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The Fourier Transform

DNA’s double helix, the sunspot cycle and the sawtooth signals
of electronics can be reduced mathematically to a series
of undulating curves. This idea underlies a powerful analytical tool

r I Yo calculate a transform, just lis-
ten. The ear automatically per-
forms the calculation, which the

intellect can execute only after years
of mathematical education. The ear
formulates a transform by converting
sound—the waves of pressure travel-
ing through time and the atmos-
phere—into a spectrum, a description
of the sound as a series of volumes at
distinct pitches. The brain turns this
information into perceived sound.

Similar operations can be done by
mathematical methods on sound
waves or virtually any other fluctu-
ating phenomenon, from light waves
to ocean tides to solar cycles. These
mathematical tools can decompose
functions representing such fluctu-
ations into a set of sinusoidal com-
ponents—undulating curves that vary
from a maximum toc a minimum and
back, much like the heights of ocean
waves. The Fourier transform is a
function that describes the amplitude
and phase of each sinusoid, which
corresponds to a specific frequency.
{(Amplitude describes the height of
the sinusoid; phase specifies the start-
ing point in the sinusoid’s cycle.)

The Fourier transform has become a
powerful tool in diverse fields of sci-
ence. In some cases, the Fourier trans-
form can provide a means of solving
unwieldy equations that describe dy-
namic responses to electricity, heat or
light. In other cases, it can identity the
regular contributions to a fluctuating
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signal, thereby helping to make sense
of observations in astronomy, medi-
cine and chemistry.

he world first learned about the
Ttechnjque from the mathema-

tician for whom the transform
is named, Baron Jean-Baptiste-Joseph
Fourier. Fourier was not merely inter-
ested in heat; he was obsessed by
it. He kept his home in Grenoble so
uncomfortably hot that visitors of-
ten complained. At the same time he
would cloak himself in heavy coats.
Perhaps it was the lure of a warm
climate that in 1798 drew Fourier to
join the retinue of 165 savants that
accompanied Napoleon's expedition
to Egypt.

While Napoleon was fighting Syr-
ians in Palestine, repelling the Turks
from Egypt and hunting the Mameluke
chief, Murad Bey, the French scientists
undertook ambitious studies in ge-
ography, archaeology, medicine, agri-
culture and natural history. Fourier
was appointed secretary of a scientific
body known as the Institute of Egypt.
He discharged administrative duties
with such competence that he re-
ceived many diplomatic assignments.
Yet he was still able to conduct inten-
sive research on Egyptian antiquities
and contemplate a theory about the
roots of algebraic equations.

Shortly before the French were driv-
en from Egypt in 1801, Fourier and
his colleagues set sail for France.
The commander of the British fleet,
Admiral Sir Sidney Smith, promptly
seized their ship along with its cargo
of Egyptian documents and relics. In
the honorable spirit of the time, Smith
put the scientists ashore unharmed in
Alexandria. The English commander
eventually traveled to Paris to return
the confiscated material—except for
the Rosetta stone (the key to Egyptian
hieroglyphics), which stands today in
the British Museum as a monument
to Napoleon's military defeat and his
contribution to Egyptology.

Returning to France relatively un-
scathed, Fourier focused on math-
ematical matters as professor of anal-
ysis at the Polytechnic School, but
in 1802 he again entered Napoleon’s
service. Fourier became the prefect of
the Isére department. While attempt-
ing to repair the disruptions remain-
ing from the Revolution of 1789, he
built the French section of the road to
Turin and drained 80,000 square ki-
lometers of malarial swamp. During
this time he derived an equation that
described the conduction of heat in
solid bodies. By 1807 Fourier had in-
vented a method for solving the equa-
tion: the Fourier transform.

ourier applied his mathemati-
Fcal technique to explain many

instances of heat conduction. A
particularly instructive example that
avoids computational complications
is the flow of heat around an anchor
ring—an iron ring that attaches a
ship’s anchor to its chain—that has
been thrust halfway into a fire. When
part of the circumference becomes
red hot, the ring is withdrawn. Before
much heat is lost to the air, the ring
is buried in fine, insulating sand, and
the temperature is measured around
the outer curve |see illustration on
page 88).

Initially the temperature distribu-
tion is irregular: part of the ring is
uniformly cool, and part is uniform-
ly hot; in between the temperature
abruptly shifts. As heat is conducted
from the hot region to the cool re-
gion, however, the distribution begins
to smooth out. Soon the temperature
distribution of heat around the ring
reaches a sinusoidal form: a plot of
the temperature rises and falls evenly,
like an S curve, in exactly the way sine
and cosine functions vary. The sinus-
oid gradually flattens until the whole
ring arrives at a constant temperature.

Fourier proposed that the initial,
irregular distribution could be bro-
ken down into many simple sinusoids
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that had their own maximum temper-
ature and phase, that is, relative po-
sition around the ring. Furthermore,
each sinusoidal component - varied
from a maximum to a minimum and
back an integral number of times in a
single rotation around the ring. The

SUNBEAM resolved into a spectrum provides a physical anal-
ogy for mathematical transforms (top). The sunlight entering
the prism varies in strength from moment to moment (bottom).
The light leaving the prism has been separated in space into
pure colors, or frequencies. The intensity of each color implies

one-cycle variation became known as
the fundamental harmonic, whereas
variations with two, three or more
cycles in a single rotation became
the second, third and higher harmon-
ics. The mathematical function that
describes the maximum temperature

and position, or phase, for each of the
harmonics is the Fourier transform of
the temperature distribution. Fourier
had traded a single distribution that
was difficult to describe mathemati-
cally for a more manageable series of
full-period sine and cosine functions

an amplitude at each frequency. Thus, a function of strength
versus time has been transformed into a function of ampli-
tude versus frequency. The Fourier transform can represent
a time-varying signal as a function of frequency and ampli-
tude, but the transform also provides information about phase.
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that when added together would make
up the original distribution.

In applying this analysis to the con-
duction of heat around the ring, Fouri-
er reasoned that the greater the num-
ber of periods of a sinusoidal compo-
nent, the more rapidly it will decay.
One can follow his reasoning by ex-
amining the relation between the fun-
damental and the second harmonic
of the temperature distribution. The
temperature of the second harmonic
varies from hot to cool twice around
the circumference of the ring, where-
as the fundamental varies only once.
Therefore, the distance that the heat
must travel from hot peak to cool
trough is only half as far for the sec-
ond harmonic as it is for the fun-
damental. Furthermore, the tempera-
ture gradient in the second harmonic
is twice as steep as it is in the funda-
mental variation. Because twice the
heat flow occupies half the distance,
the second harmonic will die out four
times faster than will the fundamental.

Higher harmonics will decay even
more rapidly. Hence, it is only a single
sinusoidal distribution of the funda-
mental variation that persists as the
temperature of the ring approaches
equilibrium. Fourier believed that the
evolution over time of any initial heat
distribution could be computed by his
technique.

ourier's analysis challenged the
mathematical theories to which

his contemporaries adamantly
adhered. In the early 19th century,
many extraordinary Parisian mathema-
ticians, including Lagrange, Laplace,
Legendre, Biot and Poisson, could not
accept Fourier's claim that any ini-
tial temperature distribution could be
decomposed into a simple arithmetic
sum that consisted of a fundamental
variation and its higher-frequency har-
monics. Leonhard Euler also found
fault with Fourier's ideas, although
he had already proposed that some

TEMPERATURE OF AN IRON RING was
one of the first phenomena analyzed by
Fourier’s technique. One distribution of
heat around a ring is shown (a); bright-
er color represents hotter areas. To be-
gin the analysis, the ring is “uncoiled”
(b), and the temperature is measured at
every point, yielding a temperature dis-
tribution around the circumference (o).
Then the temperature distribution is de-
composed into many sinusoidal curves
having one, two, three or more cycles (d).
When 16 of the curves are simply add-
ed together (solid line in e), they yield a
good approximation of the original tem-
perature distribution (broken line in e).
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CONDUCTION OF HEAT through an iron ring causes the tem-
perature distribution to change over time (left). Just as the
temperature distribution at any instant can be described as
a series of sinusoidal curves, the evolution of a temperature
distribution over time can be described in terms of changes
in the sinusoids. The one-cycle distribution, or first harmon-

functions could be represented as a
sum of sine functions. And so when
Fourier made this claim at a meeting
of the French Academy of Sciences,
Lagrange stood up and held it to be
impossible.

Even under these circumstances the
Academy could not ignore the signif-
icance of Fourier's results, and it
awarded him a prize for his mathe-
matical theory of the laws of heat
propagation and his comparison of
the resuits of his theory with pre-
cise experiments. The award was an-
nounced, however, with the following
caveat: “The novelty of the subject,
together with its importance, has de-
cided us to award the prize, while
nevertheless observing that the man-
ner in which the author arrives at his
equations is not without difficulties,
and that his analysis for integrating
them still leaves something to be de-
sired both as to generality and even as
to rigor.”

The great uneasiness with which
Fourier’s colleagues regarded his work
caused its publication to be delayed
until 1815. In fact, it was not com-
pletely described until the 1822 publi-
cation of his book, The Analytical The-
ory of Heat.

Objections to Fourier’s approach
focused on the proposition that an
apparently discontinuous function
could be represented by a sum of
sinusoidal functions, which are con-
tinuous. Discontinuous functions de-
scribe broken curves or lines. For in-
stance, a function called the Heaviside
step function is zero on the left and
jumps to one on the right. (Such a
function can describe the flow of cur-
rent when a switch is turned on.) Fou-
rier's contemporaries had never seen
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a discontinuous function described as
resulting from a combination of or-
dinary, continuous functions, such as
linear, quadratic, exponential and si-
nusoidal functions. If Fourier was cor-
rect, however, a sum of an infinite
number of sinusoids would converge
to represent accurately a function
with jumps, even with many jumps. At
the time this seemed patently absurd.

In spite of these objections many
workers, including the mathemati-
cian Sophie Germain and the engineer
Claude Navier, began extending Fou-
rier's work beyond the field of heat
analysis. Yet mathematicians contin-
ued to be plagued by the question of
whether a sum of sinusoidal functions
would converge to represent a discon-
tinuous function accurately.

he question of convergence aris-
I es whenever an infinite series of
numbers is to be added up. Con-
sider the classic example: will you ever
arrive at a wall if with each step you
travel half of the remaining distance?
The first step will bring your toe to the
halfway mark, the second, three quar-
ters of the way, and at the end of the
fifth step you are almost 97 percent of
the way there. Clearly this is almost
as good as reaching the wall, but no
matter how many steps you take, you
will never quite reach it. You could
prove mathematically, however, that
you would ultimately get closer to the
wall than any distance nominated in
advance. (The demonstration is equiv-
alent to showing that the sum of a
half, a fourth, an eighth, a 16th and so
on approaches one.)
The question of the convergence of
Fourier series emerged again late in
the 19th century in efforts to predict
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ic (middle), and the two-cycle distribution, or second harmon-
ic (right), are shown. Fourier determined that the second har-
monic will decay four times faster than the first harmonic
and higher harmonics will decay even faster. Because the first
harmonic persists the longest, the overall temperature distri-
bution approaches the sinusoidal shape of the first harmonic.

the ebb and flow of the tides. Lord
Kelvin had invented an analogue com-
puter for providing information about
the tides to the crews of merchant
and naval vessels. First sets of am-
plitudes and phases were calculat-
ed manually from a record of tidal
heights and corresponding times that
had been painstakingly measured dur-
ing the course of a year in a particu-
lar harbor.

Each amplitude and phase repre-
sented a sinusoidal component of the
tidal-height function and revealed one
of the periodic contributions to the
tide. Then the results were fed into
Lord Kelvin’s computer, which synthe-
sized a curve predicting the heights of
the tide for the next year. Tidal curves
were soon produced for ports all over
the world.

It seemed obvious that a tide-
predicting machine with more parts
could process more amplitudes and
phases and thus would make better
predictions. This turned out not to be
completely true if the mathematical
function to be processed contained a
Steep jump, that is, it described an
essentially discontinuous function.

Suppose such a function was re-
duced into a small set of amplitudes
and phases—that is, just a few Fourier
coefficients. The original function can
then be reconstructed from the sinus-
oidal components corresponding to
the coefficients, and the error between
the original function and the recon-
structed function can be measured at
each point. The error-finding proce-
dure is repeated, each time computing
more coefficients and incorporating
them into the reconstruction. In every
case, the value of the maximum error
does not diminish. On the other hand,
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the error becomes confined to a re-
gion that gradually shrinks around the
discontinuity, so that ultimately at any
given point the error approaches zero.
Josiah Willard Gibbs of Yale Universi-
ty confirmed this result theoretically
in 1899.

Fourier analysis is still not appli-
cable to unusual functions, such as
those possessing an infinite number
of infinite Jumps in a finite interval,
By and large, however, a Fourier se-
ries will converge if its original func-
tion represents the measurement of a
physical quantity.

Vast areas of new mathematics have
been developed from investigations of
whether the Fourier series of a partic-
ular function converges. One exam-
ple is the theory of generalized func-
tions, which is associated with George
F.J. Temple of England, Jan G, Mikusin-
ski of Poland and Laurent Schwartz of
France. It established in 1945 a firm

FERREL TIDE PRED]
ebb and flow of the tides. Data that
lations into a set
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CTOR, an analogue computer built in the
late 19th century, performed Fourier synthesis to forecast the

were collected on tidal
heights at a particular harbor could be reduced by hand calcu-

of numbers, each one representing a period-

basis for the Heaviside step function
and the Dirac delta function; the latter
describes a unit of area concentrat-
ed at a point. The theory enabled the
Fourier transform to be applied to
solve equations that involved such in-
tuitively accepted concepts as point
mass, point charge, magnetic dipoles
and the concentration of a load on
a beam.

fter almost two centuries of de-
A/elopment, the theory behind
the Fourier transform is firm-

ly established and wel) understood.
As we have seen, Fourier analysis
breaks down a function in Space or
time into sinusoidal components that
have varying frequencies, amplitudes
and phases. The Fourijer transform is
a function that represents the ampli-
tude and phase at each frequency. The
transform can be derived by two dif-
ferent mathematica) methods, one ap-

ic contribution to the tide, such as the gravitational pull of the
moon. The numbers for a specific port could then be fed into

plied when the original function ig u

continuous and the other when it con- o
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unbroken function, it is the function
of frequency that results when the
Fourier integral is evaluated.
Regardless of the manner in which
the transform is derived, it is neces-
sary to specify two numbers at each
frequency. These might be the ampli-
tude and phase; however, other num-
ber pairs could encode the same infor-
mation. These values can be expressed
as a single complex number. (A com-
plex number is the sum of one real
number and another real number mul-
tiplied by the square root of negative
one.) This representation is very popu-
lar because it invites the use of com-
plex algebra. The theory of complex al-
gebra and the Fourier transform have
become indispensable in the numeri-
cal calculations needed to design elec-
trical circuits, analyze mechanical vi-
brations and study wave propagation.
Representing an original function by
its complex Fourier transform leads
to computational advantages. A typi-
cal problem is to ascertain the cur-
rent that flows when a known volt-
age is applied to a circuit. The direct
method involves solving a differential
equation that relates the voltage and
current functions. The Fourier trans-
forms of the voltage and current func-
tion, in contrast, can be related by an
equation whose solution is trivial.

oday the study of Fourier trans-

forms consists largely of acquir-

ing techniques for moving free-
ly between functions and their trans-
forms. Analytical methods can be ap-
plied to evaluate the Fourier integral
and produce the transform. Although
these methods may be difficult for
ordinary practitioners, many Fourier
integrals have been found and are list-
ed in tables of reference. These meth-
ods can be supplemented by learning
a handful of theorems pertaining to
transforms. With the aid of these the-
orems more or less complicated wave
forms can be handled by reduction to
simpler components.

Fortunately numerical methods are
available for computing Fourier trans-
forms of functions whose forms are
based on experimental data or whose
Fourier integrals are not easily evalu-
ated and are not found in tables. Be-
fore electronic computers, numerical
calculation of a transform was rather
tedious, because such a large amount
of arithmetic had to be performed
with paper and pencil. The time re-
quired could be reduced somewhat by
forms and schedules that guided in-
vestigators through the calculations,
but the labor involved could still be
daunting.

A e

Just how much arithmetic had to
be performed depended on the num-
ber of data points needed to describe
the wave. The number of additions
was comparable to the number of
points, and the number of multiplica-
tions equaled the number of points
squared. For example, analyzing a
wave specified by 1,000 points taken
at regular intervals required on the
order of 1,000 additions and one mil-
lion multiplications.

Such calculations became more fea-
sible as computers and programs
were developed to implement new
methods of Fourier analysis. One was
developed in 1965 by James W. Cooley
of IBM’s Thomas J. Watson Research
Center and John W. Tukey of the Bell
Telephone Laboratories in Murray Hill,
N.J. Their work led to the development
of a program known as the fast Fourier
transform.

The fast Fourier transform saves
time by decreasing the number of
multiplications needed to analyze a
curve. At the time, the amount of mul-
tiplication was emphasized simply be-
cause multiplication was slow with
respect to other computer operations,
such as addition and fetching and
storing data.

The fast Fourier transform divides a
curve into a large number of equally
spaced samples. The number of multi-
plications needed to analyze a curve
decreases by one half when the num-
ber of samples is halved. For exam-
ple, a 16-sample curve would ordinar-
ily take 16 squared, or 256, multipli-
cations. But suppose the curve was
halved into two pieces of eight points
each. The number of multiplications
needed to analyze each segment is
eight squared, or 64. For the two seg-
ments the total is 128, or half the
number required before.

If halving the given sequence yields
a twofold gain, why not continue with
the strategy? Continued subdivision
leaves eight irreducible pieces of two
points each. The Fourier transforms of
these two-point pieces can be comput-
ed without any multiplications, but
multiplication is required in the proc-
ess of combining the two-point trans-
forms to construct the whole trans-
form. First, eight two-point transforms
are combined into four four-point
transforms, then into two eight-point
transforms and finally into the desired
16-point transform. These three stag-
es that combine the pieces each call
for 16 multiplications, and so the total
number of multiplications will be 48,
which is 3/16 of the original 256.

This strategy for reducing the num-
ber of computations can be traced

back long before Cooley and Tukey’s
work to the astronomer Carl Fried-
rich Gauss. Gauss wanted to calculate
asteroidal and cometary orbits from
only a few observations. After discov-
ering a solution, he found a way to
reduce the complexity of the calcula-
tions based on principles similar to
those of the fast Fourier transform.
In an 1805 paper describing the work,
Gauss wrote: “Experience will teach
the user that this method will greatly
lessen the tedium of mechanical cal-
culation.” Thus, the challenge of celes-
tial motions not only gave us calculus
and the three laws of motion but also
stimulated the discovery of a modern
computing tool.

hysicists and engineers, indoc-

trinated with complex algebra

early in their education, have be-
come comfortable with the represen-
tation of sinusoids. The convenience
of representing the Fourier transform
as a complex function lets us forget
that the underlying sinusoidal com-
ponents are real and not necessarily
complex. This habit of thought has
obscured the significance of and re-
tarded the adoption of a transform
similar to Fourier’s that was conceived
by Ralph V. L. Hartley in 1942.

Working in the research laboratory
of the Western Electric Company, Hart-
ley directed the early development of
radio receivers for a transatlantic ra-
diotelephone and invented the Hartley
oscillating circuit. During World War [
Hartley investigated how a listener,
through mechanisms in the ear and
brain, perceives the direction from
which a sound emanates. Working at
Bell Laboratories after the war, Hartley
was the first to formulate an impor-
tant principle of information technol-
ogy that states that the total amount
of information a system can transrmit
is proportional to the product of the
frequency range the system transmits
and the time during which the system
is available for transmission. In 1929
Hartley gave up the direction of his
group because of illness. As his health
improved he devoted himself to the
theoretical studies that led to the
Hartley transform.

The Hartley transform is an alterna-
tive means of analyzing a given func-
tion in terms of sinusoids. It differs
from the Fourier transform in a rather
simple manner. Whereas the Fourier
transform involves real and imaginary
numbers and a complex sum of sinus-
oidal functions, the Hartley transform
involves only real numbers and a real
sum of sinusoidal functions.

In 1984 I developed an algorithm
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THE FOURIER AND HARTLEY TRANSFORMS

The Fourler and Hartley transforms convert functions of time into functions of frequency
that encode phase and amplitude information. The graphs below represent the unbroken
function g(t) and the discrete function 9(7), where tis time and Tis a number designated
at each data point.

UNBROKEN FUNCTION
DISCRETE FUNCTION

-

b re
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x d. 1

I L i
TIME (1) "TIME" (1)
Both functions start at Zero, jump to a positive value and then decay exponentially. The
definition of the Fourier transform for the unbroken function is an infinite integral, F(f),
whereas the definition for the discrete function is a finite sum, F(v).

n—1
b 1 N
Fify=J g(t) (cos 2mrft — ¢ sin 2rft) dt Flv) = - 2 9(t) (cos 2mrvT -5 sin 21vT)
ad T=0
Here fis frequency, v is related to frequency, n is the total number of samples and ; is the
imaginary number equal to the square root of ~1. The integral representation is more
suited to theoretical manipulations, whereas the finite-sum representation is more suited
to computer applications. The Hartley transform and discrete Hartley transform have
similar definitions.
o0 ] n-1
H(f) = [ 9(t) (cos 2mft + sin 27ft) dt H(v) = — 5 g(t) (cos 2mvT + sin 2mvT)
o0 " r=0

Even though the only notational difference between the Fourier and Hartley definitions is
a factor — in front of the sine function, the fact that the Fourier transform has real and

FOURIER TRANSFORM
HARTLEY TRANSFORM

FREQUENCY FREQUENCY

Although the graphs look different, the phase and amplitude information that can be
deduced from the Fourier and Hartley transforms is the same, as shown below.

AMPLITUDE
PHASE

Fourier amplitude is the square root of the sum of the squares of the real and imaginary
parts. Hartley amplitude is the square root of the sum of the squares of H(~v) and H(v).
Fourier phase is the arc tangent of the imaginary part divided by the real part, and Hartley

phase is 45 degrees added to the arc tangent of H(-v) divided by H(v).
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for a fast Hartley transform. The dif-
ference in computation time between
the fast Hartley transform and the
fast Fourier transform depends on the
computer and the programming lan-
guage and style. If these factors are
kept constant and no oversights are
made in the Programming, programs
for the fast Hartley transform run
more quickly than those for the fast
Fourier transform. Although both pro-
grams need the same amount of time
to retrieve the data, provide for trigo-
nometric functions and perform other
preliminaries, the time spent on the
stages of the Hartley transform is half
that required by the Fourier.

It was not clear at first, however, that
the Hartley transform provided the
same information as the Fourier trans-
form. Therefore, when the first pro-
grams were developed for comput-
ing the Hartley transform, an extra
step was provided to convert it to
the more familiar Fourier. Workers
soon realized, however, that intensi-
ties and phases can be deduced direct-
ly from the Hartley transform without
the need for the additional step. Fur-
ther reflection revealed that either
kind of transform furnishes at each
frequency a pair of numbers that rep-
resents a physical oscillation in ampli-
tude and phase.

Yet another reservation about the
Hartley transform was that the Fou- ',
rier transform described physical phe-
nomena more naturally. Many phe- 5
nomena, such as the response of a |
simple system to vibration, are com- ;
monly described by a complex sum i
of sinusoidal functions, which is the ;
hallmark of the Fourier transform.

It might seem, therefore, that Fourier
transforms are more suitable for de-
scribing the behavior of nature.

Such a conclusion is in fact more
a reflection of our mathematical up-
bringing than it is of nature. After all,
when physical objects are measured,
they provide data in real numbers, not
complex ones.

The advent of the fast Hartley trans-
form has made obsolete certain adap-
tations of the fast Fourier transform,
such as those used for eliminating
noise from digitally recorded music.

These adaptations require two pro-
grams: one of them transforms real
functions into the complex Fourier
domain, whereas the other converts
complex functions from the Fourier
domain into real functions. High-fre-
quency noise in digitally recorded mu-
sic can be eliminated by filtering out !
portions of the transform produced
by the first program. The second pro-
gram then converts the changed trans-
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FOURIER ANALYSIS can transform X-ray diffraction patterns
into molecular models. X rays scatter off the electrons in a
virus, for example, to produce patterns on film (left). These
patterns represent part of the Fourier transform of the virus's

form back into an improved musical
signal. Although these ingenious pro-
grams run individually at speeds rival-
ing the fast Hartley transform, a sin-
gle Hartley program suffices for both
transforming a real function into a
Hartley transform and converting the
transform, after the desired filtering,
back to a real function. Therefore, ex-
tra computer memory for storing two
programs is not required.

rier and Hartley transforms have

been applied in fields that contend
with fluctuating phenomena. Their
field of application is thus very broad
indeed.

Many applications exist in biolo-
gy. In fact, the double-helix form of
DNA was discovered in 1962 through
X-ray diffraction techniques and Fou-
rier analysis. A beam of X rays was fo-
cused on a crystal of DNA strands, and
the X rays were diffracted by the mol-
ecules of the DNA and recorded on
film. This diffraction pattern provided
the amplitude information of the crys-
tal structure’s Fourier transform. The
phase information, which the photo-
graphs alone did not provide, was de-
duced by comparing the DNA diffrac-
tion pattern with patterns produced
by similar chemicals. From the X-ray
intensity and phase information in the
Fourier transform, biologists worked
back to a crystal structure—the origi-
nal function. In recent years, X-ray dif-
fraction studies combined with such
“reverse” Fourier analysis have re-
vealed the structure of many other
biological molecules and more com-
plex structures, such as viruses.

The National Aeronautics and Space
Administration improves the clarity
and detail of pictures of celestial ob-

In the most general terms, Fou-

jects taken in space by means of Fou-
rier analysis. Planetary probes and
earth-orbiting satellites transmit imag-
es to the earth as a series of radio im-
pulses. A computer transforms these
impulses by Fourier techniques. The
computer then adjusts various com-
ponents of each transform to enhance
certain features and remove others—
much as noise can be removed from
the Fourier transforms of recorded
music. Finally, the altered data are
converted back to reconstruct the im-
age. This process can sharpen focus,
filter out background fog and change
contrast.

The Fourier transform is also valu-
able in plasma physics, semiconduc-
tor physics, microwave acoustics, seis-
mography, oceanography, radar map-
ping and medical imaging. Among the
many applications in chemistry is the
use of the Fourier-transform spec-
trometer for chemical analysis.

Fourier analysis has proved valuable
in my own work in two-dimension-
al imaging. In 1956 I stumbled on a
“projection slice” theorem that yield-
ed a way to reconstruct images from
strip integrals, a problem now wide-
ly known as tomographic reconstruc-
tion. Later, I hit on the “modified back-
projection” algorithm, now universally
used in computer-assisted X-ray to-
mography, or CAT scanning.

I was also interested in reconstruct-
ing images based on data from radio
astronomy. I wanted to pinpoint sour-
ces of radio waves on the sun’s sur-
face, so I applied transform methods
to the design of a scanning radio tele-
scope that made daily microwave tem-
perature maps of the sun for 11 years.
The methods led to the first antenna
with a beam sharper than the resolu-
tion of the human eye and have since

molecular structure. If the process of transformation is re-
versed, the distribution of electrons, and therefore atoms, can
be deduced (middle). From these distributions, models of the
virus are made (right). Here colors indicate different proteins.

diffused into general antenna technol-
ogy. NasA commended the maps of
the sun for contributing to the safety
of the lunar astronauts.

I have also applied the Hartley trans-
form to other studies. Recently my
colleague John D. Villasenor and I de-
scribed an optical method for finding
the Hartley transform, a development
that enables Fourier phase and ampli-
tude to be encoded in a single real
image. We have also developed a de-
vice that constructs the Hartley trans-
form using microwaves. [ am now writ-
ing papers on solar physics in which
transform techniques underlie new
ways of analyzing data from sunspot
counts and from the thickness of sedi-
mentary layers on the earth.

The wide use of Fourier’s meth-
od and related analytical techniques
makes what Lord Kelvin said in 1867
just as true today: “Fourier's theorem
is not only one of the most beautiful
results of modern analysis, but it may
be said to furnish an indispensable
instrument in the treatment of nearly
every recondite question in modern
physics.”
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