A NOTE ON MUMFORD-TATE GROUPS AND DOMAINS

MOHAMMAD REZA RAHMATI

Abstract

We use some classical results on nonabelian Galois cohomology to explain Mumford-Tate groups and Domains in Hodge theory, as automorphism groups and moduli of polarized Hodge structures.

1. Introduction

In this short note we remark some connections between non-abelian Galois cohomology H^{1} and basic symmetry groups of Hodge tensors. The observation is comparison of classical results on Galois cohomology in 'Local fields' of J. Serre and Mumford-Tate groups in 'Mumford-Tate Domains' by M. Green-P Griffiths-M. Kerr. We first briefly introduce non-abelian cohomology of groups as the cohomology of groups with coefficients in non-commutative G-module, as a set with a distinguished element, namely trivial element. Then we explain a Galois descent procedure on Hodge tensors which connects the above theory to Hodge theory. Mumford-Tate groups can be understood as basic symmetry groups of Hodge structures. MumfordTate domains parametrize the set of Hodge structures whose generic points have a fixed Mumford-Tate group.

2. Non-AbELIAN COHOMOLOGY

Let G be a group and A (not necessarily abelian) another group on which G acts on the left. Write A multiplicatively. $H^{0}(G, A)$ is by definition the group A^{G} of elements of A fixed by G. A 1-cocycle would be a map $s \mapsto a_{s}$ from $G \rightarrow A$ such that $a_{s t}=a_{s} . s\left(a_{t}\right)$. Two cocycles a_{s} and b_{s} are equivalent if there exists $a \in A$ such that $b_{s}=a^{-1} . a_{s} . s(a)$ for all $s \in G$. This defines an equivalence relation and the quotient set is denoted by $H^{1}(G, A)$. It is a pointed set with a distinguished element of the unit cocycle $a_{s}=1$. Here $s(-)$ means the action of $s \in G$, and a_{s} is the value of the cocycle a at $s \in G$. These two definitions agree with the usual definitions of cohomology of G when A is abelian. These constructions are also functorial in A and G. If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of non-abelian G-modules, then we have the following exact sequence of pointed sets

$$
H^{0}(G, A) \rightarrow H^{0}(G, B) \rightarrow H^{0}(G, C) \rightarrow H^{1}(G, A) \rightarrow H^{1}(G, B) \rightarrow H^{1}(G, C)
$$

[^0]when the group G is Galois group of a (not necessarily finite) field extension and A a topological G-module such that
$$
A=\bigcup A^{H}
$$
when H runs through the open normal subgroups of G, we define
$$
H^{1}(G, A):=\lim _{\rightarrow} H^{1}\left(G / H, A^{H}\right)
$$

There is a simple geometric interpretation for $H^{1}\left(G, A_{K}\right)$: It is the set of classes of principal homogeneous spaces for A, defined over k which have a rational point over K.

As an example, take $G=\mathbb{Z} / 2=\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ acting naturally on a set of tensors $A_{\mathbb{R}}$. Then any element in $H^{1}\left(\mathbb{Z} / 2, A_{\mathbb{C}}\right)$ is determined by an involution map $-1: a_{-1} \mapsto$ $* \in A_{\mathbb{R}}$. This shows

$$
H^{1}\left(\mathbb{Z} / 2, A_{\mathbb{C}}\right)=A_{\mathbb{R}}
$$

3. Galois descent for Hodge tensors

If V be a vector space over k, provided with a fixed tensor of x of type (p, q), i.e. $x \in \bigotimes^{p} V \otimes \bigotimes^{q} V^{*}$ where V^{*} is the dual of V. two pairs $(V, x),\left(V, x^{\prime}\right)$ are called k-isomorphic if there is a k-linear isomorphism $f: V \rightarrow V^{\prime}$ such that $f(x)=x^{\prime}$. Denote by A_{k} the group of these automorphisms. Let K / k be a Galois extension with Galois group G. Write $E_{V, x}(K, k)$ for the set of k-isomorphism classes that are K-isomorphic to (V, x). The group G acts on V_{K} by $s .(x \otimes \lambda)=x \otimes s . \lambda$. It also acts on $f: V \rightarrow V^{\prime}$ by $s . f=s \circ f \circ s^{-1}$. If we put

$$
p_{s}=f^{-1} \circ s \circ f \circ s^{-1}, \quad s \in G
$$

the map $s \mapsto p_{s}(f)$ is a 1-cocycle in $H^{1}\left(G, A_{K}\right)$.
Theorem 3.1. The map $\theta: E_{V, x}(K / k) \rightarrow H^{1}\left(G, A_{K}\right)$ defined by

$$
f \mapsto p_{s}(f)
$$

is a bijection.
Theorem 3.2. The set $H^{1}(G, \operatorname{Aut}(Q, K))$ is in bijective correspondence with the classes of quadratic k-forms that are K-isomorphic to Q.
The above definition can be generalized in this way that instead of considering a single tensor $T^{p, q}=\bigotimes^{p} V \otimes \bigotimes^{q} V^{*}$ one may consider a a sum of such tensors that is a subset T as

$$
T \subset T^{\bullet \bullet \bullet}=\oplus_{p, q} T^{p, q}
$$

The proofs will proceed exactly the same and we obtain

Theorem 3.3. Assume T is a set of tensors for a vector space V. The map θ : $E_{V, T}(K / k) \rightarrow H^{1}\left(G, A_{T, K}\right)$ defined by

$$
f_{T} \mapsto p_{s}\left(f_{T}\right)
$$

is a bijection, where $A_{T, K}$ is the group of K-automorphisms of all the tensors in T.

4. Mumford-Tate groups and Domains

Mumford-Tate groups are basic symmetry groups of Hodge structures. To begin with let V be finite dimensional \mathbb{Q}-vector space, and Q a non-degenerate bilinear map $Q: V \otimes V \rightarrow \mathbb{Q}$ which is $(-1)^{n}$-symmetric for some fixed n. A Hodge structure is given by a representation

$$
\phi: \mathbb{U}(\mathbb{R}) \rightarrow \operatorname{Aut}(V, Q)_{\mathbb{R}}, \quad \mathbb{U}(\mathbb{R})=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right), a^{2}+b^{2}=1
$$

It decomposes over \mathbb{C} into eigenspaces $V^{p, q}$ such that $\phi(t) . u=t^{p} \overline{t^{q}} . u$ for $u \in V^{p, q}$, and $\overline{V^{p, q}}=V^{q, p}$. The Hodge tensors $H g_{\phi}^{a, b}$ are given by the subspace of $T^{a, b}$ such that $\mathbb{U}(R)$ acts trivially. Set

$$
H g_{\phi}^{\bullet \bullet \bullet}=\oplus_{a, b} H g_{\phi}^{a, b}
$$

The period domain D, associated to the above data is the set of all polarized Hodge structures ϕ with a given Hodge numbers. The real Lie group $G(\mathbb{R})$ acts transitively on D. The compact dual \check{D} of D is the set of flags $F^{\bullet}=\left\{F^{n} \subset \ldots \subset F^{0}=\right.$ $\left.V_{\mathbb{C}}\right\}$ with $\operatorname{dim} F^{p}=\sum_{r \geq p} h^{r, s}$ and where the first Hodge-Riemann bilinear relation, $Q\left(F^{p}, F^{n-p+1}\right)=0$ holds . The Mumford-Tate group of the Hodge structure ϕ denoted $M_{\phi}(R)$ is the smallest \mathbb{Q}-algebraic subgroup of $G=\operatorname{Aut}(V, Q)$ with the property

$$
\phi(\mathbb{U}(R)) \subset M_{\phi}(R)
$$

M_{ϕ} is a simple, connected, reductive \mathbb{Q}-algebraic group. If $F^{\bullet} \in \check{D}$ the Mumford-Tate group $M_{F} \bullet$ is the subgroup of $G_{\mathbb{R}}$ that fixes the Hodge tensors in $H g_{F}^{\bullet \bullet \bullet} \cdot$.

5. Relation with non-abelian cohomology

We are going to investigate the relation between nonabelian cohomology discussed in sec. 2, and classifying spaces for Hodge structures. By definition $H^{0}\left(G_{\mathbb{R}}, H g_{F}^{\bullet \bullet \bullet} \cdot\right)=$ $M_{F} \bullet$. The relation $H^{1}\left(\mathbb{Z} / 2, G_{\mathbb{C}}\right)=G_{\mathbb{R}}$ is trivial. By applying Theorem 3.3 to the above construction we get the following results.

Theorem 5.1. $H^{1}\left(\mathbb{Z} / 2, M_{F} \bullet\right)=M_{\phi}$.

This follows from the example at the end of sec 2 , and the fact that M_{ϕ} is the subgroup of G that fixes pointwise the algebra of Hodge tensors, cf. [MGK].
Theorem 5.2. $H^{1}(\operatorname{Gal}(\mathbb{C} / \mathbb{Q}), \operatorname{Aut}(Q, \mathbb{C}))=\check{D}$
Follows from Theorem 3.3, noting that $\check{D}=G_{\mathbb{C}} / \operatorname{Stab}_{G_{\mathbb{C}}}\left(F_{0}\right)$.
Theorem 5.3. $H^{1}(\operatorname{Gal}(\mathbb{R} / \mathbb{Q}), \operatorname{Aut}(Q, \mathbb{R}))=D$
This also follows from Theorem 3.3, and similar identity $D=G_{\mathbb{R}} / \operatorname{Stab}_{G_{\mathbb{R}}}\left(F_{0}\right)$. We have the short exact sequence

$$
0 \rightarrow \mathbb{Z} / 2 \rightarrow \operatorname{Gal}(\mathbb{C} / \mathbb{Q}) \rightarrow \operatorname{Gal}(\mathbb{R} / \mathbb{Q}) \rightarrow 0
$$

where the second non-zero map is the restriction

$$
\begin{aligned}
0 \rightarrow H^{1}\left(\mathbb{Z} / 2, \operatorname{Aut}(Q, \mathbb{C})^{G a l(\mathbb{R} / \mathbb{Q})}\right) & \rightarrow H^{1}(\operatorname{Gal}(\mathbb{C} / \mathbb{Q}), \operatorname{Aut}(Q, \mathbb{C})) \\
& \rightarrow H^{1}(\operatorname{Gal}(\mathbb{R} / \mathbb{Q}), \operatorname{Aut}(Q, \mathbb{C}))^{\mathbb{Z} / 2}
\end{aligned}
$$

where the second map is the restriction. The first map is called inflation map. The first item is $\operatorname{Aut}(Q, \mathbb{R})$ by the discussion in section 1 , and the second item is \check{D} by Theorem 5. Thus we have

$$
0 \rightarrow \operatorname{Aut}(Q, \mathbb{R}) \rightarrow \check{D} \rightarrow H^{1}(\operatorname{Gal}(\mathbb{R} / \mathbb{Q}), \operatorname{Aut}(Q, \mathbb{C}))^{\mathbb{Z} / 2}
$$

as exact sequence of sets with distinguished unit elements.
Theorem 5.4. $H^{1}\left(\mathbb{U}_{\mathbb{R}}, G_{\mathbb{R}}\right)=D$, where $G_{\mathbb{R}}$ acts on $G_{\mathbb{R}}=\operatorname{Aut}(Q, \mathbb{R})$ by $g: T \mapsto$ $g^{-1} T g$.
Proof. The cocycle condition is equivalent to $\mathbb{U}_{\mathbb{R}} \rightarrow G_{\mathbb{R}}$ being a homomorphism and the boundary condition is when two such homomorphism are conjugate by an element of $G_{\mathbb{R}}$. Then, the theorem is consequence of that, D is isomorphic to the set of conjugacy classes of the isotropy group of a fixed Hodge structure.

For each point $\phi \in D$, the adjoint representation

$$
A d \phi: \mathbb{U}(\mathbb{R}) \rightarrow A u t\left(\mathfrak{g}_{\mathbb{R}}, B\right)
$$

induces a Hodge structure of weight 0 on \mathfrak{g}. This Hodge structure is polarized by the killing form $B: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$. and it is a sub-Hodge structure of $\check{V} \times V$.
Theorem 5.5. $H^{1}\left(\mathbb{U}(\mathbb{R}), A u t\left(\mathfrak{g}_{\mathbb{R}}, B\right)\right)=D$, where $\mathbb{U}_{\mathbb{R}}$ acts by adjoint representation, and B is the killing form.
Proof. Checking the cocycle condition shows that cocycles are $\operatorname{Hom}\left(\mathbb{U}_{\mathbb{R}}, \operatorname{Aut}(B)\right)$, and the coboundray condition becomes when two such homomorphisms are conjugate by an automorphism of B. Regarding B as a tensor then the theorem follows from the known fact that M_{ϕ} is the subgroup of G with the property that M_{ϕ}-stable subspaces $W \subset T_{\phi}^{a, b}$ are exactly the sub-Hodge structures of these tensor space.

References

[S] J. P. Serre, Local fields, Graduate texts in mathematics 67, Springer Verlag, 1979
[MGK] M. Green, P. Griffiths, M. Kerr, Mumford-tate domains, Bollettino dell' UMI (9) III (2010), 281-307.

Centro de Investigacion en Matematicas

E-mail address: mrahmati@cimat.mx

[^0]: Key words and phrases. Mumford-Tate group, Mumford-Tate domain, non-abelian Galois cohomology, Hodge tensors, Galois descent.

