M. R. Herman [10] also constructed a rational function with Herman
rings by a different method, but without determining its degree which is probably
higher. Our method enables us to interpret the dynamics of a function with Herman
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SURGERY OF RATIONAL FUNCTIONS 7

rings in terms of that of functions with Siegel disks. For example, we obtain:

THEOREM 6. — Let 0 be an irrational number. The following conditions are equivalent:
(i) there exists a rational function which has a Herman ring of rotation number 9,

(ii) there exists a rational function which has a Siegel disk of rotation number .

3. Fundamental lemma for QC-surgery

The surgery means a method to create from given rational functions a new one
preserving their dynamics (in some sense). Unfortunately, we cannot glue different
analytic functions directly, because of the theorem of identity. However, if one abandons
the analyticity, in other words, if one considers their conjugations by certain homeomor-
phisms, glueing can be possible. It comes into question, in turn, whether the resulting
map is conjugate to a rational function. In order to reproduce a rational function, we
make use of the theory of quasiconformal mappings.

DerFINITIONS. — Let Q, Q' be domains of C. A homeomorphism ¢ : Q- Q' is a
quasiconformal mapping (qc-mapping) if ¢ is absolutely continuous on almost all lines
parallel to real-axis and almost all lines parallel to imaginary-axis, and if ’H¢|§k a.e.
(almost everywhere with respect to the Lebesgue measure), for some k<1, where
Ho=0:/0,. (See Ahlfors [1]) Quasiconformal mappings on Riemannian surfaces are
defined by means of local charts.

A quasi-regular mapping is a composite of a qc-mapping and an analytic func-
tion. (Cf. [13] in which this is called a quasiconformal function.)

Here is our formulation of the qc-surgery.

LemMmA 1 (Fundamental lemma for qc-surgery). — Let g: C — C be a quasi-regular
mapping. Suppose that there are disjoint open sets E, of C, qc-mappings
®,: E,»E/ cC(i=1, ..., m) and integer N =0, satisfying the following conditions:

(i) g(E)cE, where E=E, U ... UE,;
(i) ®oge®; " is analytic in E{=®,(E,)), where ® : E — C is defined by ®|,,=®;
(iii) g;=0 a.e. on C—g N(E).

Then there exists a ge-mapping ¢ of C such that @=ge ¢
1

Uis a rational function.

Moreover, @ > ®; ! is conformal in E; and ¢;=0 a.e. on C— \U g "(E).
nz0
Proof (see [7], [8]). — Define a measurable conformal structure o on C as follows. Let
o, be the conformal structure defined by |dz|. Set 6=0* 6, on E, where ®* 6, means
the pull-back of o, by @, defined except on a null set. By (ii), o is invariant for g, in
the sense that g*o=0 a.e. on E. Pulling back o by g, define o on U g "(E).

nz0

Finally, set 6=, on the remaining part of C.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



8 M. SHISHIKURA

The g-invariance (a. e.) of o with respect to g follows from the definition and (iii). Mo-
reover, the distortion of ¢ with respect to o, is uniformly bounded. In fact, if ® is K-
qc and g is K,-quasi-regular, and if o is represented as |dz+u. dz |, then
|nl|o<k=(K-1)/(K+1)a.e, where K=K,.K}. By the measurable mapping theorem
(cf [1]), there exists a K-qc-mapping ¢ of C such that ¢*oc,=c a.e. Then,
f=@ogo@ ! respects a.e. the standard conformal structure o,. Hence f is locally 1-
qc, i.e. conformal, except at a finite number of its critical points. By the removable
singularity theorem, fis analytic on C, therefore, a rational function. []

This lemma means glueing of g|<5_E and ®ogo®;!. Note that, to get a qc-mapping
of C, it is enough to construct a C!-diffeomorphism of C. This makes our surgeries
easier.

Example. — We exercise this surgery technique here for Douady-Hubbard’s polynomial
like mappings. (See Douady [7] and Douady-Hubbard [8].)

Let U,, U, be simply connected domains in C, whose boundaries consist of analytic
Jordan curves, and satisfying U, cU,. Suppose that f: U, — U, is holomorphic, proper
of degree d and then extends continuously to 0U,;. Then (U,, U,; f) is called a
polynomial-like function.

Fix R > 1, and construct a qc-mapping
®: C-U,—>{zeC:|z|>R}

such that:
® (0) =00; @ is conformal in C—U,;
® extends to dU,, and satisfies (@ (z))’=® (f (z)) on dU,.
Define

_(f on U,
_{Ql({dnz)}") on C-U,.

Applying Lemma 1 to g, E=C—U,, ® and N=1, we obtain a qc-mapping ¢ and a
rational function p(z)=¢@cge@~"'. It is easy to see that p is a polynomial of degree d,
provided that ¢ (o0) =c0.

4. Perturbations

In this section, we perturb a rational function f, in order to make its non-repulsive
periodic points attractive.

Before doing this, we state some Lemmas. An easy calculation shows:
LeMMA 2. — Let h(z) be a polynomial of degree k. Define H, : C — C for €€C, by
H,(z)=z+e.h(z).p(|e|' . |z])  for zeC,

H, (0) = 0,

4¢ SERIE — TOME 20 — 1987 — N° 1



SURGERY OF RATIONAL FUNCTIONS 9

where p is a C*-function on R such that 0<p=<1,p=10n[0, 1]and p=0on[2, c0). Then,
for small €, H, is qc. Furthermore, H, — idg uniformly (w.r.t. the metric of C) and
|y, || o = O, when & — 0.

LemMMA 3. — Suppose that a polynomial h(z) and open sets E_ of C(g,>¢€=0) satisfy:

4.1) E,<E, and E, are uniformly bounded in C;
(4.2 f(0)€eEy;
(4.3) feo(id+e.h)(E)<E,.

Set g.=f°H,, where H, is defined in Lemma 2. Then, for small €>0, there exist qc-
mappings ¢, of C such that f,=, g, @, ' are rational functions and that @, — idg, f, > f
uniformly, when € — 0.

Proof. — Let V,={zeC:|z|>(1/|¢])'*}. For small >0, EEN\V,= and
g.(V)<E. By (4.3), g.(E,)cE, Moreover, if ¢ is small enough, g, is quasi-regular
by Lemma 2 and (g,);=0 on E,\U(C—g '(E)) <C-V..

Hence Lemma 1 can be applied to g,, E,, ®=idg, and N=1. Thus qc-mappings o,
are obtained. The second assertion follows from the parametrized measurable mapping
theorem (cf. [1]), since || p,, || , = ta, || o = O(e = 0). (See the proof of Lemma 1.)

Note that ¢, |, is conformal. [J

LEMMA 4. — Let C,, . . ., (,, be distinct points of C, and B,, ..., B, pairwise disjoint
closed sets of C homeomorphic to a closed disk. And for each j, let h; be a holomorphic
function in a neighborhood of B;. Suppose that if {;€B;, h;()=0 and h}(§)=—1.

Then, for any 8>0, there is a polynomial h(z) such that

h()=0, HWEC)=-1 (=1,...,m)
and |h—hj|<5 onB;(j=1, ..., n).
Proof. — Take a polynomial p, satisfying:
p1(E)=0, piG)=—1 (=1, ...,m)
and let p,(z)=]](z—¢)> Then (h;—p,)/p, is holomorphic in a neighborhood of B,
(=1, ..., n). By Runge’s theorem, there is a polynomial ¢ (z) such that

| (h—p1)/p.—4| <8/sup |p,©)| on B,
€5j

Clearly, h=p, +p, . q verifies the conditions. []

Let {zy, zy, ..., z,_, } be one of non-repulsive cycles of f. First, pay attention only
to this cycle. We are going to construct the perturbations, according as this cycle is
attractive, rationally indifferent, Siegel-cycle or Cremer-cycle.

Case 1. — z; are attractive. — Let E,=E, be the union of small disks centered at z,,
such that f(E,))<E, By a coordinate transformation, we may assume that

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



10 M. SHISHIKURA

wef "(Eg))—E,. Let h be an arbitrary polynomial such that h(z,)=0
(i=0, ..., p—1). Tt is easily checked that (4.1)-(4.3) hold, for small €. Therefore
Lemma 3 can be applied.

Case 2. — z; are rationally indifferent. — It follows from the theory of normal forms
(cf-12]), that there exists an analytic local diffeomorphism { at 0, such that y(0)=z,,
and

UoltefPeoy(@)=hz(1—2"+0 (")),
where A=(f7)"(z,) is a root of unity; A"=1. Let

EE)={C : 0<|C’<r07

arg("|<m/3}.
Check that if r, is sufficiently small, Ej is contained in the domain of \ and satisfies:
(4.4) PO (EQ) =W (E, U{0}).

(See the flower theorem in [3], [5] and (4.5) below.) By a coordinate transformation,
we may assume that

wef HW(EY) —f 1 (W (Ep)).

Let h be a polynomial such that h(z)=0 and k' (z;)=—1. Consider
G,(z2)=V"'ogl o\ (2), for small &, where g, is as in Lemma 3. It is easily seen that

G,(2)=rz[(1—g)—2z"+0(e2)+0 (z""1)] (as g, z—0),
(4.5) |G, (z)|=|z| . [(1—€)’—Rez"+0 (e2)+ 0 (z"*1)],
argG, (z)=arghz—Imz"+0 (e2)+0 (z"* ") (mod 2 ).

For £>0, define E;=E; U {|{|<&¥®™ V}. We show that:
(4.6) if € is sufficiently small, G, (E)<E.

First, if e/?™~V<|z|=r<r, and arg z"= +n/3, then
3
argG, (z)—arghz=F %r"‘(l +0 (ri’?)).

If we take a sufficiently small r,,
G, (PE N {e7/*m YV <|z|<r, })<E.
Fix this r;.  Secondly, if | z|=¢g¥?m 1),
|G, (2)|=|z|(1—pe+o(e)).

Hence G,(0E,N{|z|<e*" V})cE, for small e Finally, for small e,
G,(CE.N{|z|=r, })<E, since Go(0E; N {|z|2r, })=E;.  [See(4.4).]

4¢ SERIE — TOME 20 — 1987 — N" |



SURGERY OF RATIONAL FUNCTIONS 11

Thus (4.6) is proved. Set E,=Vy(E)Ug.cV(E)U ... Ugl "oy (E). Obviously,
E, satisfies (4. 1)-(4. 3).

Case 3. — z; are Siegel points. — Let S; be the Siegel disks containing z; and
V;: S;>A={|z|<1} conformal mappings such that {;(z)=0 (i=0, ..., p—1). Set
B,=V; ' ({|¢|=r}), for O0<r<1. Then f(B)=B,,,, i=0, ..., p—1, where B,=B,,.
Fix r so that

(4.7) S,—B, do not intersect with the forward orbits of critical points.

By a coordinate transformation, we may assume ooef ! (f30) —1°3,,_ .- Let
h;(z)= —V{; (2)/¥i(z) on S;. By Lemma 4, there is a polynomial h such that

(4.8) h(z)=0, W(@)=—1 and  |h—h|<8 on B,

Let H, g, be as in Lemma 2 and Lemma 3. It is easy to see that if d is sufficiently
small, H,(B;,) = B,, hence g,(B;)cB,,,. If weset E,.=U B,, (4.1)-(4.3) are satisfied.

Case 4. — z; are Cremer points. — We may assume f(0)=z, and co#z, ;. Leth
be a polynomial satisfying h(z))=0 and h’(z;)=—1. We shall construct open sets E,
satisfying (4. 3).

It follows from the theory of normal forms (cf. [2]), that there exists an analytic local
diffeomorphism \ at 0 such that {(0) =z, and

YlefPey(z)=rz+0 ("3,

where k=degh. Define E[=y({{:|{|<|e|"**V}) and E,=E/U...Ug’ '(E),
where g, is as in Lemma 3. Since

Y togloy(z)=rz[(1-4€)"+0(e2)+ 0 (2*?)),

a simple estimate shows that if £>0 is sufficiently small, g? (E)) E,, hence g (E,) <E..
(This argument implies the fact that the distance from z, to the boundary of its basin
tends to zero slower than & when £ — 0, for any B>0.)

We cannot use Lemma 3 in this case, since there is no non-empty open set E satisfying
(4.1). Its conclusion, however, holds by the following. Let V. be as before. It is
easily verified that g,(V,)<E, and E, N\ V,=(J, for small &. Hence, as in the proof of
Lemma 3, @, and f, are obtained.

Thus, in each case, applying Lemma 3 or its variant, we have obtained ¢, and
f.. Consider them for £ >0 small enough. Clearly, z;€E, and { z; } is an attractive cycle
of g. Define z¢=¢,(z;) and E,=¢,(E,). Then, 25, .. ., z;,_, form an attractive cycle
of f, since @|g, is conformal. As f,(E)<E, it follows from Montel’s theorem that
E,cD,. Note that

-~ -~ -~

E=E, ,UE,.U...UE, |,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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where E, , are the connected components of E_ and satisfy
Z?EEi,t:’ fe(Ei,e)CEi+1.e (Ep,e:EO,e)'

Hence each E, , is contained in the attractive basin of z:.

Suppose that f has non-repulsive cycles other than {z,, ..., z,_;}. Again using
Lemma 4, we can take the polynomial h so that it also satisfies the conditions as in Case
1-4 above, corresponding to each of these cycles. Then the arguments there are valid
for these cycles, and the obtained perturbation makes all the non-repulsive periodic
points attractive. Strictly speaking, let z,, ..., zy be all of the non-repulsive periodic
points of f, and define zi=¢.(z,)(i=0, ..., N) as before, then zj, ..., z§ are attractive
periodic points of f,.

Therefore, n,,, (f.) =, () + Minaice (f).  Finally, deg f=deg f,, since their topological
degrees coincide. Thus Theorem 1 is proved.

Remark. — If fis a polynomial, one can perturbe it as a polynomial-like function,
and obtain a perturbed polynomial by the surgery in Example in paragraph 3. (See
Corollary 11.12 of [3].) 1In Case 1, we can use a similar perturbation.

Also in Case 3, we may use the same perturbation as Case 4. But we prefer that
method for the sake of the proof of Theorem 2.

Remark. — 1t is also possible to perturb f so that some of indifferent cycles other
than {z,, ..., z,_, } become repulsive or indifferent.

5. Proof of theorem 2. Part I

Let D ; be the D, minus all inverse images of Herman rings.

ProposiTION 1. — For the f, constructed in paragraph 4,
nc(f;, ]’.jfs)gn (j; Df) +nirr(f)'
Therefore,

(5.1) n.(f; D) +n (/) S ().

LEMMA 5. — Let f be a rational function with deg f=2, and B a simply connected
domain of C. Suppose that f(B) =B, f|B is one to one, and f has an attractive fixed point
z, in B.

Then there exists a critical point c of f such that
fN()eB—f(B) forsome N21.

Moreover, ¢ and B are contained in the same connected component of \J f~"(B).

n20
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Proof (see Theorem 5.8 of [3]). — If such ¢ does not exist, one can define inductively
analytic functions g, on B such that

fn Ogn:idB’
&n (ZO)=ZO'

It follows from Montel’s theorem that the family {g,} is normal, since it omits at least
three values (for example points of J;). This contradicts with the fact that
8. (20)=1/(f (z9))' > o0, as n—>c0. [

Proof of Proposition 1. — Let {z, z;, ..., z,_ } be a non-repulsive cycle of f. We
use the notations ¢, z§, E_ in paragraph 4.

If ¢ is a critical point of f, then ¢*=¢,(H, ' (¢)) is a critical point of f,. This gives an
1 to 1 correspondance between critical points of f and f,, preserving their multiplicities.
Hence n (f)=n_(f), even if we adopted the convention that critical points are counted
without multiplicities.

We make considerations according to the cases in paragraph 4.

Case 1 (resp. Case 2). — z; are attractive (resp. rationally indifferent). — Letc,, .. ., ¢,
be all of the critical points of f, which are eventually mapped in to the AB-cycle (resp.
the PB-cycles) associated to z, Then, for some N, fN (c))€E,. If ¢ is sufficiently small,
Iy (cj)eE,, Hence c§ are eventually mapped by f, into the AB-cycle associated to zi.
(See paragraph 4.)

Case 3. — z; are Siegel points. — Let ¢,, ..., c, be all of the critical points
of f eventually mapped into the SD-cycle associated to z. By (4.7),
fN(c)eEq=B,U ... UB,_,, for some N. As above, ¢ are eventually mapped by f,
into the AB-cycle associated to zi. Besides, for small £>0, there exists a critical point ¢
of f, other than c; such that c itself is contained in the AB-cycle assiated to z;. In fact,
f? and B, =0, (B,) satisfy the conditions of Lemma 5, and { f" () :nz0,j=1,...,m}
does not intersect with B, —f?(B,), if £>0 is small.

Case 4. — z; are Cremer points. — As mentioned in paragraph 1.6, the AB-cycle of
/. associated to z¢ contains at least one critical point of f..

Hence, corresponding to each of irrationally indifferent cycle of f, at least one critical
point will newly fall into the stable region (into the AB-cycles) by the perturbation. We
thus conclude that I~)fE contains at least n, (f) critical points more than I~)f. This
implies Proposition 1.

6. The case where Herman rings exist

Suppose a rational function f has Herman rings. Let </, be the collection of all
Herman rings of f. (By Sullivan’s result, <7, is finite. See Remark after Corollary 2,
and also Remark after the proof of Proposition 2.) For each A e/, we associate an
oriented analytic Jordan curve y, so that:

CAESTIN (A ey, hence f(A)eA,);

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



14 M. SHISHIKURA

va does not intersect with the orbits of critical points.
Hence, if /7(A)=A, f7(Ya)=7Ya
Set -

</ ={ connected components of A—vy, : Ae,},

I',= { connected components of f " (y,):Aeoly} (n20).

Each I',, consists of analytic Jordan curves. Assign them orientations so that f respects
these orientations.

Let Z =/ \UJ{{x} : xisa non-repulsive periodic point }. Then every X € Z is contained

in a connected component of C—\JT',, where \UI', means U y. We call a connected
yely

component of C—\J T, an n-piece.

LEMMA 6. — There exists an integer N=0 such that: if X,, X, (€Z) are in the same
N-piéce, then f (X,) and f (X,) are contained in the same N-piece.

Proof. — For each pair (X,, X,), define n(X,, X,) : If X, and X, are not in the same
n-piece for some n, then n(X,, X,) =the least such n; otherwise, n(X,, X,)=0.

The assertion holds for N=max { n(X,, X,) : X;, X,€%Z}. (Note that Z is finite.) [J
Fix this N. Let
9 = { N-pieces };
2,={De2 : for some XeZ,Xc=D};
Dy=9—-2,={DeP : forall XeZ, XND=g}.

Since each X e % is periodic (as a set) with respect to f, we obtain immediately from
Lemma 6:

LeEMMA 6. — 9, is decomposed into disjoint cycles

Di, 0> ""Di, mi—1 =1, ..., Lim=1),
(hence, 2,={D; ;}) such that: if X<D, ;, XeZ, then
fX)eD; iy

where we write D; . =D, .

For simplicity, let us fix i and write D;=D; ;, m=m,

Lemma 7. — (i) f(Dj)> Dy,

(i) Let yel'y such that ycdD;. If D;cInty(resp. D;cExt ), then D;,, <Int f (y)
(resp. D;,; <Ext f (y).

Proof. — (i) is trivial. (i) Assume D;cInty. If N21, f(y) Nf(D)=@. If zeD;
is sufficiently near to v, f(z)elInt f (y). So f(D;) NInt f (y)# J, hence

D;,,=f (D)cInt £ ().

4° SERIE — TOME 20 — 1987 — N° 1



SURGERY OF RATIONAL FUNCTIONS 15

If N=0, there is A€o/ such that AcD; and ycdA. As above, f(A) NInt f(y)#J.
Thus, D;, , cInt f(y), since

f(A)CDj+1 and Dj+1mf('Y)=@- O

DEerINITION. — Let mC=(Z/mZ)xC=Cy U ... UC,,_,, where C;={j} xC. Define
1;,: C>C,; by 1;(2)=(, 2).

We callamap g : mC —mC a cyclic map, if g(C;)cC;,, foralljeZ/mZ. Moreover,
g is a cyclic rational map if all g | g, are rational functions. The notations and the results
in paragraph 1 are naturally extended to cyclic rational maps.

&

D

Fig. 2. — Definition of D and cyclic map f.

Set :
ﬁj=1j(Dj); ﬁ:ﬁou... Uﬁm_l;
1’;’nz{lj('Y)"Yerm YCDj};
A ={1,(A)|Aes, AcD;}.
Define a cyclic map f: D—>mC by f(j, 2)=(i+1, f(z)). See Figure 2.

PROPOSITION 2. — There exist rational functions f,, ..., f,,_, and qc-mappings
Qg - - +» O, of C satisfying (1)-(v) below.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



16 M. SHISHIKURA
Define F, g : mC ->mC by
F(,2)=3G+1,f;(2)) and  ©(, 2)=(, 9;(2)).

(1) The following diagram is commutative:

<

— o
b=
3
(el

«—
€

3
(@]l
i
S
(@]

(i) po=0a.e onKp=U f"(D).

n20
(iiiy F(mC—o(D))cmC—o(D).
(iv) For each A€/, ®(A) is contained in a Siegel disk of F.
(V) There exists an integer M >0 such that FM(m C— @ (D)) is contained in the union
of attractive basins and Siegel disks of F. Therefore m C— ¢ (D) c Dy.

Proof. — Observe that Lemma 1 holds for a cyclic map g, with C replaced by m C,
and the resulting qc-mapping ¢ is chosen to be component-wise, i.e. ¢ (C j)=<I_3j. So,
we construct a cyclic quasi-regular mapping g extending £, for which this version applies.

Step 0. — First, f is extended continuously to the boundary of D, i.e. to yely.
Consider

f‘l/\I:f‘NU{lj+1(f(‘Y))|YEFN" YCaDj}'

Each element has an orientation induced by 1; such that if yely, then f (y)el and f l v
respects the orientation. By Lemma 7 (ii), alternating some of these orientations if
necessary, we may assume that:

f still respects the orientations;

D;NExty=g  for yely;

where Ext y means the exterior of y in C; if y=C,.
Let E,=Ext y for yeI'y and &={E,|yely}. Note that mC=D U U E (disjoint

Eeé
union). Define a relation « —» » in & as follows: If Ec&, then dEel’y and f(E) is
contained in m C—D. Hence there exists a unique E’€& such that f(JE)cE’. Then
we write E—» E’.  We are going to define g on E so that g(E)<E’ and g=f on JE.

Ster 1. — Define &, ={E, |yel,}. Let E=E eé&,. Obviously, if E—E’, then
E'eé, and f(E)=0E’. Recall that f?(y)=v for some g, since 'y is a collection of
inveriant curves in Herman rings. Hence there exist E,e &, (k=0, 1, ..., g) such that

(6.1 E=E,—-E,—»... -»E =E.
Moreover, &, consists of cycles of the form (6. 1).
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SURGERY OF RATIONAL FUNCTIONS 17

Consider a cycle (6.1), where E,, ..., E,_, are assumed to be distinct. Let
Y,=0E, and S'={zeC:|z|=1}. Here, we choose the orientation of S! so that
ExtS!=A={ |z| <1}. By the definition of the Herman ring, there is a real analytic
diffeomorphism V, : vy, — S respecting the orientation, such that faoyst(z)=M. z,
where |A|=1. Define V¥, : v, > S* by ¥, =,/ for k=1, ..., g. Then the follo-
wing diagram is commutative:

)

f f
Yo > Y1 2>--- 7 Y4=Yo
l‘l'o 'L\IH Yg=vo
A id id
st 5 ost 5.5 st

As |7k are real analytic and orientation preserving, there exist gc-mappings , : E, —» A
extending V, |,,, where y,=V{,,. Define g on E, so that the following diagram is commu-
tative:

9

q
E, - E, —-...> E=E,
Yo l\Iu l‘«Ilq=‘llo
id id —

A S a2 S .85 &

Define ® by @ | £, = Vi
Step 2. — Set
&,={Ee&—&,| there exist E, €& satisfying (6.1) }.

Consider a cycle (6. 1) for E€&,, and assume E,, ..., E _, are distinct. Then E, €& ,.-
(See Step 1.)

Moreover, f(yk0)¢yk0+ i» for some k,(0<k,<gq), where v,=0E, Indeed, if
F)=Yes1(k=0, ..., g—1), then f9(y,)=v, hence y,el, by the definition of
I,. This contradicts with E=E, ¢&,.

Take smaller open disks E; such that B;cE,(k=0, ..., q), f(y,)<Ei,+, and
E;=E;. We can easily construct quasi-regular mappings g on E, satisfying:

g=f on v,=0E,
g is analytic in Ej;
g(Ek)CEf(yk)CEk+1 and g(Ep)<cEi, .
It follows immediately that g?(E,) = E;, since g(E, )<E; ..
Let @ | g =id.

Ster 3. — On Ee&—¢&, U &,, define g as a quasi-regular mapping so that g= f on
OE and g(E)<E’, where E — E’.

As & is finite, there éxist E, e & (k=0, ..., r) such that

E=E,>E,>... >E, and Eceé& U6,
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18 M. SHISHIKURA

Step 4. — Finally, let gl5= f. We have thus defined g on the whole m C, which is
continuous and quasi-regular.

Let

EV= U E,E®= U E  and E*=EMUJE®),

Eeé Eeé)

where E” denotes the open disk in Step 2 associated with E€&,. By the construction,
gmC—D)cmC—D, g(E*)cE* and there exists an integer M >0 such that g™ (m C—-
D)cE*. Hence, on mC—g M(E¥)cD, g.=f.=0. Moreover, the condition (ii) of
Lemma 1 is verified for g,E*, M and @ defined in Step 1 and 2.

Step 5. — The version of Lemma 1 for cyclic maps applies and then yields a qc-
mapping ¢ of mC, such that F=@ogo@ ™' is analytic. We can choose @ of the form
0 (J, 2)=(j, 9;(2)), where ¢;(z) are qc-mappings of C, then F(j, z)=(j+1, f;(2)), where
f;(z) are rational functions.

The assertions (i)-(iii) of the proposition are easily verified. Consider A €</ and yel,
such that ycdA. Let S=¢(E,U A), which is a connected open set. For some g1,
F?(S)=S and F?| is conjugate to an irrational rotation on a disk. It is easily seen that
S is a Siegel disk of F. So (iv) holds. On the other hand, it follows from the Schwarz’s
lemma that for E€é&,, there exists an attractive periodic point in @ (E’), whose basin
contains @ (E). Thus (v) follows, and the proof of Proposition 2 is completed.

Remark. — Tt is possible to do this surgery with respect to subfamilies &/ <./,
I'*cT, and Z* <%, provided that f (/%) ¥, etc.

In particular, if we take .«/¥ = { Herman rings intersecting with orbits of critical points },
which is finite, we do not need to use the finiteness of Herman rings, in order to get the
results in paragraph 7. (Because n, (Dp—Dy)=0.)

Q.

L]

0

Fig. 3. — Example of the surgery in paragraph 6.

Example. — Let
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SURGERY OF RATIONAL FUNCTIONS 19

where aeR, O<r<1/5. Suppose that f has a Herman ring of rotation number 0
containing S' ={ | z| =1}. Note that r and 1/r are critical points of fand are eventually
periodic, in fact f (r)=f2(r)=0, f*>(r)=o00. Take [=Ty={S'}. Our surgery yields

Fz)=eo@=
z

provided that the critical point corresponding to r is mapped by F? on the center of the
Siegel disk. Check that F has co as an irrational fixed point with multiplicator e*™,
and F’(1)=0, F2(1) = o (see Fig. 3).

7. Proof of theorem 2. Part II

Proposition 1 in paragraph yields the inequality (2.2) for a rational function without
Herman ring. Now, assume f has Herman rings. We use the notations in paragraph 6.
Let

D,= U D, Dy,= U D and DY=D, ,U...UD, ;.

De 2 De 211

As before, we fix and omit i, except for D¥. Take ¢ and F in Proposition 2. It can
be easily checked that Proposition 1 holds for cyclic rational maps, by a similar argument.

Consider the inequality (5.1) for F. It is also easy to see that F has no Herman ring
and Dp=D;. By (v) of Proposition 2, all the critical points of F in m C—q (D) are
contained in the stable set D. Each irrationally indifferent cycle of F is either entirely
contained in @ (D) or the cycle of centers of an SD-cycle containing some ¢ (A), where
Aeo/. Combined with these facts, that inequality yields:

(7.1) n,(¢ (D) N Dy, F) +ni,,((p(15), F) +(the number of cycles of &i)gnc(@(ﬁ), F).

To express this inequality in terms of f, we need the following two lemmas.

LEMmMA 8. —

u (P(lj(Dfm D)) =Dg.

J

Proof. — Let zeD,MND; and put Ez(pmj(z)‘ Fix a metric on mC, and let
dy=dist(J;, mC—o(D)). If dist(F"(z), mC—o(D))<d, for some n=0, then zeD-
- Alternatively, suppose that dist(F"(z), mC—¢(D))=d, for all n>0. As f" are
equicontinuous in a neighborhood of z, there is a smaller neighborhood U such that
f"(U)eD,,;(n=0), where the subscript is to be considered modulo m. Therefore, it
follows from Proposition 2 (i) that F"c@o1;=¢@°t,,;°f" on U. Thus z is normal with
respect to F, i.e. zeDp. [

LemMMA 9. — Let z be a non-repulsive periodic point of f in D;. Then z =0°i(z)isa
periodic point of F. Moreover, Z is attractive (resp. rationally indifferent, Siegel point,
Cremer point), if and only if z is so.
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Proof. — By the choice of N in paragraph 6, f"(z)eD,,; and F" (z~)=(p01,,+j(z), for
all n=0. So z becomes a periodic point of F. The second assertion follows from the
following topological characterizations:

A fixed point z of a rational function f is; attractive (resp. repulsive): there exist an
arbitrarily small neighborhood U of z such that f(U)<U (resp. f(U) = U); indifferent:
neither attractive nor repulsive; rationally indifferent: not attractive and there are an
integer k=1 and an arbitrary small connected open set U such that zedU, f*(U)cU
and /™ ({) -» z(n - ) for {eU; Siegel point : topologically conjugate to an irrational
rotation in a neighborhood of z. [J

Lemma 8 and Lemma 9 yield

nc(D(i) m ny f) énc ((P (f)) m DFa F):
and
Ny D(i)7 f) é nirr((p (]5), F)

Let n, (D", f) denote the number of cycles of .« contained in DY, which is now equal to
the number of cycles of <.

Thus we have
(7.2) n. (DY N\ Dy, f)+n, (DY, f)+n, (DY, f)<n (DY, f).
Note that n, ()= n,, (D, f), by the definition of &,. Since each Herman ring is

divided into two components which are in o/, two cycles of &/ correspond to each HR-
cycle. Hence

Y 1 (D, ) =211 ()

Summing up (7. 2) for i, we obtain

(7.3) -n.(D;N D,, N +n, () +2nx (f)=n.(Dy, f).
On the other hand, we have
(7.4) nc(D]Ime)énc(le f)-

Summing up (7.3) and (7.4), we obtain the desired inequality (2.2). So our proof
of Theorem 2 is completed.

8. Proof of theorem 3

If n.(D,)#0 or n;, (f)#0, the assertion immediately follows from Theorem 2. Now,

assume that n,(D;)=0 and n;,(f)=0. We need only to show that the equality in (2.2)
does not hold. We continue to use the notations in paragraph 6.
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We say that A e/, is innermost if Int y, NA'=F for A’es/,, A’#A. Reversing
the orientations if necessary, one can find at least one innermost ring A, Define
A;=f7(A,), for j20, and let p be the order of A, then A,=A,. Set Aj=Int Ya;NA;

LemMMA 10. — There exists k such that: the component C, of C—f~* (Ya,. ) containing
A, is not simply connected, and A, . | is innermost.

Proof. — There are two possibilities.

Case 1. — All the A; are innermost: f(Inty,,)¢Inty,, ., for some k, since A, is a
Herman ring. Then C, is not simply connected.

Cast 2. — One of A; is not innermost: Choose k such that A, is innermost and A,
is not. Then C, is not simply connected, since Int y,, contains an element of .+, which
is mapped by f'to Exty, ,,. O

LeMMA 11. — The C, in Lemma 10 contains at least two critical points.

Proof. — f |Ck : C,— Int v,, ., is proper, hence a branched covering. If C, contains
at most one critical point, it must be simply connected, and this contradicts with the
choice of k in Lemma 10. [

Let D, ; be the element of &, containing A;. Note that C, is the union of the closures
of some elements of &. Since A, ., is innermost, f(C,)=Int y,, ,, contains no element
of o but A;,,. So C, contains no element of o/ but A; and no element of &, but
D Therefore,

i J

D; J.chcDi, jUD“.

From Lemma 11, n.(D;, ;)+n.(Dy)=2. It also follows that n, (DY, f)=1.

If n, (DY) 2n (D, ;)=2, then the equality in (7.2) does not hold. If n (Dy) =1, then
the equality in (7.4) does not hold. In any case, the equality in (2.2) does not
hold. Thus the theorem is proved.

9. Construction of Herman rings

In this section, we discuss on the counter procedure of the surgery in para-
graph 6. However, we do not attempt to give a general method, and state only two
examples, according to (A), (B) of Theorem 5. The case (A) suffices to prove Theorem 6.

(A) See Figure 4. Suppose that rational functions f,, f, ..., f, (p=1) satisfy the
following conditions:

() fo has Siegel disks S,, . .., S, of order p with rotation number 6, where f, (S, =
Si+1G=1, ..., p—1)and f,(S,)=S;;

(B) the composite f,°...cf; has a Siegel disk S| of order 1 with rotation number
—0.

Choose a (real analytic) Jordan curve v, in S, invariant for f%, and y} in S invariant
for f,o...of,. Define Siy,=/;(S, Yis1=/o(v) and ¥/, =/ (), inductively.
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Fig. 4. — Surgery for case (A).

LeEmMA 12. — There exist quasi-conformal mappings ,, ...,V : C — C satisfying (for
eachi=1,...,p)

(D) v (v)=vis

(i) Yipio fo=fioV; on vy, where Y, =V,;

(iii) ; is conformal in a neighborhood of C—(S; N\ ;' (S).

Proof. — By the definition of Siegel disks, there exists a real analytic diffeomorphism
Vv, — v satisfying

Vie fE=(fpo- .o f)evi

Define V;:y;—vi, i=2,...,p so that (ii) holds with {; replaced by {. Let B, (resp.
B;) be the component of C—v; (resp. C—7;), entirely contained in S; (resp. S;). Take
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conformal mappings ;" : C—v; > C—v; (which may be discontinuous on v,) such that

V' (B)=C—B; and {;'(C—-B)=B;. Note that the extension of Vi’ |5, (or ¥ |z_5,) to

v; and Y] have the same orientations. Finally, modify each ;" to obtain the desired V,

satisfying: \]/,.\W=\j/,f and ;=" in some neighborhood of C—(S, N\~ *(S). O
Now, define a mapping g: C — C by

fo on C—UB;,

Ve fiey; on B,

g:

It is easily seen that g is continuous, and moreover, quasi-regular.
Let

and N=1. Obviously, g(E)=E, where E= {J E,. As each V; is conformal in a neigh-

i=0
borhood of C—(EUY,), gz=0a. e. on C—g ' (E). All the conditions in Lemma 1 are
satisfied. So there exists a quasi-conformal mapping ¢ such that F=@ogo@~ ' is a
rational function. Write A;=¢ (S;N\{; '(S}). It is easily seen that A, ..., A, form
an HR-cycle of F of order p with rotation number 6.

To finish the proof of (A), we take rational functions of the forms
fo@=4ce  fi@=24c¢, and  f=...=f,=idg

satisfying (o) and (f) above, for suitable 8. (Such c; exist. See § 1.5.) Counting its
critical points, we conclude that the obtained rational function F is of degree 3.

(B) We state only a sketch of the proof, since its details are quite similar to the case
(A).

First, choose a rational function

fi@=rz(z—1)%

where A=¢?"'% 0eR, such that f; has a Siegel disk S, with center 0. Let v, be an
invariant curve in S,, and y,=f;'(y,)—v;. Then 7y, is a Jordan curve, and
fi |Y2 :Y, =7, is a covering of degree 2. Let D, be the region bounded by v, and vy,.

For 0<r<1, define the following subsets of C :
Dy={r<|z| <l/r}, D)= {r’<|z| <r}, D, = {|z]| <r?},
vi={lz[=r},  vi={lz]=r'}.

Let £ (2)=1/z% A(z)=e '™ z/r* and B(z)=€>"'%. 2.
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Construct a qc-mapping \ : D; —» D] satisfying:
(1) V(v =71, and Yo f;=Bey on vy,;
(ii) W(ys) =73 and Yofy=A" o fooy on y,;
(ii1) V is conformal in a neighborhood of D, —f | t (S)).

If r is sufficiently small, such { exist. (Consider the modulus of D, and Dj.) Next,
extend ¥ to the component of C—D,; bounded by v,, as a qc-mapping onto {r< ]z] },
so that

(ivy y™' is conformal in {r,<|z|}, where r, satisfies r,>r and
{r’< |Z| Sri} ey (D, NSy).
Define g on {|z| <r~'} by

fo on Dy,
g=1{Acyofioy™* on D,
AoB on D),

and on {|z| 2r '} by g=CogoC, where C(z)=1/z.
Then, as in (A), there exist a qc-mapping ¢ such that f=@ogoo™
finctions of degree 4, which has' an HR-cycle of order 2 as in Figure 5.

1 is a rational

Fig. 5. — Surgery for Case (B).

Remark. — The case (B) gives an example for which the N in Lemma 6 cannot be
0. So it was necessary in paragraph 6 to cut the Riemann sphere by the inverse images
of v,, not only by vy, themselves.

Note that we had to pay attention on the modulus of D,, in Case (B). The moduli
will raise a difficulty when one glues up some multiply connected pieces.

Proof of Theorem 6. — Note that if fhas a Siegel disk of order p with rotation number
0, then fP(Z) has a Siegel disk of order 1 with rotation number —6. Hence the theorem
follows from Proposition 2 in paragraph 6 and the above (A).
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10. Proof of theorem 4

For ¢ a critical point of f, consider the following property:

(pp) c is strictly preperiodic, i. e. f"*P(c)=f"(c) for some n, p=1, but c itself is not
periodic, and moreover f"(c) is a repulsive periodic point.

Then c is contained in the Julia set. Let n,,(f) be the number of critical points of f
satisfying (pp).

The proof of Theorem 2 and Corollary 2 implies

(10.1) nAB+nPB+nSD+nC,eme,+2nHR+nm,§2(d——1),

for a rational functions of degree d. In fact, owing to Lemma 4, the perturbations in
paragraph 4 can be constructed so that if ¢ is a critical point of f satisfying (pp), then c*
satisfies (pp) for f..

Hence, for the proof of Theorem 4, it suffices to prove that for given set of nonnegative

integers myp, M.\, Msp, Mcremers Mur and m,,, satisfying

(10.2) mAB+mm,+mSD+mCrcmer+2mHR+mpp=2(d—1)
and

(10.3) M <d—2,

there exists a rational function f of degree d such that n,z(f)=m,p, etc. [We need only
to show n,g(f)=m,p etc., since (10.1) and n,,, <npp imply the equalities.]

First, consider the case m =0.

Step 1. — Let p, g=1 be integers relatively prime with d—1, and A, (resp. A,) be a p-
th (resp. g-th) prime root of unity, such that A, #X,. Define

AM(1+g)+2471

Z)=2Z. s
@ 1+4, (1+g,)z¢ !

where £=(g,, £,)€C? is small. Comparing the expansions of f%° f, and f,° f5, one
easily gets for £=(0, 0)

(10.4) f5(@)=z.[1+cyz"”+0 ("*")] as z-0,

where ¢, #0, n=1. Let R(z)=exp(2ni/m).z, where we write m =d — 1 for simplicity. -
Since m and p are relatively prime and focR=Ro f,, n is a multiple of m. By the
flower theorem (see [3]), f, has np parabolic basins with the limit point 0, which form n
cycles. Combining with a similar expansion at oo, we conclude that n=m, since f, has
at most 2m PB-cycles.

It is easily seen that

(10.5) 12 . (@=z.[(1+8)"+c() 2™ +0 (£, 2)+0 (z™*1)] as z, &, &, -0,
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where c¢(g,) is a holomorphic function of ¢,, with ¢(0)=c,. Let f?(z)=z.F(z, €) and
consider the equation

(10.6) F(z, &)=1
near z=0, for small . Clearly, (10.6) has mp roots

2k, . :
(,j»,k:exp<71> NH(S) (G=0,...,p—1,k=0,...,m—1).

Define o, (€)= (fF)' ({®). Then «a, is independent of the choice of {* and holomorphic,
since

o (1= TT () G0

is a rational function of the coefficients in (10.6). Define similarly o, (¢) for g-periodic
points near z = co.

A simple computation shows that
o, (g1, 8))=1—mp*e, +o(g,) as g, g, 0.
Thus we obtain

a(al’ aZ)(o)__:(_mpz 0 2>’
(g, &) 0 —myq

hence (g, €,) = (a4, o,) is a local diffeomorphism with o, (0)=1. Let 0,, 0, be irrational
numbers satisfying the Diophantine condition (1.1) and sufficiently close to 0. Then
there exists e=(g,, €;) such that o;(e)=exp(2nif,) (j=1, 2). Obviously, f=f, has
2(d—1) Siegel cycles of order p or q. We may take p=1 or g=1.

Step 2. — Consider a rational function f with ngp(f)=2. Let {z;:i=0,...,p—1}
and {zj:j=0,...,q—1} be Siegel cycles of f. Suppose that the rotation number of the
SD-cycle with centers { z; } satisfies (1. 1).

We may assume that f(c0)=z, and z,_; #00. Take a polynomial h(z) such that

h(z)=0, ' (z))=1;

h(z)=h (z)=0, if z is a non-repulsive periodic point of f other than {z;};

h(z)=0, if z is a forward orbit of a critical point satisfying (pp).

Define H,, g, and V, as in paragraph 4, but now ¢eC. By Siegel [15], there exist 9,
go>0 such that if |e|<g,, g, has a Siegel disk S, containing {z:|z—zy| <8}. Let
E,=S,U...Ugr '(S,). Since g, (V,) < {|z—zo| <8} = E, for small &, the same argu-
ment as paragraph 4 yields f, and ¢, The multiplicator of (z))*=0.(z)) is
(1+€)?.(f?) (z)). Hence the cycle {z;} can be perturbed as one likes, with other non-
repulsive cycles and critical points satisfying (pp) unchanged. Thus we can reduce ngp
by one, and increase nap (Or M,y Neremer) DY One.  (Concerning the Cremer cycle, see
paragraph 1.5.)
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Step 3. — Consider again g, and f, above. We show that for suitable ¢, a critical
point ¢* newly comes to satisfy (pp) for f, hence n,,(f)=n,,(f)+1.

Assume that such ¢ does not exist. Let us consider a family of analytic functions
{&lu:le] <&},

where we take U= {|z| <R } and &, satisfying 0<&,; <g,, V, = C—Uand g(C-U) = S,
for ]s| <g;. Let L be a repulsive periodic point of f, not contained in any orbit of
critical points. There exist £, <¢, and an analytic function {(g) of € in {|¢| <&, } such
that {(0) =( and {(¢) is a repulsive periodic point of g, \U. By the assumption, we obtain
branches of {g, " (((¢))}, analytic in {|e| <&, }, since g"(C—U) are contained in E, and
do not intersect with {(g). As Lemma III.2 in Mafé-Sad-Sullivan [14], one can prove
that { g}, hence { f,} are J-stable. This contradicts with the fact that the multiplicator
of (z})° actually varies with &.

Thus we can increase n,, by one.

Ster 4. — Let f, be a rational function of degree d with ng, (fy)=1. Write

R ,=the space of all rational functions of degree d, which is embedded in C
an open set (by considering coefficients). Fix a Siegel cycle zy, . . ., 2z, of f,.

Ipld+1 as

Define hypersurfaces of relations H, and H; as follows. Let { be an indifferent
periodic point of period g with multiplicator p. There exist small neighborhoods U of
{in C and W of f, in #,, such that

H,= { f €W| f has a unique g-periodic point z in U, and its multiplicator is p }

is an analytic variety in W. Let ¢ be a critical point of f, satisfying (pp) with
fa*9(c)=f"(c). There exist small neighborhoods U” of ¢ in C and W of f, in #,, such
that

H.= { fe W] f has a unique critical point ¢’ in U’, and ¢ satisfies /" (¢")=/"(c") }
is an anlytic variety in W. Define the intersection
X=(MH)N(MNH),

for all indifferent periodic points  of f, other than z; and for all critical points ¢ of f;
satisfying (pp), with common W. Then X is an analytic variety in W.

On the other hand, if W is small enough, there exists an analytic function z (f) of fin
W, satisfying

fFe(N=z(/) and  z(fo)=z,

Let a( f) be the multiplicator of z(f) for f, which is a holomorphic function of fe W.

This o is not constant, since we can perturb f, as in paragraph 4 to make z(f)
attractive, with the relations corresponding to H, and H; unchanged. So oy is an open .
map. Hence, considering the multiplicator, one can pertub z, as one likes to reduce ngp
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by one and increase nup (Or M, Neremer) DY One.  We may use this method instead of
Step 2.

Combining Step 1-4, we can prove the assertion in the case mag+m,, +Mgp + M eme, >0
and mye=0. If m,,=2(d—1), it suffices to see the function

_ d
z—)},,<z 2), where X=1—2—, =1, (#1.

z
Thus, we get the conclusion in all the cases where myz =0.

Now, consider the case myg >0. Let M=my.

Suppose that a rational function f, (or f,,) has a Siegel disk of order 1 with rotation
number —6, (resp. 8,) which satisfies (1.1). Let 0,,...,0y_, be irrational numbers
satisfying (1.1) and A, #A;,, (i=1,...,M—1), where A;=exp(2mif;). Set

Ai+z

(2)=z. —L— i=1,...,M—1).
fE=s )

Fig. 6. — Surgery yielding M Herman rings.

Each f; has two Siegel disks of order 1 with rotation numbers 6; and —6;,,. Glue up
fo» - - -»fu by a surgery as in (A) of paragraph 9 (see Fig. 6). Obviously, the obtained

rational function f has M Herman rings of order 1 with rotation number 8,, . .., 0y;
hence

(10.7) nue (f)ZM.

Moreover,

(10.8) nsp (f) 2 nsp (fo) +nsp (fu) —2

and

(10.9) nap(f)Zna(fo) +nap(fi), etc.
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On the other hand, counting critical points, one obtains
2(deg f—1)=2(deg fo—1)+2(deg fuy—1)+2(M—1).

Assume that the equality in (10.1) holds for f, and for f,, Combining the above
results, we easily deduce that the equalities in (10.7)-(10.9) hold. Using the result for
the case my =0, we can choose suitable f,, and f,, so that f satisfies

deg f=d and nag(f)=m,p, etc.

Thus the proof of Theorem 4 is completed.

Remark. — If one needs a superattractive basin, it can be made from attractive basins
by a surgery as Example in paragraph 3.

Notice that we can construct f so that all its Herman rings and at least d—M—1
cycles of non-repulsive periodic points are of order (or period ) 1.
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