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ABSTRACT

This paper review history of work in the development
of abstract harmonic analysis, which is a mathemati-
cal discipline attempting to extend the classical Fourier
analysis to various groups.

1 INTRODUCTION

Fourier analysis is aimed at representation of a complex
signal as the superposition (mostly linear combination)
of simple signals reflecting the structure of the group G
on which the initial signal has been defined.

Theory of Fourier analysis is complex and sometimes
complicated, however, many algorithms derived from it,
as for instance, spectral estimation, convolution analy-
sis, filtering, etc., are relatively simple and their concrete
applications up to some extent are possible without a
deeper study of mathematical foundations of the Fourier
analysis. However, derivation of yet another sequence of
numbers is not the goal of the transition into the spectral
domain, but rather achieving a better insight into the
essence of the problem considered. The complete under-
standing and correct interpretation of the derived results
can hardly be achieved without a certain knowledge of
mathematical foundations of the Fourier analysis.

2 TRIGONOMETRIC SERIES

Theory of trigonometric series can be dated back at the
beginning of 18th century. Mathematicians of that time
have been using trigonometric series, in particular for
their various astronomical calculations.

In 1729, Euler formulated and have been starting solv-
ing the problem of interpolation as the problem of de-
termination of the function values in an arbitrary point
x if known its values for x = n, where n is an integer.

In 1747, Euler applied the method he disclosed to a
function φ derived from analysis of movement of planets,
and represented φ in the form of a trigonometric series.
This method derived in 1729, Euler had published in
1753 [11]. This article actually contains what is now
called the Fourier series, and Euler provided also for-
mulaes to determine the coefficients in the series by the
integral of the function considered. Therefore, it may

Figure 1: Euler.

be stated justifiably that the trigonometric series of a
function has been presented for the first time in 1750 to
1751.

Figure 2: d’Alambert.

In 1754, d’Alambert [9] has considered the problem
of series representation of the reciprocal value of the
mutual distance of two planets as a function of their
position as a series in cosinusoidal functions whose ar-
gument is the integer multiple of the value of the angle
between the rays from the centers of planets. In this
article, d’Alambert also provided formulae for determi-
nation of the coefficients of this series in terms of finite
integrals.

In [11], [12], Euler derived trigonometric series of some
functions in a way completely different from that he pre-
viously used. Similar results have been derived at about
the same time by Lagrange [25] and Daniel Bernoulli [3].

It is interesting to notice that neither Euler nor La-
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Figure 3: Lagrange.

Figure 4: Daniel Bernoulli.

grange commented the interesting feature that it was a
non-periodic function among the functions considered.
From a letter by Lagrange to d’Alambert dated on Au-
gust 15, 1768 [26], it can be concluded that they realized
that latter in the context of some other problems.

In 1757, Clairaut derived a cosinus series representa-
tion of a function derived in a study of the movement of
the Sun.

Figure 5: Clairaut.

In 1777, in solving some astronomical problems, Euler
determined coefficients in the series representation of a
trigonometric function by a method equal to that used
nowadays [13],

In the research work discussed above and related pub-
lications there are examples of trigonometric series of
various classes of functions, however, the essential ques-
tion about the possibility of representation of an arbi-
trary function by a trigonometric series, remained un-
solved until the works by J. B. Fourier, whose main ideas
are contained in his book [14].

3 FOURIER AND HIS WORK

3.1 Biography and Work
Jean Baptiste Joseph Fourier was born in Auxerre in
north-central France on March 21, 1768, and left with-
out parents when he was nine old. Thanks to the rec-
ommendations of few family friends to the Bishop of
Auxerre, Fourier joined a military school run by Bene-
dictines of Saint-Maur. As a student he demonstrated
his skills and an extraordinary gift for mathematics.
However, due to middle class origins, Fourier, whose
father was a tailor, has not be allowed to persuade to-
wards the carrier of an artillery officer, although applied
with a strong recommendation by Legendre, and had to
accept the position of a lecturer of mathematics in a
military school in France.

Figure 6: Fourier.

Figure 7: Legendre.

Due to his public activity during the French Revolu-
tion, when served as a publicist, recruiting agent, and
a member of the Citizens Committee of Surveillance,
Fourier was arrested in 1789 for defending the victims
from the terror of revolutionaries, and had problems to
escape from the guillotine and fury of former co-allies.
In 1794, Fourier was selected among 500 candidates for
new teachers at the Normal School just established in
Paris. However, when this School failed shortly after
that, Fourier already prove himself as an outstanding
scholar and in 1795, was awarded by a professorship at
the prestigious École Polytechnique in Paris starting as
a superintendent of lectures on fortification, and then
as a lecturer on analysis. At that time, Lagrange and
Monge have been also teaching at the same school.
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Figure 8: Monge.

In 1798, both Monge and Fourier joined a group of
scholars in the military campaign of Emperor Napoleon
Bonaparte to Egypt, where Fourier has been appointed
governor of the southern Egypt. After the defeat by
Britishers in 1801, Fourier returned to France at the
position of prefect of Départment of Isére and lived in
Grenoble. Besides his administrative duties, Fourier
become appointed secretary of the Institut d’ Egypts,
and in 1809 completed a major work on ancient Egypt,
Préface historique. In the same year, Napoleon awarder
Fourier with the title of a Baron.

Fourier have been keeping this position of the pre-
fect also in 1814, when Napoleon returned from his ex-
ile at Elba. Fourier went to Lyon to inform Burbons
that the city of Grenoble will surrender to Napoleon
and his supporters. The answer was that he would be
responsible for the safety of the city. When Fourier re-
turned, the Grenoble already capitulate, and his loyalty
to Napolen has been re-established after some remarks
by the Emperor to his strongly supported associate sci-
entist, mathematician and Egyptologist. After the end
of Hundred Days, during the Restoration, Fourier run
into troubles for his political past. In this situation,
Fourier was helped by at that time prefect of Paris, his
former student and friend, who supported his appoint-
ment as the Director of the Bureau of Statistics.

Besides much engaged with various respectable ad-
ministrative duties, Fourier has been preforming math-
ematical research in the theory of equations, and math-
ematical physics.

3.2 Scientific Work
Already in the age of sixteen, Fourier has found a new
proof of the rule formulated by Descartes about the
number of positive and negative roots in a polynomial.
In the age of twenty-one he delivered his first memoir
before the Academy of Sciences on the resolution of nu-
merical equations of all degrees.

Fourier worked on the book Analyse des équations
déterminées, published in 1831 by his friend Louis Marie
Marie Navier, where he anticipated linear programming
[18].

However, fundamental contribution by Fourier is in
mathematical physics. He studied the flow of heat be-

tween two regions of different temperature. This ques-
tion was very important in producing guns, therefore,
a very important problem also for military authorities,
and the same problem was discussed already by Sir Isaac
Newton, who provided an estimation of the temporal
rate of cooling in terms of the difference between the
temperature of an object and his environment. How-
ever, Newton did not solve the spatial rate of change,
since it depends on several factors as, for instance, the
geometric shape of the object, heat conductivity of the
object, and initial distribution of the temperature on
its boundary. This problem requires application of the
analytic tool of the continuum and solution of partial
differential equations. Fourier provided a solution of the
problem considered by showing that the initial distrib-
ution of the temperature mast be expressed as a sum
of infinitely many sine and cosine terms, which is now
called the trigonometric or Fourier series.

Figure 9: Descartes.

3.3 Main Contribution
The main contribution of Fourier to mathematical
physics can be summarized as follows.

For a reasonably behaved function on (−π, π), the
Fourier series is

f(x) =
∞�

n=−∞
cneinx,

where the coefficients are determined as

cn =
1
2π

=
� π

−π
e−inxdx.

The term reasonably behaved means f(x) is piecewise
smooth on −π, π, i.e., it is continuous and differentiable
except possibly at a finite number of finite jump dis-
continuities. In these points, the function takes values
f(x) = f(x−) + f(x+)/2, that is, as the mean between
the values f(x) just to the left and right of the point x.

Fourier viewed non-periodic functions as a limiting
case of periodic functions with the period approaching
to infinity. In this case, the Fourier series is replaced by
the Fourier integral that represents a continuous distri-
bution of sine waves over all frequencies.
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Sf (w) =
� ∞

∞
f(x)e−2πiwxdx,

and

f(x) =
� ∞

−∞
Sf (w)e2πiwxdw.

3.4 Presentation of Work and Publishing
In 1807, Fourier completed his work ”Propagation of
Heat in Solid Bodies” and presented it before the French
Academy of Science on December 12. The claim that
any function defined in a finite closed interval can be
represented in the form of a series of sine and cosine
functions with suitably assigned coefficients, has not
been completely accepted. The sceptical Referees were
Laplace, Lagrange, Monge, and Lacroix 1. However,
to encourage the author to continue and improve his re-
search results, the Academy assigned as a subject for the
award scheduled in 1812 the subject The Mathematical
Theory of the laws of the propagation of heat and the
comparison of the results of this theory with exact ex-
periment. Fourier submitted a revised paper in 1811.
The group of judges, among which the previous Refer-
ees, awarded the memoir by Fourier consisting of two
parts, however, criticized the lack of mathematical rigor
and rejected the paper for publication in the Memoirs
of the Academy.

3.5 Recognition and Rewarding
It should be noticed that his political past, revolution-
ary activity and strong relationships with Napoleon,
did not prevent Fourier to be recognized for his scien-
tific research and achievements after the Restoration of
Monarchy in France. Fourier has been nominated for
the member of the French Academy of Science in 1816,
and Louis XVIII refused his consent that time. In 1817,
Fourier has been elected to the Academy od Sciences,
and became the permanent Secretary of the Division of
Mathematical Sciences in 1822, when he published his
awarded memoir Theorié analytique de la chaleur, (An-
alytical Theory of Heat), which is widely considered as
his major contribution to the mathematical physics. In
1826, Fourier become a member of French Academy, and
in 1826 followed Laplace at the position of the President
of the Council for Improving the Polytechnic School. In
1828, Fourier was appointed as a member of a committee
of French government for encouragement of literature.

Fourier attitude to the research and mathematics can
be expressed by his often used saying Profound study
of nature is the most fertile source of mathematical dis-
coveries. However, exactly that was a source of many
criticisms of Fourier mathematical work by some math-
ematicians at that time as, for instance, Lagrange, Pois-
son, and Biot.

1In some publications, it is noticed that the committee con-
sisted of Laplace, Lagrange, and Legendre

Figure 10: Biot.

4 Further Development of Fourier Analysis

The results by Fourier were expressed by Dirichlet and
Riemman with stronger precision and formalism. The
work by Dirichlet has been published in the Crelle’s
Journal in 1828.

Riemann, who was a student of Dirichlet write in the
introduction to his habilitation thesis on Fourier series
that Dirichlet wrote ”the first profound paper about this
subject” [24].

Poisson provided foundations for the work by Dirich-
let and Riemman, as can be found in the Journal of the
École Polytechnique from 1813 to 1823 and in Memoirs
de l’ Académie for 1823. He also studied the Fourier
integral.

Poisson summation formula is a relation between the
sum of a function f over all integers and a corresponding
sum of the Fourier transform sf . If the normalization
of the Fourier transform is correctly adjusted, it can be
written as

�
F (n) =

�
Sf (n). Some conditions must

be applied to ensure convergence.
In 1806, Poisson has been appointed for a Full Profes-

sor at the École Polytechnique in succession to Fourier
who went to Grenoble. Poisson become a baron in 1821
for remaining faithful to Burbons during the Hundred
Days.

Cauchy has shown that in a work by Poisson on the
convergence of Fourier series was non-rigorous. How-
ever, Dirichlet wrote that a proof provided by Cauchy
”does not include certain functions for which the con-
vergence is incontestable”.

Figure 11: Poisson.
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Figure 12: Dirichlet.

Figure 13: Riemman.

Notice that many useful properties of Fourier series
follows from the orthogonality and homomorphism of
the basis functions. Similar properties are true for a
various classes of functions, as for example, Bessel func-
tions and orthogonal polynomials. However, some of the
properties are missed when the homomorphism property
is not satisfied. In many cases, such classes of functions
are derived as solutions of some differential equations.
A more general classes are generated as solutions of the
Sturm-Liouvile problems.

In 1799, Parseval published a formula for the sum
of squares of the coefficients of a trigonometric series
in terms of integrals, which is now called the Parseval
theorem. This theorem can be viewed as the particular
case of the Plancharel theorem.

The introduction of the Lebesgue integral in his PhD
thesis in 1902 and the book in 1904, provided founda-
tions for formulation of the Riesz-Fischer theorem in
1907, showing that any square-summable sequence {cn},
for n ∈ {−∞,∞} is the sequence of Fourier coefficients
of an L2 function on the interval (−π, π), thus, Fourier
coefficients are an isometric linear mapping between two
L2 spaces.

In 1910, Plancharel proved a result which is called
the Plancharel formula, which shows that the Fourier
transform is an isometric mapping of L2 into L2.

5 GROUP REPRESENTATIONS AND HAR-
MONIC ANALYSIS

Harmonic analysis cannot be separated from theory of
group representations, which are used as a basis replac-

Figure 14: Lebesgue.

Figure 15: Plancherel.

ing the role of exponential functions in classical Fourier
analysis.

In other words, harmonic analysis is an extension of
the classical Fourier analysis derived by replacing the
real line R by an arbitrary group G. In this respect, it
should be distinguished

1. Abelian,

2. Non-Abelian groups.

The Fourier analysis on an Abelian group G is defined
in terms of the corresponding group characters.

However, multiplicative characters are not sufficient
to extend the Fourier analysis to non-Abelian groups.
In this case, group representations are required, which
can be viewed as a generalization of multiplicative char-
acters by increasing the dimension of them. Notice that
for Abelian groups all the representations are single-
dimensional and reduce to group characters.

Definition 1 (Group representations)
For a group G, a representation is a homomorphism of
G into the group of linear transformations on V 2, where
V is a complex vector space.

For finite groups, the generalizations are possible by
allowing to replace the complex field C by any field the

2This group is usually called the general linear group GL(V ).
It is often assumed that the representations are matrix-valued,
i.e., the group GL(V ) is isomorphic to the general linear group
GL(rw, C) of non-singular (rw×rw) complex matrices. The num-
ber rw is called the degree of the representation Rw and the r2

w
functions ri,j on G are the matrix entries of Rw in the given basis.
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characteristic of which is relatively prime to the order
of the group G that is considered. The modular theory
due largely to R. Brauer, removes this restriction to the
characteristic of the field.

The group G and the vector space V are often topol-
ogized and the group action is normally assumed to
be continuous. 3 When G topologized, for discussion
of abstract harmonic analysis, the following topological
groups should be distinguished

1. Compact,

2. Locally compact,

3. Non-compact.

Abstract harmonic analysis is a branch of harmonic
analysis that extends the definition of the Fourier trans-
forms for functions defined on various groups, and the
above mentioned classes of groups will be discussed for
both Abelian and non-Abelian groups.

5.1 Group Characters
In 1882, Heinrich Weler introduced multiplicative char-
acters for an arbitrary finite Abelian group G.

The definition of a group character was discussed in
the late 1870s by Dedekind [2]. He defined a character
on a finite Abelian group G to be a homomorphism from
G to the multiplicative group of nonzero complex num-
bers, and orthogonality relations have beeb previously
discovered. Dedekind also defined what he called the
group determinant and noticed that it can be factored
nicely, when the group is Abelian. Dedekind conjectured
that this factorization can be extended to non-Abelian
groups. In that respect, in 1896, Dedekind communi-
cated with Frobenius, who had published in the same
year a paper on group characters and presented these re-
sults to the Berlin Academy on July 16, 1896. It should
be noticed that in this paper Frobenius did not relate
the group characters to the group representations. How-
ever, this research has been continued based on a paper
by Dedekind from 1885, further supported by the com-
munication with Dedekind started on April 12, 1896 by
letter of Dedekind to Frobenius. In this communication,
many interesting results can be found. For instance, in
a letter of Frobenius to Dedekind on April 26, 1896,
Frobenius presented the irreducible characters for the
alternating groups A4, A5, the symmetric groups S4, S5,
and the group PSL(2, 7) of order 168.

Due to this work, in 1897, Frobenius introduced the
notion of group characters. After studying the work of
Molien [30], [31], and reformulation some of these re-
sults in terms of matrices, Frobenius has shown that
the group characters defined by him in 1897 are traces
of irreducible representations. In a letter to Dedekind on

3Notice that a multiplicative character χw(x) is a representa-
tion on the single.dimensional space C of complex numbers, and
the action by an element g ∈ G is the multiplication by χw(g).

Figure 16: Dedekind.

Figure 17: Frobenius.

February 1924, Frobenius said that Molien investigated
non-commutative multiplication and obtained general
results from which the properties of group determinants
can be derived as special cases.

It is interesting to notice that Molien studied the re-
sults by Frobenius in group theory and applied them
to investigate polynomial invariants of finite groups. In
particular, Molien studied how many times a given ir-
reducible representation of a finite group appear in a
complete reduction of the representation of the group
on the vector space of homogeneous polynomials of de-
gree n over the complex numbers. In 1898, Molien in-
troduced a generating function to compute the number
of times the irreducible character occurs.

In 1898, Frobenius introduced the notion of induced
characters and the tensor product of characters, and a
theorem called now the Fobenius Reciprocity Theorem.

In 1990 and 1991, Frobenius completely determined
characters of the symmetric and alternating groups, re-
spectively, published in two separated papers. Fur-
ther advent in application of group characters, Frobe-
nius provided by studying the structure of groups called
nowadays the Frobenius groups

The theory of groups characters developed by Frobe-
nius, was nicely presented by Burnside in [4].

6 Group Representations

In their work started in 1904 and 1905 respectively,
Burnside and I. Schur [34], Vol. 1, discussed matrix
representations, i.e., homomorphism into the group of
invertible matrices of given dimensions. In their ap-
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Figure 18: Burnside.

Figure 19: Schur.

proach, group representations were complex-valued col-
umn vectors and the linear transformations are viewed
as matrices.

Burnside is often credited as a founder of the theory of
finite groups and his work complemented and sometimes
compete with the work by Frobenius.

Schur was a student of Frobenius and made a consid-
erable contribution by his own work or in collaboration
with Frobenius.

In 1925, Schur returned to the group representation
theory due to the development of theoretical physics ex-
ploiting it. Then, he provide a complete description of
the rational representations of the general linear group.

Figure 20: Emmy Noether.

However, Emmy Noether replaced the matrices by lin-
ear transformations of a vector space, and therefore, his
definition of the group representations is equal to that
used nowadays. This approach to the definition of group
representations has been reconfirmed when considered
groups where infinite-dimensional representations are

necessarily required, as for instance, the Lie groups.

Figure 21: Lie.

Burnside pointed out that in the case of finite groups
every finite-dimensional representation is equivalent to
a representation by unitary matrices and the complete
reducibility follows from the unitarity. Burnside also
pointed out that if Q is a mapping between irreducible
representations in two spaces V1 and V2, then Q = 0 or
Q is invertible. Schur had shown that if V1 = V2, then
Q is a scalar. Schur also proved the orthogonality of
inequivalent irreducible unitary representations of finite
groups.

Frobenius introduced the notion of induced represen-
tations as a way to define a representation R of a group
G from a representation Ri of a subgroup Gi of G.

7 Finite Groups

The harmonic analysis on finite groups is performed
in terms of irreducible unitary representations, or their
characters, for non-Abelian and Abelian groups, respec-
tively. This approach has been developed first for the
symmetric and alternating groups in the work by Frobe-
nius and Young, who introduced the Young diagrams for
manipulating with irreducible representations.

7.1 Finite Abelian Groups
Notice that when G is an Abelian groups, the set of
group characters χw(x) form a multiplicative group Γ
isomorphic to G. Therefore, a function f(x) on a finite
Abelian group G of order |G| = g can be represented as

f(x) = g−1
�

w∈Γ

Sf (w)χw(x),

where Γ = {χw(x)}, x ∈ G is the set of characters of G,
and

Sf (w) =
�

x∈G

f(x)χw(x)−1.

7.2 Finite Non-Abelian groups
In the case of finite non-Abelian groups the Fourier
transform is defined in terms of finite-dimensional ir-
reducible unitary representations Rw(x), x ∈ G, as

f(x) =
K−1�

w=0

Tr(Sf (w)Rw(x)),
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where K is the number of equivalency classes of unitary
irreducible representations which form the dual object
Γ for G, and Tx(Q denotes the trace of a square matrix
Q, i.e., the sum of elements of the min diagonal of Q.

The Fourier coefficients are (rw×rw) matrices, where
rw is the dimension of the representation Rw,

Sf (w) = rwg−1
g−1�

u=0

f(u)Rw(u−1),

where g is the order of G.
Finite groups are compact groups, and definition of

Fourier transform is a simplified version of the Fourier
transform for arbitrary compact groups.

8 Compact non-Abelian groups

Extensions of Fourier analysis to compact non-Abelian
groups are due to the Peter-Weyl theorem formulated by
H. Weyl and his student and associate F. Peter, first for
the case of non-Abelian Lee groups [32]. The main con-
tribution consists in the observation that not the finite-
ness of a group ensures existence of main properties of
the Fourier representations, but existence of an averag-
ing procedure over the group [19]. In other words, it is
required the existence of an invariant integral that as-
signs a finite volume to the group. In this case, the Haar
integral plays and an important role.

Figure 22: Weyl.

Figure 23: Haar.

In the case of non-Abelian groups it is necessary to
distinguish the left and right invariance. For instance,

an integral on a topological group G is the right invari-
ant if �

G
f(xa)dx =

�

G
f(x)dx,

for all a ∈ G.
It is proved by Haar in 1933 that a right invariant

integral exists for locally compact groups. This integral
is now called the Haar integral. Notice that local com-
pactness is implied by the existence of a right invariant
integral as shown by Andre Weil in his book [35].

Figure 24: Weil.

The main idea by Peter and Weyl, which provides
possibility to extend the abstract harmonic analysis,
has been to use an infinite dimensional representation
and its decomposition by means of spectral theory for
bounded operators on Hilbert space [32].

In short, for compact non-Abelian groups the Peter-
Weyl theorem explains determination of harmonics as
representatives of each equivalence class of representa-
tions. From each equivalence class of representations,
a representation is selected as a harmonic to define an
analogue to the classical Fourier transform.

More precisely, the Peter-Weyl theorem for compact
groups shows that the Fourier series of a function f on
G is

f(x) =
�

Rw∈Γ

rw

rw−1�

i,j=0

S(i,j)
f (w)R(i,j)

w (x),

where Γ, the dual object of G, is a collection of all equiv-
alence classes of irreducible unitary representations Rw

of G.
The Fourier coefficients are determined as

S(i,j)
f (w) = �f, R(i,j)

w � =
�

G
f(x)(R(i,j)

w )−1(x)dx.

This series applies to functions which are square-
integrable in that the norm

||f || =
��

G
|f(x)|2dx

� 1
2

,

is finite, and the Fourier series for f(x) is equal to f in
the mean-square sense of

||f ||2 =
�

Rw∈Γ

rw

rw−1�

i,j=0

|S(i,j)
f |2.
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This formula is called the Plancharel formula for G.
In the case of compact Abelian groups, by the

Schur lemma, the irreducible representations are single-
dimensional and, thus, the dual object Γ is the dual
group of all continuous homomorphisms χw of G into
the unit circle. Then, the Fourier series for f on G is

f(x) =
�

χ∈Γ

Sf (w)χw(x),

and the Fourier coefficients are numbers

Sf (w) =
�

G
f(x)χ−1

w (x)dx.

From 1923 to 1938 Weyl developed the theory of com-
pact groups in terms of matrix representations. In the
case of compact Lie groups, he proposed a fundamental
character formula.

There are compact groups that are not Lie groups,
however, the representation theory and, therefore, har-
monic analysis on such groups are highly incomplete.

9 Locally Compact Abelian Groups

To discuss the harmonic analysis on locally compact
groups, recall that the real line R is a locally compact
Abelian group. The Fourier integral Sf of a function f
on the real line R, defined for all real numbers w by

Sf (w) =
1
2π

� ∞

∞
f(x)e−iwxdx,

is an example of the Fourier transform on locally com-
pact Abelian groups. The constant 1/2π can be viewed
as the normalization of the Haar integral on R.

Notice that for f integrable over the real line, i.e.,
f ∈ L1, the spectrum Sf is well defined. However,
the integrability of f does not imply the integrability
of Sf , with integrability understood in the Lebesgue
sense. Therefore, generalized methods of summability
are required.

If f ∈ L2, i.e., f is both integrable and square inte-
grable, then Sf is also square-integrable and f is equal
to the Fourier integral in the means-square sense, i.e.,
the Plancherel formula is valid

� ∞

−∞
|Sf (w)|2dw =

� ∞

−∞
|f(x)|2dx.

The classical Fourier analysis on R has been extended
to an arbitrary locally compact Abelian group G due
to the Pontryagin duality, also called Pontryagin-van
Kampen duality which can be briefly summarized as fol-
lows.

For a locally compact Abelian group, the set of uni-
tary multiplicative characters under the pointwise mul-
tiplication expresses the structure of a locally compact
Abelian group Ĝ. This group, when topologized with
the topology of uniform convergence of compact sets is

Figure 25: Pontryagin.

Figure 26: van Kampen.

the dual group for G. The group Ĝ has also a dual
group, called dual dual ˆ̂G [21], since there is a canonical
continuous homomorphism of G into ˆ̂G, i.e., if x ∈ G,
then the corresponding member of ˆ̂G evaluated on a
character χw ∈ Ĝ has the value of χw(x).

The Pontryagin duality states that this homomor-
phism G → ˆ̂G is a homeomorphism, i.e., a topological
isomorphism, of G onto ˆ̂G.

This result has been exploited by Andre Weil [35] to
define the Fourier transform pair for functions f on G
as

Sf (w) =
�

G
f(x)χw(x)dx,

f(x) =
�

Ĝ
Sf (w)χw(x)dw,

where dx and dw are suitably normalized Haar integrals
on G and Ĝ, respectively.

Thus, the inversion formula is valid for integrable con-
tinuous function f whose Fourier transforms are inte-
grable.

The foundations for the theory of locally compact
Abelian groups and their duality has been established
Lev Semenovich Pontryagin in 1934. In his approach
it was exploited the structure theory and assumed that
the group is second countable and either compact or
discrete. This was imposed to cover the general locally
compact Abelian groups by E.R. van Kampen in 1935
and André Weil in 1953.

It has been shown by Rudin that the duality theorem
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and harmonic analysis can be establish without referring
to the structure theory [33].

10 Non-compact non-Abelian Groups

For compact groups, either Abelian or non-Abelian, the
Fourier transform has been defined in terms of finite-
dimensional irreducible unitary representations. In the
case of compact Abelian groups, the representations are
single-dimensional. For locally compact Abelian groups,
the representations are again single-dimensional. How-
ever, for locally compact non-Abelian groups, the ir-
reducible infinite-dimensional representations are re-
quired.

Notice that, in general, a non-compact group G
may have representations that are not unitarizable in
a Hilbert space.

It may be said that for non-Abelian groups which are
not compact, there is no a general theory that would
preserve at least some of the properties of the classical
Fourier transform, as for example, the Plancharel theo-
rem. However, many particular cases are considered, for
example, SL(n, F ), in which case the representations of
infinite dimensions are used.

In a series of publications, Harish-Chandra discussed
extensions of harmonic analysis to noncompact real
semi-simple Lie groups, providing also the Plancherel
theorem in 1952 [20]. This work was preceded by the
research done by Gelfand and Raikov in 1943, point-
ing out that in principle, there should exists a sufficient
number of irreducible representations to perform har-
monic analysis on locally compact groups [17].

Figure 27: Gelfand.

For instance, G. W. Mackey used the notion of in-
duced representations to deal with measure-theoretic
foundations for infinite-dimensional representation the-
ory [28], [29].

The work by A.A. Kirilov, started in his doctoral the-
sis in 1962, [22] provided a basis for the work by L.
Auslander and C.C. Moore [1], and B. Konstant for ex-
tension of harmonic analysis to some solvable groups.

Some brief reviews of these results can be found in
[19] and [23].

Table 1 summarizes definitions of Fourier representa-
tions on various groups.

Table 1: Groups and transforms.

Group Transform

Circle f(x) =
�∞

n=−∞ cneinx,
R/2πZ cn = 1

2π

� π
−π f(x)e−inxdx

Real line f(x) =
�∞
−∞ Sf (w)e2πiwxdw

R Sf (w) =
�∞
−∞ f(x)e−2πiwxdx

Finite f(x) = 1
|G|

�
w Sf (w)w(x)

Abelian Sf (w) =
�

y∈G f(y)w(y)

Finite f(x) =
�K−1

w=0 Tr(Sf (w)Rw(x))
non-Abelian Sf (w) = rwg−1

�g−1
u=0 f(u)Rw(u−1)

Compact f(x) =
�

χ∈Γ Sf (w)χw(x)
Abelian Sf (w) =

�
G f(x)χ−1

w (x)dx

Compact f(x) =
�

Rw∈Γ rw
�rw−1

i,j=0 S(i,j)
f (w)R(i,j)

w (x)
non-Abelian S(i,j)

f (w) = �f,R(i,j)
w � =

�
G f(x)(R(i,j)

w )−1(x)dx

Locally f(x) =
�

Ĝ Sf (w)χw(x)dw
compact Sf (w) =

�
G f(x)χw(x)dx

Abelian
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10.1 Schur lemma
Schur Lemma can be stated as follows. Let G be a
finite group representation in irreducible G-modules V
and W . Any G-module homomorphism f : V → W is
either invertible or the zero map. If G is represented
over an algebraically closed field F , on irreducible G-
modules V and W , then any G-module homomorphism
f : V → W is a scalar.

If π on V and π� on V � are irreducible representations
and E : V → V � is a linear map such that πprime(g)E =
Eπ(g) for all g ∈ G, then E = 0 or E is invertible.
Furthermore, if V = V �, then E is a scalar.

11 Addendum 1

Group characters
If P = C the group characters are defined as the ho-

momorphisms of G into the unit circle [33], or equiva-
lently to the multiplicative group T of complex numbers
with modulus equal 1.

Definition 2 Complex-valued function χw(x) on G is
the group character of G if |χw(x)| = 1 for all x ∈ G:

χw(x ◦ y) = χw(x)χw(y), ∀x, y ∈ G.

The character χ0(x) = 1 for all x ∈ G always exists
and is called the principal character.

The set Γ = {χw(x)} of necessarily continuous char-
acters expresses the structure of a multiplicative group
called the dual group for G, with the group operation
denoted by ⊙ and defined as

(χ1 ⊙ χ2)(x) = χ1(x)χ2(x), ∀x ∈ G,

for all χ1, χ2 ∈ Γ.
If G is a discrete group, Γ is compact and vice versa. If

G is finite, Γ is also finite and isomorphic to G. Thanks
to that duality, the index w and argument x in χw(x)
have equivalent roles and it is convenient to express that
property through the notation χ(w, x), x ∈ G,w ∈ Γ.

12 Addendum 2

Group Determinant
The group determinant is the determinant of

the group matrix, which for a finite group G =
{g0, . . . , gn−1} is an (n × n) matrix whose the (i, j)-th
element is xgig

−1
j

, where {xg0 , . . . , xgn−1} is a set of com-
muting variables.

In a more general setting, the group matrix is viewed
as any matrix obtained form a group matrix by assigning
values in a ring to the variables.

The notion of group matrices was know before the
work of Frobenius. A circulant matrix





c0 c1 · · · cn−1

cn−1 c0 · · · cn−2
...

...
...

c1 c2 · · · c0




,

is a group matrix of the cyclic group Cn of order n.

12.1 Addendum 2

The symmetric group Sn of order n is the group of all
permutation of n symbols.

The set of even permutations in Sn forms a subgroup
which is called the Alternating group and denoted by
An.

A permutation group is a subgroup of a symmetric
group on a set Ω.

13 Frobenius group

If a group G contains a proper non-trivial subgroup H
such that H ∩ g−1Hg = {1G} for all g ∈ G \ H, then
there exists a normal subgroup N such that G is the
semi-direct product of N and H. Such groups are the
Frobenius groups.

A Frobenius group is a subgroup of Sym(Ω) which is
invertible and in which no element other than 1 fixes
two or more points of Ω.

13.1 Second countable space

A second countable space is a topological space satisfy-
ing the second axiom of countability.

Axiom of countability is a property of certain math-
ematical objects that requires the existence of a count-
able set with certain properties, while without such sets
might not exist.

A base B for a topological space X with the topology
T is a collection of open sets in T such that every open
set in T can be written as a union of elements of B.

13.2 Plancharel theorem

Plancherel theorem states that if Xj and Yj are DFT
spectra of xk and yk respectively, then

n−1�

r=0

xky∗k =
1
n

n−1�

j=0

XjY
∗
j

where the star denotes complex conjugation of a value.
Parseval theorem is a special case of the Plancherel

theorem and states

n−1�

k=0

|xk|2 =
1
n

n−1�

j=0

|Xj |2.

13.3 Manifold

A manifold is a space where near every point the envi-
ronment is like that in Euclidean space of a given dimen-
sion. Since manifolds locally look-like Euclidean space
rn, they are inherently finite-dimensional objects.

A generalization of manifolds is to omit the require-
ment that a manifold be Hausdorff. It still must be
second-countable and locally Euclidean however.
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13.4 Dirichlet conditions
Dirichlet formulated conditions that must be met for a
function f(x) to have a Fourier transform. These con-
ditions are

1. f(x) must be single.valued,

2. f(x) must have a finite number of extrema in any
given interval,

3. f(x) must have a finite number of discontinuities in
any given interval,

4. f(x) must be absolutely integrable.

Let f be a piecewise regular real-valued function de-
fined on some interval [q, r], such that f has only a finite
number of discontinuities and extrema in [q, r]. Then,
the Fourier series of this function converges to f when
f is continuous and to the arithmetic mean of the left-
handed and the right-handed limit of f at a point where
it is discontinuous.

13.5 General linear group
GL(n, F ) is the general linear group of degree n over
a field F (such as R or C), is the group of (n × n)
invertible matrices with entries in F , with the group
operation that of ordinary matrix multiplication.

The special linear group SL(n, F ) is the subgroup of
GL(n, F ) consisting of matrices with determinant 1.

The group GL(n, F ) and its subgroups are often called
linear groups or matrix groups.

A Linear group is an analytic real or complex manifold
that is also a group such that the group operations mul-
tiplication and inversion are analytical maps. They were
introduced by Sophus Lie, a Norwegian mathematician,
in 1870 in order to study symmetries of differential equa-
tions. The notion arose from some particular classes of
partial differential equations similar as the origins of Ga-
lois groups are related to the algebraic equations.

Matrix Lee groups are groups of invertible matrices
under matrix multiplication. For instance, the group
SO(3) of all rotations in three dimensional space is a
matrix Lee group. This is a non-Abelian group.

Abstract harmonic analysis is a branch of harmonic
analysis considering definition of the Fourier transforms
for functions defined on locally compact groups. The
theory for locally compact Abelian groups is called the
Pontryagin duality.

13.6 Hausdorff space
Suppose that X is a topological space. X is a Hausdorff
space, or T2 space, or separated space, iff given any dis-
tinct points x and y, there are a neighbourhood U of x
and a neighbourhood V of y that are disjoint. In fancier
terms, this condition says that x and y can be separated
by neighbourhoods.

Almost all spaces encountered in analysis are Haus-
dorff, most importantly, the real numbers are a Haus-
dorff space. More generally, all metric space are Haus-
dorff. In fact, many spaces of use in analysis, such as
topological groups and topological manifolds, have the
Hausdorff condition explicitly stated in their definitions.

A set X is called open if any point x ∈ X is sur-
rounded by elements of X and, thus, it cannot be on
the edge of X. For example, the interval (0, 1) consist-
ing of all real numbers with 0 < x < 1, since if we change
x for a little, it will still be a number between 0 and 1.
The interval (0, 1] is not open, since if 1 cahnged to the
right, it will not stay in (0, 1].

A discrete space is compact iff it is finite.
Every discrete space is first countable, and a discrete

space is second countable iff it is countable.
A set is countable if the number of its elements is finite

or it has the same number of elements as the natural
numbers.

Compact group is a topological group that is also a
compact space. It is usually assumed in representation
theory that such group is also Hausdorff.

Groups are used to describe symmetries of objects.
This is formalized by the notion of a group action, every
element of the group acts like a bijective map (or sym-
metry) on some set. In this case, the group is called a
transformation group of the set.

A topological space is compact if every open cover of
it has a finite subcover. That is, any collection of open
sets has a finite subcollection whose union is still the
whole space. In many cases, the term compact space is
used for compact Hausdorff spaces.

A cover of a set X is a collection of subsets C of X
whose union is X. An open cover is a cover if each of
its members are open sets.

Homeomorphism or tolological isomorphism is a spe-
cial isomorphism between topological spaces with re-
spect to topological porperties.

An isomoprhism is a bijective map of f such that both
f and the inverse of it −1 are homomorphisms, i.e., map-
pings that preserve the structure.

Topological property is a property that is invariant
under homeomorphisms. Properteis are open and closed
sets, interior, closure, neighborhood, limit point, com-
pactness, connectedness, Hausdorff.

13.7 Topological group
A topological group is a group G on which a topology
is defined such that the group multiplication (x, y) →
xy and inversion x → x−1 are continuous mappings.
It follows that each right-translation x → xa and the
left-translation x → ax are homeomorphisms of G and,
therefore, the topology of G is completely determined
by local behavior of the identity e of G. The group G is
locally compact if there exists a compact neighborhood
of e. The most important topological groups are Lie
groups.
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