
HIGHER RESIDUE PAIRING OVER P -RINGS AND
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Abstract. We have generalized the formal definition of K. Saito higher residue
pairing to a degenerate family of algebraic varieties defined over Spec(W (k)), the
ring of Witt vectors over a perfect field k of char > 0. We also restate the com-
patibility of this generalization by the period isomorphism with etale cohomology
with coefficient in Cp.

Introduction

The construction of the higher residue pairing originally belonged to K. Saito,
[SA1], may be re-phrased in terms of an identification of twisted de Rham complex
and the formal complex of poly-vector fields, [LLS]. This allows to formulate higher
residue by the trace map, via symplectic pairing as;

Kf ( , ) : Hf
(0) ×H

f
(0) → OS,0[[t]]

The construction is compatible with base change and is compatible with the lifting
along an inverse system defined by a filtration on the structure sheaf of the pa-
rameter manifold, which can be chosen to have dimension 1. This suggests if one
can formulate a version of this duality over p-adic rings or more generally a P-ring.
These rings are characterized as universal rings of Witt vectors over arbitrary rings.
Briefly a Witt ring over a ring A or the ring of Witt vectors of A, is a copy of the
infinite product A∞, but with specific sum and products given in each component by
polynomials is char = p. Such a ring has characteristic 0. The definition of higher
residue as a Serre duality on Brieskorn lattice can be repeated when the base space is
defined over a complete local ring of un-equal characteristic, where the residue field
is perfect of char > 0, as:

WKf ( , ) : W Ĥf
(0) ×W Ĥ

f
(0) → W ÔS,0[[t]]

such that the induced pairing on

Key words and phrases. Ring of Witt vectors, Complete local rings, Higher residue pairing,
Crystalline cohomology.
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WHf
(0)

t. WHf
(0)

⊗
WHf

(0)

t. WHf
(0)

→ Frac(W (k))

is the classical Grothendieck residue defined similar to the case over C. Here we may
identify

WHf
(0)

t. WHf
(0)

∼= Af

the Jacobi ring of f over the Witt ring, also defined analogously. In this way the
theorem of K. Saito on defining higher residues can be stated for crystals obtained by
family of crystalline cohomologies, of the degenerate fibered space in the crystalline
topos. One may note that in this case the characteristic is 0. This helps that every
thing goes right with the integral structures. We will also apply the result to the
period map construction between crystalline and etale cohomology with coefficient
in Cp.

RΓalgdR(X)⊗K Cp → RΓet(X,Qp)⊗Qp Cp

where K is the field of fractions of W (k), and K̄ is a fixed algebraic closure. This
small note is based on a formal construction of Higher residue and a completion
process. Despite of technicalities concerning the crystalline topos and cohomologies,
the text can be understood by a reader not quite familiar with this concept, that is
familier with K. Saito pairing. However it does need a clear understanding of the
ring of Witt vectors associated to a commutative ring A and its universal properties.

1. Higher residues

In this section we express the compatibility of residue pairing with the lifting of
local systems along a filtration of the base ring. Such a situation is happenning in
a crystalline topos, in which one defines crystalline varieties and cohomology. In a
formal set up if (OS,0,m) is a commutative local ring we may form an inverse system
rings {O/ml} and simply define the m-adic completion of OS,0;

ÔS,0 := lim
←
OS,0/ml
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This procedure may also be sheafified analogously. An ÔS,0-module Ê may be defined
via the inverse system. If we begin with (E ,∇), an integrable connection then it can
be extended to

∇̂ : Ê → Ê × Ω1
S

Most of the algebraic structures already defined over OS,0 may be extended over the

completion ÔS,0 via the natural map

OS,0 → ÔS,0

Suppose for the moment dim(S) = 1 and it is defined over a field k of chark = 0.
Suppose f : X → S is a family which is generically proper and flat. We are going
to apply this to the construction of higher residues and primitive forms originally
belonged to K. Saito, [SA1], [LLS]. This can be done by a quasi-identification of the
space of covariant PV (X) of smooth polyvector-fields, with the space of cotravariant
A(X) =

∑
Ai,j(X) of smooth complex differential forms on X, [LLS]. This gives a

quasi-isomorphism

(PV (X)((t)), Qf = ∂̄f + t∂) � (A(X)((t)), d+ t−1df ∧ •)

where Qf is corresponding coboundary to d + t−1df ∧ • via a specific isomorphism
PV (X)((t)) ∼= (A(X)((t)). The natural embedding

ı : (PVc(X)[[t]], Qf ) ↪→ (PV (X)[[t]], Qf )

defines a quasi-isomorphism, and if we set

Hf
(0) := H∗(PV (X)[[t]], Qf )

then the trace map

Tr : PVc(X)→ k

provides a k[[t]]-homomorphism R̂es
f

as follows.

Hf
(0) −→ OS,0[[t]], R̂es

f
=

∑
k R̂es

f

k(•)tk
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with R̂es
f

k the higher residues. Similarly, we obtain the higher residue pairing

Kf ( , ) : Hf
(0) ×H

f
(0) → OS,0[[t]], Kf ( , 1) := R̂es

f

Hf
(0) will also inherits a connection as

∇ : Hf
(0) → t−1.Hf

(0) ⊗ Ω1
S,0

.

All of these constructions can be extended over ÔS,0 by the flat base change OS,0 →
ÔS,0, [SA1], [LLS]. In other words if we have an inverse system of vector bundles
with connections

EN = E ⊗RN , ∇ : Γ(S,EN)→ Ω1
S ⊗ Γ(S,EN)

and we can define

Kf
N : (Hf

(0) ⊗RN)⊗ (Hf
(0) ⊗RN)→ RN [[t]]

and then obtain

K̂f (s1, s2) := lim
←
Kf
N(s1,N , s2,N)

One may replace the variety S by any variety defined over a field of char = 0. As we
work over complete local rings the major examples are C and Cp the algebraic closure
of the field Witt ring Qp, which is the concept of discussion in the next sections.

2. Ring of Witt vectors

We provide basic definitions and properties of Witt rings following J. P. Serre, in
[SE] and S. Bloch cf. [BL]. Let A be a complete discrete valuation ring, with residue
field k. Suppose that A and k have the same characteristic, and k is perfect. Then
A is isomorphic to k[[T ]]. This fact can be proved by showing that A contains a
system of representatives of the residue field, which is a field. If S is such a system
of representatives, then any a ∈ A can be written as a convergent series

a =
∞∑
n=0

sn.π
n, sn ∈ S
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Now suppose that A and k have different characteristic. This is possible only when
char(A) = 0 and char(k) = p > 0. Then v(p) = e ≥ 0 is called the absolute
ramification index of A. The injection Z ↪→ A extends by continuity to an injection
of the ring Zp of p-adic integers into A. When the residue field is a finite field with
q = pf element, then A is a free Zp module of rank n = ef . For any perfect field k of
characteristic p, there exists a complete discrete valuation ring and only one up to a
unique isomorphism which is absolutely un-ramified and has k as its residue field. It
is denoted W (k). In the ramified case, one has:

Theorem 2.1. [SE] Let A be a complete discrete valuation ring of characteristic
unequal to that of its residue field k. Let e be its absolute ramification index. Then
there exists a unique homomorphism of W (k) into A which makes commutative the
diagram:

W (k) → A
↘ ↓

k

This homomorphism is injective and A is a free W (k)-module of rank equal to e.

Example 2.2. [SE] As an example let Xα be a family of indeterminate, and let S
be the ring of p−∞-polynomials in the Xα’s, with integer coefficients. That is

S =
⋃
α,n

Z[Xp−n

α ]

Then provide S with the p-adic filtration {pnS}n≥0 and complete it. One obtains

Ŝ = Ẑ[Xp−∞

α ]

The residue ring Ŝ/p.Ŝ is the ring Fp[X
p−∞
α ]. It is perfect of char = p.

It follows almost evident from the universal property 2.1 stated above that: For
every perfect ring k of characteristic p, there exists a unique p-ring W (k) with residue
ring k. The uniqueness follows easily from the privious notes. If k has the form
Fp[X

p−∞
α ] one takes W (k) = Ẑ[Xp−∞

α ]. The general case follows from the fact that
every perfect ring is a quotient of the rings in the former case. Thus W (k) is a
functor of k, and Hom(k, k′) = Hom(W (k),W (k′)).
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Then for an arbitrary commutative ring A, The elements of AN is equipped with the
following addition and multiplication laws given by polynomials Sn and Pn,

(an) + (bn) = (Sn((an), (bn))), (an)× (bn) = (Pn((an), (bn)))

and these operations make AN into a commutative unitary ring, called the ring of
Witt vectors with coefficients in A. There is a canonical map

W∗ : W (A)→ AN, (an) 7→ (Wn((an))

There is also a natural shift map namely

V (a0, ...) = (0, a0, ...),

which is transformed to

(w0, ...) 7→ (0, pw0, ...)

by the homomorphism W∗. Another natural map

r : A→ W (A), r(x) = (x, 0, ...)

which satisfies r(xy) = r(x)r(y), and is transformed to

x 7→ (x, xp, ..., xp
n
, ...)

under W∗. Another structural map is the action of Frobenius

F : W (k)→ W (k), F ((an)) := ((apn))

which is a ring homomorphism satisfying V F = p = FV . In Grothendieck language
of schemes Sn = Spec(Wn(A)) is affine and of finite type over Spec(Z).

There is an alternative definition for the ring of Witt vectors of a commutative ring
R and a natural filtration on it, [BL], as:

W (R) = (1+tR[[t]])∗, F iltnW (R) = (1+tn+1R[[t]])∗, Wn(R) = W (R)/F iltn

Any element P (t) ∈ 1 + tR[[t]] can be written as
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P (t) =
∏
n≥1

(1− antn)−1, P (t) � (a1, ..., an, ...) = ω(P ), Wn � (a1, ..., an)

Then the product structure is given by

ω(1− atn)−1ω(1− btn)−1 = ω(1− an/rbm/rtmn/r)−r, r = g.c.d(m,n)

We will obtain a set of maps

Vnω(P ) = ω(P (tn)), Vnω(1− atm) = ω(1− aT nm)−1,

Fnω(P ) =
∑
ζn=1

ω(P (ζt1/n)), Fnω(1− atm) = ω(1− an/rTm/r)−r, r = g.c.d(m,n)

VnFilt
m ⊂ Filtmn+n−1, FnFilt

mn ⊂ Filtm

If µ : N → {0, 1,−1} be the Mubius function then π =
∑

n∈I(p)
µ(n)

n
VnFn, where

I(p) is the set of positive integers not divisible by p, is a ring homomorphism. It
commutes with the ghost map

W (R)→
∏
∞

R, W (R) ∼= (1 + tR[[t]])∗
t d
dt

log
−→ tR[[t]]+ ∼=

∏
∞

R

which is a ring homomorphism and if R is torsion free is injective. Moreover if

ρ :
∏

R→
∏

R, (a1, a2, ...) 7→ (a1, 0, ..., 0, ap, 0, ...)

then

(1)

W (R)
gh−−−→

∏
R

π

y yρ
W (R) −−−→

gh

∏
R

,

W (R)
gh−−−→

∏
R

Vn

y yVn
W (R) −−−→

gh

∏
R

,

W (R)
gh−−−→

∏
R

Fn

y yFn

W (R) −−−→
gh

∏
R

where Vn(a1, a2, ...) = (0, ..., 0, na1, 0, ..., 0, na2, ...), Fn(a1, a2, ...) = (an, a2n, ...).
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Proposition 2.3. [LZ] Let R be a complete local ring whose residue class field is a
perfect field of characteristic p. Denote by m the maximal ideal of R. Then Wn(R) is
for each number n, is a noetherian complete local ring, whose maximal ideal n is the
kernel of the homomorphism Wn(R) → R → R/m. The n-adic topology of Wn(R)
coincides with the topology defined by the filtration by the ideals Wn(ms).

The proposition states a compatibility for passing to the filtrations. The above
two method of presenting ring of Witt vectors are equivalent in the way that the
corresponding maps F, V and r carry over respectively. This can be checked out by
the relations involved, [BL].

3. De Rham-Witt complex and Crystalline cohomology

Let X be a smooth and proper scheme over a perfect field k of char > 0. Assume
X lifts to a scheme X̃ over W (K). It was discovered by Grothendieck, that the
hyper-cohomology of the de Rham complex ΩX̃/W (k) does not depend on the lifting,
but only on X. The crystalline cohomology defines this hyper-cohomology in terms
of X. It will also make sense without existence of any liftings X̃. Berthelot proved
that this cohomology enjoys all good properties, i.e it is a Weil cohomology on the
category of proper smooth schemes over X, [LZ], [BEO], [BL]. For n ≥ 1 define
Sn = Spec(Wn(k)). In addition let Wn(OX) be the Zariski sheaf of rings obtained by
taking the p-Witt vectors of length n on OX . Then Xn = (X,Wn(OX)) is a scheme
of finite type over Sn. The Crystalline topos (X/Sn)cris is the category of sheaves
over the site Cris(X/Sn).

Let A be a commutative ring and I an ideal. By divided powers on I we mean a
collection of maps γ(i) : I → A, i ≥ 0.

• for all x ∈ I, γ(0)(x) = 1, γ(1)(x) = x, γ(i)(x) ∈ I

• γ(k)(x+ y) =
∑

i+j=k γ(i)(x)γ(j)(x)

• For λ ∈ A, γ(k)(λx) = λkγ(k)(x)

• γ(i)(x) =
(i+ j)!

i!j!
γ(j)(x)γ(i+j)(x)

• γ(p)(γ(q)(x)) =
(pq)!

p!q!p
γ(pq)(x)
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Then the divided power I [n] is the ideal generated by γ(i1)(x)γ(i2)(x)...γ(ik)(x),
∑
ij ≥

n. It is convenient to denote γ(n)(x) by x[n]. Let B a commutative unitary A-algebra,
and b ⊂ B an ideal which is equipped with divided powers γn : b → b, n ≥ 1. We
set γ0(b) = 1, b ∈ b. A basic example is to take A a ring of char = p > 0 and I
an ideal s.t Ip = 0. Then γ(n)(x) = 1

n!
.xn, n < p and γ(n)(x) = 0, n > p defines a

devided power structure on I. The idea of divided powers is a fundamental tool in
the theory of PD differential operators and crystalline cohomology, where it is used
to overcome the difficulties in char. p > 0. A divided power structure is a way to to
make expressions as xn/n! meaningful even when it is not actually devide by n!.

Let M be a B-module. A pd-derivation ν : B →M over A, is an A-linear derivation
ν, which satisfies

ν(γn(b)) = γn−1(b)ν(b), n ≥ 1, b ∈ b

This is a formal way to define derivatives or differentials with devided powers. There
exists a map

j∗n : H∗cris(X/Sn)→ H∗(X,Ω•Xn/Sn,γ
)

where the right hand side means the de Rham complex of Xn/Sn, with a certain
compatibility with divided powers imposed, [BL].

Theorem 3.1. [BL] There is a canonical map :

j∗n : Hcris(X/Wn)→ H∗(X,ΩXn/Sn,γ)

where H∗(X,ΩXn/Sn,γ) is the de Rham complex with compatibility relations like

d(γ(m)(x)dy) = γ(m−1)dxdy

imposed. j0 : Hcris(X/k) → H∗(X,Ω•X) is the standard identification, and the fol-
lowing diagram commutes for m ≥ n.

(2)

Hcris(X/Wm)
j∗m−−−→ H∗(X,ΩXm/Sm,γ)y y

Hcris(X/Wn) −−−→
j∗n

H∗(X,ΩXn/Sn,γ)

,
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We have an inverse system of pd-differential graded Wm(R)-algebras

WnΩR → Wn−1ΩR → ...→ ΩR, WΩR = lim
←
WnΩR

called the de Rham-Witt complex; introduced by Ellusie. It is a complex of sheaves
of W (k)-modules on X, whose hyper-cohomology is crystalline cohomology, [LZ].
The de Rham-Witt complex of a scheme X over R, is a projective system indexed
by N of complexes WnΩX/R of Wn(R)-algebras on X. If p is nilpotent in R, and
X is smooth over Spec(R), the hyper-cohomology of WnΩX/R is isomorphic to the
crystalline cohomology

H∗cris(X/Wn(R),OcrisX/Wn(R))

of the crystalline structure sheaf.

Theorem 3.2. (Comparison Theorem) [LZ] There is a canonical isomorphism

(3) H i(X/Wn(R))crys,OX/Wn(R)) ∼= H i(X,WnΩX/R)

The notion of lifting differential forms in the above pattern appears similarly when
considering vector bundles. More systematically it is known as ”Stratification” on
a vector bundle E. Roughly speaking a stratification is given by a set modules PnX
with a set of compatibility homomorphisms εn : PnX → PmX for m ≤ n where ε0 = id.
The set of these data must satisfy some specific co-cycle conditions, cf. [BEO].
Then, one knows how to pass from the category of vector bundles to the category of
vector bundles with stratification in a functorial way. When such vector bundles are
equipped with integrable connections are called crystals, cf. [BEO] Chap. 5.

Let E be a crystal on Crys(X/Wn(R)). By this we mean E is a vector bundle
with a flat connection, or equivalently a D-module. We consider an affine open set
U = Spec(S) ⊂ X and a pd-thickening A→ S relative to Wn(R), then we have the
pd-differential de Rham complex with coefficients in E,

(EA ⊗A ΩA/Wn(R),∇)

Setting En = EWn(OX), we define de Rham-Witt complex with coefficients in E:

(En ⊗Wn(OX) WnΩX/R,∇)
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Again the hyper-cohomology of this complex is the crystalline cohomology of E, if
E is flat and X smooth over R. This also holds at the level of Cech complexes, [LZ].
Then we have

Hq(X,E ⊗WΩX) ∼= lim
←
Hq(X,En ⊗WnΩX)

The reader should consider the afore-mentioned isomorphism as different approaches
to define a type of de Rham cohomology in positive characteristic, and the compat-
ibility between these certain differently defined cohomologies. We refer to Chap. 1
of [BEO] for more detailed historical remarks.

Local systems of crystalline cohomologies of varieties can be considered similar to
that over C. Thus we will consider similar correspondence between local systems in
characteristic 0 in this case and the flat connections as crystals. To consider local
systems satisfying Hodge structure one uses the period isomorphism

RΓalgdR(X)⊗K Cp → RΓet(X,Qp)⊗Qp Cp

where K is the field of fractions of W (k), and K̄ is a fixed algebraic closure. The
period isomorphism mainly asserts that the crystalline and etale cohomology are
equivalent after a suitable base change. Therefore one defines Hodge structures of
pure or mixed weights on etale cohomology. Hodge structures both in the pure and
mixed case can be defined over the etale cite by the Weil conjectures. There the
weights are defined via the eigen-values of the Frobenius.

4. Higher residue Pairing over P-rings

We apply the procedure of the section to family of schemes over the Witt rings. In
this way the ring OS =

⋃
n Z[Xp−n

α ] filtered by {pnOS}n≥0. If we want to repeat the
construction in the first section to schemes over Wn(k), then the de Rham complex
would be replaced by the de Rham-Witt complexes, and the corresponding formal
poly-vector field complex as its co-variant mirror. Because the characteristic is 0,
the isomorphism proceeds word by word to in this case and we still get a mirror type
identification between these two formal complexes. Then analogous isomorphisms

(WNPVS(X)((t)), Qf = ∂̄f + t∂) � (WNAS(X)((t)), d+ t−1df ∧ •)

ı : (WNPVS,c(X)[[t]], Qf ) ↪→ (WNPVS(X)[[t]], Qf )
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still hold for Wns and also in the limit for W (k), and we can define,

WNHf
(0),N := H∗(WNPV (X)[[t]], Qf )

By the same method as before we obtain:

WN R̂es
f

N =
∑
k

WN R̂es
f

k,N(•)tk

with R̂es
f

k,N the higher residues. Similarly, we obtain the higher residue pairing

WNK
f
N( , ) : WNHf

(0),N ×WNHf
(0),N → OS,0[[t]], WNK

f
N( , 1) := WR̂es

f

N

Now by applying the completion process explained in section (1) we obtain

WKf ( , ) : W Ĥf
(0) ×W Ĥ

f
(0) → W ÔS,0[[t]]

It means that if we consider the inverse system of crystals En,N = (E⊗WnΩX/R,∇)⊗
OS/pNOS, and repeat the process in section (1) word by word to obtain the following
generalization of K. Saito theorem on crystalline site, [LLS], [SA1].

Theorem 4.1. (Higher residue pairing on crystalline site) There exists a K =
Frac(W (k))-sesquilinear form

WKf ( , ) : W Ĥf
(0) ×W Ĥ

f
(0) → W ÔS,0[[t]]

Let s1, s2 be local sections of WHf
(0), then;

• WKf (s1, s2) = WKf (s2, s1).

• WKf (v(t)s1, s2) = WKf (s1, v(−t)s2) = v(t)WKf (s1, s2), v(t) ∈ OS[[t]].

• ∂V .WKf (s1, s2) = WKf (∂V s1, s2) + WKf (s1, ∂V s2), for any local section of
TS.

• (t∂t + n)WKf (s1, s2) = WKf (t∂t.s2, s1) +WKf (s1, t∂t.s2)

• The induced pairing on

WHf
(0)/t.WH

f
(0) ⊗WH

f
(0)/t.WH

f
(0) → K̄
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is the classical Grothendieck residue.

The conjugation is formally done by g(t)⊗ η = g(−t).η, for g ∈ W (OS), η ∈
WAS(X).

There are essentially two type of proof for higher residue pairing over C. The one
cited in [SA1] is mainly a comparison of two construction. One an application of
local (Serre) duality theorem to Brieskorn lattices and their duals. This amounts to

define the Brieskorn modules (H(−k)
f ,∇ : H(−k−1) → H(−k)

f ) together with their duals

(Ȟ(k), ∇̌ : Ȟ(k) → Ȟ(k+1)) which satisfy a local duality as

H(k) × Ȟ(k) → OS

Then this duality is related to the twisted de Rham complex by

α̂k : Ĥ(−k) ∼= Rn+1f∗(F
−kΩ, d̂), k ≥ 1.

where F is the Hodge filtration, [?]. Specifically

(4) α̂ : Ĥ(0) ∼= Rn+1f∗(F
0Ω, d̂), k ≥ 1.

The second method is a duality isomorphism between the twisted de Rham complex
and the twisted differential complex of poly-vector fields as in section 1. Both of these
constructions are algebraic and can be stated similarly over any field of characteristic
0 and can be applied over Witt ring construction. Thus a proof of theorem 4.1 follows
from the formality (algebraicity) of the construction in [SA1] in characteristic 0 and
equivalent with the one mentioned section 1. The reader should convince himself
that the method explained in Section 1 can be applied to prove the Higher residue
pairing using a basic algebra.

Corollary 4.2. The form Kf of higher residue can be defined for family of schemes
on Spec(Qp[[t]]) as a pairing

Kf
p ( , ) : Ĥf

(0),p × Ĥ
f
(0),p → Qp[[t]]

with the same properties as in 4.1

The corollary is just the special case W (Fp) = Zp.
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The notion of opposite filtration and formal primitive form may also be generalized
to this case easily. That is if

WNHf
N := H∗(WNPV (X)((t)), Qf )

then we may find a subspace WNL such that

WNHf
N := WNHf

(0),N ⊕WNL, t−1WNL ⊂ L, Jac(f) ∼= WNHf
N ⊕ t.WNL

Then taking the inverse limits would obtain the desired opposite filtration. Similar
to case of the field C, a Hodge filtration

tk.WHf
(0) := WHf

(−k) ⊃ WHf
(−k−1)

can also been defined. The natural map

f∗WΩn+1

df ∧ dWΩn−1
→ WHf

(0), ξ → ξ

dx0 ∧ ... ∧ dxn

makes the classical filtration on Brieskorn lattice correspond to the filtration we
mentioned above. One may also define the contravariant Higher residue for the left
hand side, as historically defined by K. Saito.

A good section is an equivalent notion to opposite filtration under the identification,

[ν : Jac(f)→ WHf
(0)] 7→ L := t−1ν(Jac(f))[t−1]

Also, as in complex case a primitive form Wζ0 can be defined as an element of WHf
(0)

which its reduction to WHf
(0)/t.WH

f
(0) generates Jac(f) and is homogeneous, i.e.

t∂tζ0 − rζ0 ∈ L, for some r ∈ C. If F is a universal unfolding of f with critical set
C(F ). The Kodaira-Spencer map is

KS : TS → p∗OC(F ), KS(ξ) := ξ̃.F |C(F )

where ξ̃ is a lifting of ξ, under p : Cn+1+µ → S. Then, the Euler vector field is by
definition

E := KS−1(F ) ∈ Γ(S, TS)
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5. Relation with etale cohomology

Classically over the field C, the period map provides a commutative triangle in
the following form between the de Rham and singular complexes

RΓalgdR(X) → RΓ(Xtop,C)
↘ ↓

RΓandR

where the vertical arrow is a quasi-isomorphism via Poincare lemma. The horizonlal
arrow is a filtered quasi isomorphism namely Period isomorphism which more or
less is given by the integration of complex differential forms along integral homology
classes. This commutative triangle is fundamental in theory of motives and their
periods. Classically periods come out from any comparison of this type, and a
motive is the collection of the whole data of the cohomologies. Such a diagram can
be also defined in the p-adic setting introducing similar concepts in that case. Then,
the period isomorphism is the natural filtered quasi-isomorphism,

RΓalgdR(X)⊗K Bdr → RΓet(X,Qp)⊗Qp BdR

where K is the field of fractions of W (k) and BdR is a discrete valuation field whose
valuation ring is called Fontaine ring and its residue field is Cp. It descends to ,

RΓalgdR(X)⊗K Cp → RΓet(X,Qp)⊗Qp Cp

The comparison theorem indicates that for any DVR namely V , there exists a ring
B(V ), such that for X smooth and proper V -scheme, the etale cohomology of the
generic fiber X/W (k) is related to the crystalline cohomology of X/W (k) by

H∗et(X ⊗W (k) K̄)⊗Qp B(V ) = H∗crys(X/W (k))⊗W (k) B(V )

with K = quot W (k) a totally ramified extension of degree e, [FA]. In fact, for
n, i ∈ N, the specialization map induces isomorphisms compatible with the action
of Galois group GK :

H i((X ×OK
k̄)et,Z/ln.Z) ∼= H i((X ×OK

K̄)et,Z/ln.Z)

The period isomorphism say that crystalline and etale cohomologies in some way
determine one another. Using the period isomorphism we can state the Higher
residue pairing on the etale site if the ground filed would be Cp. Simply in theorem
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4.2 if we tensor every thing with Cp we obtain the same result on the etale site over
Cp.

Theorem 5.1. (Higher residue pairing on etale site) There exists a sesqui-linear
form

Kf
p ( , ) : Ĥf

(0),p × Ĥ
f
(0),p → ÔS,0[[t]]

Let s1, s2 be local sections of Hf,Cp

(0,p),p.

• Kf
et(s1, s2) = Kf

et(s2, s1).

• Kf
et(v(t)s1, s2) = Kf

et(s1, v(−t)s2) = v(t)Kf
et(s1, s2), v(t) ∈ OS[[t]].

• ∂V .Kf
et(s1, s2) = Kf

et(∂V s1, s2) +Kf
et(s1, ∂V s2), for any local section of TS.

• (t∂t + n)Kf
et(s1, s2) = Kf

et(t∂t.s2, s1) +Kf
et(s1, t∂t.s2)

• The induced pairing on

Hf
(0),p/t.H

f
(0),p ⊗H

f
(0),p/t.H

f
(0),p → Cp

is the classical Grothendieck residue.

Example 5.2. P1 \ {0,∞} with f = z1 + ... + zn + q/z1...zn, the element 1, is a
primitive forms, and we have similar identities

Kf (1/z, 1/z) = 0, Kf (1, q/z) = −1

with respect to the choice of volume form
dz1

z1

∧ ... ∧ dzn
zn

, cf. [LLS].

Remark 5.3. Because the characteristic is 0 all the formal computations carried
over in [LLS], can be done similarly in this new set up. For instance if f = x3 + y7

then

ζ+ = 1 +
4

3.72
u11u

2
12 − ....

would be a primitive form. Here uij are the coordinates of unfolding space, cf. [LLS].
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6. Action of Frobenius and variation of slope filtration

Given a functor F : R-alg → Ab, then for a commutative ring R, one defines the
curves of length n on F , CnF , by:

CnF = ker(F (R[T ]/T n)→ F (R))

In our case, take

F i
j = H i(Xk × Spec(A), Kj)

where Kj is the sheaf of K-groups of X. A crucial observation due to Katz is

TCnF
i
j = H i(X,TCnKj), TCn = Cpn

We will obtain an inverse system of sheaves

TCnK1
δ→ TCnK2 → ...→ TCnKd+1, Cq

n := TCnKq+1

Cq = {TCnKq+1}n, T̂CnF = lim
←
TCnF

Evident is C0
n = Wn the sheaf of Witt vectors, and Cq

n = 0, q > dimX. Cq
n is a

Wn-module and δq : Cq
n → Cq+1

n is Wn-linear. According to [BL],

C•n/p.C
•
n = Ω•

the usual de Rham complex. The afore-mentioned inverse system has endomorphisms
Fq, Vq such that FqVq = VqFq = p and induce F, V on C• given by pqFq and pdimX−qVq
on Cq respectively, [BL]. We will have the isomorphism

H∗cris(X/W ) ∼= lim
←
H∗(X,Cq)

and under this isomorphism the action of Frobenius is carried over the map F ex-
plained hereabove. Let Slope•H•cris be the filtration induced by the slope spectral
sequence

Es,l
1 : H l(X,Cs) =⇒ Hs+l

cris(X/W )
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then the Frobenius preserve this filtration and SlopeqH•cris is the greatest Frob-stable
subspace H•cris which the slopes are > q ,[BL].

We are interested to the deformation of crystalline cohomology groups on the punc-
tured plane P1 \ 0,∞, i.e is to study the complex Ω•X/W [u, u−1] in a manner similar
to the usual de Rham complex, twisted by the variable u. As we explained all of
the formal definitions of the twisted de Rham complex may be stated for the de
Rham-Witt complex with connection. The reader may easily check with the proof
as in [SAB1], For (M,F ) a filtered coherent D-module , the Hodge filtration can be
defined by

Fk(M ⊗K̄ K̄[u, u−1]) = ⊕jFj+kMu−j, Fk = ukF0

,

grF0 (M ⊗K̄ K̄[u, u−1]) = F0/u
−1.F0 = grFM

and the crystalline cohomologies

H i
cris(X,WΩX⊗OX

M [u, u−1], u−1∇−df∧)) � H i
cris(X,WΩX⊗OX

M [u, u−1],∇−udf∧))

are finite dimensional and explain mutually the solution local system.

Now considering the inverse system of curves over sheaves of K-groups H∗(X,Cq),
we may repeat the procedure of defining Saito form for the cohomology cycles in
these cohomologies in order to obtain

Kf
Cq( , ) : Ĥf

(0),Cq × Ĥf
(0),Cq → ÔS,0[[t]]

The action of Frobenius on H∗cris(X/W ) would carry over pqF on H∗(X,Cq).

The form of K. Saito plays a crucial role in the inter-relation between Hodge
theory and Mirror symmetry. It provides an interesting background to discuss about
different positivity questions in complex algebraic geometry. Normally, the ring A
working in algebraic geometry is regular, and according to the classification theorems
for complete regular local rings, it would be enough to consider the two cases of power
series rings and the ring of Witt vectors of the corresponding residue field of A.
The above theorem may concern some motivations toward a positivity in algebraic
geometry in the latter case.
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