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Abstract. We use some classical results on nonabelian Galois cohomology to
explain Mumford-Tate groups and Domains in Hodge theory, as automorphism
groups and moduli of polarized Hodge structures.

1. Introduction

In this short note we remark some connections between non-abelian Galois co-
homology H1 and basic symmetry groups of Hodge tensors. The observation is
comparison of classical results on Galois cohomology in ’Local fields’ of J. Serre and
Mumford-Tate groups in ’Mumford-Tate Domains’ by M. Green-P Griffiths-M. Kerr.
We first briefly introduce non-abelian cohomology of groups as the cohomology of
groups with coefficients in non-commutative G-module, as a set with a distinguished
element, namely trivial element. Then we explain a Galois descent procedure on
Hodge tensors which connects the above theory to Hodge theory. Mumford-Tate
groups can be understood as basic symmetry groups of Hodge structures. Mumford-
Tate domains parametrize the set of Hodge structures whose generic points have a
fixed Mumford-Tate group.

2. Non-abelian cohomology

Let G be a group and A (not necessarily abelian) another group on which G acts
on the left. Write A multiplicatively. H0(G,A) is by definition the group AG of
elements of A fixed by G. A 1-cocycle would be a map s 7→ as from G → A such
that ast = as.s(at). Two cocycles as and bs are equivalent if there exists a ∈ A such
that bs = a−1.as.s(a) for all s ∈ G. This defines an equivalence relation and the
quotient set is denoted by H1(G,A). It is a pointed set with a distinguished element
of the unit cocycle as = 1. Here s(−) means the action of s ∈ G, and as is the value
of the cocycle a at s ∈ G. These two definitions agree with the usual definitions of
cohomology of G when A is abelian. These constructions are also functorial in A
and G. If 0 → A → B → C → 0 is an exact sequence of non-abelian G-modules,
then we have the following exact sequence of pointed sets

H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ H1(G,B)→ H1(G,C)
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when the group G is Galois group of a (not necessarily finite) field extension and A
a topological G-module such that

A =
⋃

AH

when H runs through the open normal subgroups of G, we define

H1(G,A) := lim
→
H1(G/H,AH)

There is a simple geometric interpretation for H1(G,AK): It is the set of classes of
principal homogeneous spaces for A, defined over k which have a rational point over
K.

As an example, take G = Z/2 = Gal(C/R) acting naturally on a set of tensors AR.
Then any element in H1(Z/2, AC) is determined by an involution map −1 : a−1 7→
∗ ∈ AR. This shows

H1(Z/2, AC) = AR

3. Galois descent for Hodge tensors

If V be a vector space over k, provided with a fixed tensor of x of type (p, q), i.e.
x ∈

⊗p V ⊗
⊗q V ∗ where V ∗ is the dual of V . two pairs (V, x), (V, x′) are called

k-isomorphic if there is a k-linear isomorphism f : V → V ′ such that f(x) = x′.
Denote by Ak the group of these automorphisms. Let K/k be a Galois extension
with Galois group G. Write EV,x(K, k) for the set of k-isomorphism classes that are
K-isomorphic to (V, x). The group G acts on VK by s.(x⊗λ) = x⊗ s.λ. It also acts
on f : V → V ′ by s.f = s ◦ f ◦ s−1. If we put

ps = f−1 ◦ s ◦ f ◦ s−1, s ∈ G
the map s 7→ ps(f) is a 1-cocycle in H1(G,AK).

Theorem 3.1. The map θ : EV,x(K/k)→ H1(G,AK) defined by

f 7→ ps(f)

is a bijection.

Theorem 3.2. The set H1(G,Aut(Q,K)) is in bijective correspondence with the
classes of quadratic k-forms that are K-isomorphic to Q.

The above definition can be generalized in this way that instead of considering a
single tensor T p,q =

⊗p V ⊗
⊗q V ∗ one may consider a a sum of such tensors that

is a subset T as

T ⊂ T •,• = ⊕p,qT p,q

The proofs will proceed exactly the same and we obtain
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Theorem 3.3. Assume T is a set of tensors for a vector space V . The map θ :
EV,T (K/k)→ H1(G,AT,K) defined by

fT 7→ ps(fT )

is a bijection, where AT,K is the group of K-automorphisms of all the tensors in
T .

4. Mumford-Tate groups and Domains

Mumford-Tate groups are basic symmetry groups of Hodge structures. To begin
with let V be finite dimensional Q-vector space, and Q a non-degenerate bilinear
map Q : V ⊗V → Q which is (−1)n-symmetric for some fixed n. A Hodge structure
is given by a representation

φ : U(R)→ Aut(V,Q)R, U(R) =

(
a −b
b a

)
, a2 + b2 = 1

It decomposes over C into eigenspaces V p,q such that φ(t).u = tpt̄q.u for u ∈ V p,q,

and V p,q = V q,p. The Hodge tensors Hga,bφ are given by the subspace of T a,b such
that U(R) acts trivially. Set

Hg•,•φ = ⊕a,bHga,bφ
The period domain D, associated to the above data is the set of all polarized Hodge
structures φ with a given Hodge numbers. The real Lie group G(R) acts transitively
on D. The compact dual Ď of D is the set of flags F • = {F n ⊂ ... ⊂ F 0 =
VC} with dimF p =

∑
r≥p h

r,s and where the first Hodge-Riemann bilinear relation,

Q(F p, F n−p+1) = 0 holds . The Mumford-Tate group of the Hodge structure φ
denoted Mφ(R) is the smallest Q-algebraic subgroup of G = Aut(V,Q) with the
property

φ(U(R)) ⊂Mφ(R)

Mφ is a simple, connected, reductive Q-algebraic group. If F • ∈ Ď the Mumford-Tate
group MF • is the subgroup of GR that fixes the Hodge tensors in Hg•,•F • .

5. Relation with non-abelian cohomology

We are going to investigate the relation between nonabelian cohomology discussed
in sec. 2, and classifying spaces for Hodge structures. By definition H0(GR, Hg

•,•
F • ) =

MF • . The relation H1(Z/2, GC) = GR is trivial. By applying Theorem 3.3 to the
above construction we get the following results.

Theorem 5.1. H1(Z/2,MF •) = Mφ.
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This follows from the example at the end of sec 2, and the fact that Mφ is the
subgroup of G that fixes pointwise the algebra of Hodge tensors, cf. [MGK].

Theorem 5.2. H1(Gal(C/Q), Aut(Q,C)) = Ď

Follows from Theorem 3.3, noting that Ď = GC/StabGC(F0).

Theorem 5.3. H1(Gal(R/Q), Aut(Q,R)) = D

This also follows from Theorem 3.3, and similar identity D = GR/StabGR(F0). . We
have the short exact sequence

0→ Z/2→ Gal(C/Q)→ Gal(R/Q)→ 0

where the second non-zero map is the restriction

0→ H1(Z/2, Aut(Q,C)Gal(R/Q))→ H1(Gal(C/Q), Aut(Q,C))

→ H1(Gal(R/Q), Aut(Q,C))Z/2

where the second map is the restriction. The first map is called inflation map. The
first item is Aut(Q,R) by the discussion in section 1, and the second item is Ď by
Theorem 5. Thus we have

0→ Aut(Q,R)→ Ď → H1(Gal(R/Q), Aut(Q,C))Z/2

as exact sequence of sets with distinguished unit elements.

Theorem 5.4. H1(UR, GR) = D, where GR acts on GR = Aut(Q,R) by g : T 7→
g−1Tg.

Proof. The cocycle condition is equivalent to UR → GR being a homomorphism
and the boundary condition is when two such homomorphism are conjugate by an
element of GR. Then, the theorem is consequence of that, D is isomorphic to the set
of conjugacy classes of the isotropy group of a fixed Hodge structure. �

For each point φ ∈ D, the adjoint representation

Adφ : U(R)→ Aut(gR, B)

induces a Hodge structure of weight 0 on g. This Hodge structure is polarized by
the killing form B : g× g→ C. and it is a sub-Hodge structure of V̌ × V .

Theorem 5.5. H1(U(R), Aut(gR, B)) = D, where UR acts by adjoint representation,
and B is the killing form.

Proof. Checking the cocycle condition shows that cocycles are Hom(UR, Aut(B)),
and the coboundray condition becomes when two such homomorphisms are conjugate
by an automorphism of B. Regarding B as a tensor then the theorem follows from
the known fact that Mφ is the subgroup of G with the property that Mφ-stable

subspaces W ⊂ T a,bφ are exactly the sub-Hodge structures of these tensor space. �
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