Hodge Theory of Isolated Hypersurface **Singularities**

Mohammad Reza Rahmati

February 11, 2015

÷.

 QQ

イロメ イ押 メイヨメ イヨメ

Isolated hypersurface singularities

Assume $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ a holomorphic germ with isolated singularity. It gives the Milnor fibration (*C*∞),

$$
f:X\to T
$$

Provides 1-parameter degenerating family, $T' = T \setminus 0$

$$
X_{\infty} \longrightarrow U \longrightarrow X
$$

\n
$$
f_{\infty} \downarrow \qquad \qquad \downarrow f \qquad \qquad \downarrow f \qquad \qquad (1)
$$

\n
$$
H \xrightarrow{e} T' \longrightarrow T
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q ①

Monodromy transformation $M: H_{\mathbb{Z}} \to H_{\mathbb{Z}}, H_{\mathbb{Z}} = H^n(X_{s_0}, \mathbb{Z}),$ where $s_0 \in \mathcal{T}'$ and dim $H^n(X_{s_0},\mathbb{Q})=\mu$ (the Milnor number of *f*).

Monodromy theorem

Theorem

(Monodromy theorem) The eigenvalues of M are m − *th root of unity, for a suitable integer m, i.e if* $M = M_s \cdot M_u$ *is Jordan decomposition, then*

$$
M_{s}^{m}=1.
$$

If l is the largest integer that for some p, $H^{i,k-i}(X_t,\mathbb{C})\neq 0$ *, if p* ≤ *i* ≤ *p* + *l. Then*

$$
(M_u-1)^l=0
$$

and hence

$$
(M^m-1)^l=0,
$$

for $l < min(k, 2n - k) + 1$.

 $\overline{29}$

Compactification of Milnor fibration

- Assume $f: X \to T$ is a Milnor fibration of an isolated hypersurface singularity at $0\in\mathbb{C}^{n+1}.$
- Can assume *f* is a polynomial of sufficiently high degree, say $d = \text{dea } f$.
- Can embed the fibration into a projective one

$$
f_Y:\mathbb{P}^{n+1}\times\mathcal{T}\to\mathbb{C}
$$

defined via a homogeneous polynomial *f^Y* .

Obtain a locally trivial C^{∞} -fibration $f_Y: Y' \rightarrow T'$ with,

$$
F(z_0, ..., z_{n+1}) = z_{n+1}^d f(z_0/z_{n+1}, ..., z_n/z_{n+1}),
$$

\n
$$
Y = \{(z, t) \in \mathbb{P}^{n+1}(\mathbb{C}) \times T \mid f_Y = F(z) - tz_{n+1}^d = 0\}.
$$

\nSet $Y_{\infty} = Y' \times_{T'} H$.

KOD KAP KED KED E LORO

Nilpotent Orbit Theorem-Limit mixed Hodge structure

- $N_Y = \log(M_{Y,u})$ where $M_Y = M_{Y,s}$. $M_{Y,u}$ is the Jordan decomposition;
- *N* gives a Weight filtration W_{\lceil} on $H_{\mathbb{Z}}$ defined by

(a)
$$
N: W_k \to W_{k-2}
$$

(b) $N^k: Gr_{m+k}^W \to Gr_{m-k}^W$ is an isomorphism.

•
$$
s := \exp(\sqrt{-1}.t)
$$
 where $Im(t) > 0$;

By the nilpotent orbit theorem (W. Schmid), the limit

$$
\lim_{lm(t)\to\infty}\exp(-tN)F_s^p=:F_\infty^p
$$

イロト イ押 トイヨ トイヨ トー

÷. QQ

exists, and $(H^n(Y_\infty,\mathbb{Q}),\mathcal{W}_k,\mathcal{F}^p_\infty)$ is a MHS.

If *Y* is a projective variety of dimension *n*, Then

$$
H^{n}(Y,\mathbb{C})=\begin{cases} P^{n}(Y,\mathbb{C}), & n \text{ odd} \\ P^{n}(Y,\mathbb{C})\oplus \omega^{n/2}, & n \text{ even} \end{cases}
$$

where $P^n = \mathsf{ker}(. \wedge \omega : H^n \to H^n), \, \omega$ Kahler form.

We set (*I coh Y* cup product)

$$
S_Y = (-1)^{n(n-1)/2} I_Y^{coh}.
$$

Theorem

(W. Schmid) S^Y , *N^Y* , *W*•, *F* • [∞] *give a polarized mixed Hodge structure on Pⁿ* (*Y*∞)*. It is invariant w.r.t MY*,*s.*

KED KAP KED KED E YORO

If f is a polynomial of sufficiently high degree s.t the properties above are satisfied. Then the mapping i* : $P^n(Y_\infty) \to H^n(X_\infty)$ *is surjective and the kernel is* ker(*i* ∗) = ker(*M^Y* − *id*)*. Moreover, there exists a unique MHS on Hⁿ* (*X*∞) *namely Steenbrink MHS, which makes the following short exact sequence an exact sequence of mixed Hodge structures*

$$
0 \to \text{ker}(M_Y - \text{id}) \to P^n(Y_\infty) \stackrel{i^*}{\to} H^n(X_\infty) \to 0.
$$

The MHS's are invariant w.r.t the semi-simple part of the monodromy. The Steenbrink LMHS is polarized by

$$
S(a,b) = \begin{cases} S_Y(i^*a, i^*b) & a,b \in H_{\neq 1} \\ S_Y(i^*a, N_Yi^*b) & a,b \in H_1 \end{cases}
$$

 $($ \Box \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{1}{10}$ \rightarrow $($ $\frac{$

 290

• The cohomology bundle (rank μ -local system of MHS)

$$
H:=\bigcup_{t\in\mathcal{T}'}H^n(X_t,\mathbb{C})
$$

• Holomorphic integrable (Gauss-Manin) connection;

$$
\partial_t: \mathcal{H} \to \mathcal{H}, \qquad \mathcal{H} \cong (\mathcal{O}_{\mathcal{T}'})^{\mu}
$$

o Define

$$
H^n(X_\infty,\mathbb{C})_\lambda=\text{ker}(M_s-\lambda)\subset H^n(X_\infty,\mathbb{C})
$$

イロメ イ押メ イヨメ イヨメー

ミー 200

Elementary section-Deligne extension

• Elementary sections;

$$
\mathbf{S}(A,\alpha)(t) = t^{\alpha} \exp[\log(t).\frac{-N}{2\pi i}] A_{\alpha}(t),
$$

$$
A_{\alpha}(t) \in H^{n}(X_{t},\mathbb{C})_{\lambda}, e^{-2\pi i \alpha} = \lambda,
$$

• Define a map,

$$
\psi_{\alpha}: H^{n}(X_{\infty}, \mathbb{C}) \to (i_{*}\mathcal{H})_{0},
$$

$$
\psi_{\alpha}(A) := i_{*}s(A, \alpha).
$$

• It gives the isomorphism

$$
\psi_{\alpha}: H^{n}(X_{\infty}, \mathbb{C})_{\lambda} \to C^{\alpha} \subset \mathcal{G}_{0},
$$

-N/2\pi i = $\psi_{\alpha}^{-1} \circ (t\partial_{t} - \alpha) \circ \psi_{\alpha}$

ぼう メモト

∢ □ ▶ к 何 ▶

B

 $2Q$

• Builds up the isomorphism;

$$
\psi = \bigoplus_{-1 < \alpha \leq 0} \psi_{\alpha} : H_{\mathbb{C}} = \bigoplus_{-1 < \alpha \leq 0} H_{\mathbb{C}}^{e^{-2\pi i \alpha}} \to \bigoplus_{-1 < \alpha \leq 0} C^{\alpha}
$$

- \bullet Monodromy *M* on *H*_C corresponds to exp(-2π*i*.*t*∂*t*).
- $\bullet \psi$ is called Deligne nearby map.

 2990

÷.

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

Definition: Gauss-Manin system

$$
\mathcal{G}=\bigoplus_{-1<\alpha\leq 0}\mathbb{C}\{t\}[t^{-1}]C^{\alpha}.
$$

• Definition: *V*-filtration is defined on G by

$$
V^{\alpha} = \sum_{\beta \geq \alpha} \mathbb{C}\{t\} C^{\beta}, \qquad (V^{>\alpha} = \sum_{\beta > \alpha} \mathbb{C}\{t\} C^{\beta})
$$

(a) $t \cdot V^{\alpha} \subset V^{\alpha+1}$,
(b) $\partial_t \cdot V^{\alpha} \subset V^{\alpha-1}$,
(c) $t^{i} \partial_t^{j} V^{\alpha} \subset V^{\alpha}$ for all $i > j$,
(d) The operator $t \partial_t - \alpha$ is nilpotent on Gr_V^{α} .

•
$$
V^{\alpha}
$$
, $V^{>\alpha}$ are $\mathbb{C}{t}$ -modules of rank μ .

イロメ イ押 メイヨメ イヨメ

÷.

 $2Q$

• We have,

$$
\mathcal{G}=\mathbb{C}\{t\}[\partial_t]\bigoplus \bigoplus_{\lambda}\bigoplus_{j=1}^{m_{\lambda}}\frac{\mathbb{C}\{t\}[\partial_t]}{\mathbb{C}\{t\}[\partial_t](t\partial_t-\alpha_{\lambda})^{n_{\lambda,j}}}.
$$

- In case of isolated hypersurface singularities, $\partial_t:{\cal G}\to{\cal G}$ is invertible.
- The Gauss-Manin connection $\partial_t:{\cal G}\to{\cal G}$ of isolated hypersurface singularities, has an extension to the whole disc *T* that has a regular singularity at 0, i.e. has a pole of order at most 1 at 0.

 $2Q$

Brieskorn Lattice

Definition: E. Brieskorn defines the O*^T* -modules (*X* Milnor ball)

$$
H'' = f_*(\frac{\Omega_X^{n+1}}{df \wedge d\Omega_X^{n-1}})
$$

$$
H' = f_*(\frac{df \wedge \Omega_X^n}{df \wedge d\Omega_X^{n-1}})
$$

• They have rank μ , such that

$$
H'|_{T'}=H''|_{T'}=\mathcal{H}.
$$

• We have canonical isomorphisms,

$$
\Omega_f = \frac{\Omega^{n+1}}{df \wedge \Omega^n} = \frac{H''}{\partial_t^{-1}.H''} = \frac{V^{-1}}{t.V^{-1}} = H^n(X_\infty) \qquad (2)
$$

イロメ イ押 メイヨメ イヨメ

÷. QQ

Steenbrink Limit mixed Hodge structure-Second definition

Hodge filtrations on *H n* (*X*∞, C),

$$
F_{St}^p H^n(X_\infty,\mathbb{C})_\lambda=\psi_\alpha^{-1}(\frac{V^\alpha\cap\partial_t^{n-p}H_0''}{V^{>\alpha}}),\qquad \alpha\in(-1,0],
$$

$$
F^p_{\mathsf{Va}}H^n(X_\infty,\mathbb{C})_\lambda=\psi_\alpha^{-1}(\frac{V^\alpha\cap t^{-(n-p)}H_0^{\prime\prime}}{V^{>\alpha}}),\qquad\alpha\in(-1,0]
$$

Knowing that $V^{-1} \supset H_0''$, and $0 = F^{n+1} = F_{Va}^{n+1}$.

With the weight filtration *W* define mixed Hodge structures on $H^n(X_\infty,\mathbb{C})$.

Theorem

The Hodge filtration FSt is the Steenbrink limit Hodge filtration.

イロメ イ押 メイヨメ イヨメ

 $2Q$

(A. Varchenko) (*F* • , *W*•) *and* (*F* • *Va*, *W*•) *are different on* $H^n(X_\infty, \mathbb{C})$ *in general, However* $\overline{F}_{\mathsf{Va}}^p G \overline{r}_l^W = F_{\mathsf{St}}^p G \overline{r}_l^W.$

Theorem

(E. Brieskorn) Assume $f : \mathbb{C}^{n+1} \to \mathbb{C}$ *is a holomorphic map with isolated singularity, inducing the Milnor fibration* $f: X' \rightarrow T'$ *. Then we have the following isomorphisms*

$$
\mathcal{G}=R^nf_*\mathbb{C}\otimes\mathcal{O}_{\mathcal{T}'}=R^nf_*\Omega_{X'/\mathcal{T}'}=\frac{\Omega^{n+1}[t,t^{-1}]}{(d-tdf\wedge)\Omega^{n+1}[t,t^{-1}]}
$$

where t is a variable.

イロト イ押 トイヨ トイヨト

B

つへへ

• The Brieskorn Lattice is defined by,

$$
\mathcal{G}_0 := \text{image}(\Omega^{n+1}[t] \to \mathcal{G}) = \frac{\Omega^{n+1}[t]}{(td - dt \wedge)\Omega^{n+1}[t]}
$$

• Set
$$
\mathcal{G}_{p} = \tau^{p} \mathcal{G}_{0}, \tau = t^{-1}
$$
.

There are isomorphisms given by multiplication by t^p .

$$
\frac{\mathcal{G}_p \cap V^\alpha}{\mathcal{G}_{p-1}\cap V^\alpha + \mathcal{G}_p \cap V^{>\alpha}} \cong \frac{V^{\alpha+\rho} \cap \mathcal{G}_0}{V^\alpha \cap \mathcal{G}_{-1} + V^{>\alpha} \cap \mathcal{G}_0}
$$

• The gluing is done via the isomorphisms,

$$
Gr_F^{n-p}(H_\lambda)\cong Gr_{\alpha+p}^V(H''/\tau^{-1}.H'')
$$

 QQ

The identity

$$
\frac{\mathcal{H}^{(0)}}{\tau^{-1}.\mathcal{H}^{(0)}}=\frac{\Omega^{n+1}}{df\wedge\Omega^n}=\Omega_f
$$

defines the extension fiber of the Gauss-Manin system of the isolated singularity $f: \mathbb{C}^{n+1} \to \mathbb{C}$.

メロトメ 御 トメ 君 トメ 君 トー

÷. QQ

Good basis

Theorem

.

(M. Saito) Assume $\{(\alpha_i, \mathsf{d}_i)\}$ *is the spectrum of a germ of isolated singularity f* : \mathbb{C}^{n+1} → \mathbb{C} *. There exists elements sⁱ* ∈ *C* ^α*ⁱ with the properties*

(1)
$$
s_1, ..., s_\mu
$$
 project onto a C-basis of
\n $\bigoplus_{-1 < \alpha < n} Gr_V^\alpha H''/Gr_V^\alpha \partial_t^{-1} H''.$

(2)
$$
s_{\mu+1} := 0
$$
; there exists $\nu : \{1, ..., \mu\} \to \{1, ..., \mu, \mu + 1\}$ with $(t - (\alpha_i + 1)\partial_t^{-1})s_i = s_{\nu(i)}$

(3) *There exists an involution* κ : $\{1, ..., \mu\}$ \rightarrow $\{1, ..., \mu\}$ *with* $\kappa = \mu + 1 - i$ if $\alpha_i \neq \frac{1}{2}$ 2 (*n* − 1) *and* κ(*i*) = µ + 1 − *i or* $\kappa(i) = i$ if $\alpha_i = \frac{1}{2}$ 2 (*n* − 1)*, and*

$$
P_S(s_i,s_j)=\pm\delta_{(\mu+1-i)j}.\partial_t^{-1-n}
$$

where P is the Saito higher residue p[airi](#page-16-0)[ng](#page-18-0)[.](#page-16-0)

Opposite filtrations

Theorem

(M. Saito) The filtration

$$
U^{\rho}C^{\alpha}:=C^{\alpha}\cap V^{\alpha+\rho}H''
$$

is opposite to the filtration Hodge filtration F on G*.*

Two filtrations *F* and *U* on *H* are called opposite, if

$$
Gr_p^F Gr_U^q H = 0, \qquad \text{for } p \neq q
$$

The two filtrations F^p and

$$
U'_q:=U^{n-q}=\psi^{-1}\{\oplus_\alpha C^\alpha\cap V^{\alpha+n-q}H''\}=\newline \psi^{-1}\{\oplus_\alpha Gr^{\alpha}_V[V^{\alpha+n-q}H'']\}
$$

are two opposite filtrations on $H^n(X_\infty,\mathbb{C})$.

 $\leftarrow \Xi \rightarrow$

← ロ → → r 何 → →

 \equiv

 QQ

Extension of mixed Hodge structure

• The Deligne bigrading,

$$
H^n(X_\infty,\mathbb{C})=\bigoplus_{p,q,\lambda}I_\lambda^{p,q}
$$

• Define,

$$
\Phi_{\lambda}^{p,q}: I_{\lambda}^{p,q} \xrightarrow{\hat{\Phi}_{\lambda}} Gr_{V}^{\alpha+n-p}H'' \xrightarrow{pr} Gr_{V}^{\bullet}(H''/\partial_{t}^{-1}H'') \xrightarrow{\cong} \Omega_{f}
$$
\n(3)

where

$$
\hat{\Phi}_{\lambda}^{p,q} := \partial_t^{p-n} \circ \psi_{\alpha} | I_{\lambda}^{p,q}
$$

$$
\Phi = \bigoplus_{p,q,\lambda} \Phi_{\lambda}^{p,q}, \qquad \Phi_{\lambda}^{p,q} = pr \circ \hat{\Phi}_{\lambda}^{p,q}
$$

 2990

÷.

イロメ イ押 メイヨメ イヨメ

 ψ_{α} is the nearby isomorphism.

The map Φ *is a well-defined* C*-linear isomorphism.*

Definition

The mixed Hodge structure on Ω_f is defined by using the isomorphism Φ. This means that

 $W_k(\Omega_f) = \Phi W_k H^n(X_\infty, \mathbb{Q}), \qquad F$ $P(\Omega_f) = \Phi F^p H^n(X_\infty, \mathbb{C})$

and the data of the Steenbrink MHS on $H^n(X_\infty,\mathbb{C})$ such as the $\mathbb Q$ or $\mathbb R$ -structure is transformed via the isomorphism Φ to that of Ω_f . Specifically; in this way we also obtain a conjugation map

$$
\bar{\Gamma}: \Omega_{f,\mathbb{Q}} \otimes \mathbb{C} \to \Omega_{f,\mathbb{Q}} \otimes \mathbb{C}, \qquad \Omega_{f,\mathbb{Q}} := \Phi H^{n}(X_{\infty},\mathbb{Q}) \qquad (4)
$$

 290

٠

UP ROPERTS A STA

defined from the conjugation on $H^n(X_\infty,\mathbb{C})$ via this map.

Main result

Theorem: Assume $f: (\mathbb{C}^{n+1},0) \to (\mathbb{C},0),$ is a holomorphic germ with isolated singularity at 0, with $f: X \rightarrow T$ the associated Milnor fibration. Embed the Milnor fibration in a projective fibration f_Y : $Y \rightarrow T$ of degree *d* (with *d* large enough), by inserting possibly a singular fiber over 0. Then, the isomorphism Φ makes the following diagram commutative up to a complex constant;

$$
\widehat{Hes}_{f,0}: \Omega_f \times \Omega_f \longrightarrow \mathbb{C}
$$
\n
$$
\downarrow (\Phi^{-1}, \Phi^{-1}) \qquad \qquad \downarrow \times \ast \qquad \ast \neq 0 \qquad (5)
$$
\n
$$
S: H^n(X_\infty) \times H^n(X_\infty) \longrightarrow \mathbb{C}
$$

イロメ イ押メ イヨメ イヨメー

B

 QQ

where,

$$
\widehat{Res}_{f,0}=\mathsf{res}_{f,0}~(\bullet,\tilde{C}\bullet)
$$

and $\tilde{\bm{C}}$ is defined relative to the Deligne decomposition of $\Omega_f,$ via the isomorphism Φ. If *J ^p*,*^q* = Φ−¹ *I p*,*q* is the corresponding subspace of $\Omega_f,$ then

$$
\Omega_f = \bigoplus_{p,q} J^{p,q} \qquad \tilde{C}|_{J^{p,q}} = (-1)^p \qquad (6)
$$

重き B

∢ ロ ▶ ∢ 伊 ▶ ∢

 QQ

In other words;

$$
S(\Phi^{-1}(\omega), \Phi^{-1}(\eta)) = * \times \operatorname{res}_{f,0}(\omega, \tilde{C}.\eta), \qquad 0 \neq * \in \mathbb{C} \quad (7)
$$

Example-Quasihomogeneous fibrations

- \bullet Take $f = 0$ with f to be quasi-homogeneous in weighted degrees $(w_1, ..., w_n)$, with the unique Milnor fiber $X_{\infty} = f^{-1}(1).$
- MHS on $H^n(X_\infty,\mathbb{C})$: the Hodge filtration given by the degree of forms in the weighted projective space, and the weight filtration as

$$
0=W_{n-1}\subset W_n\subset W_{n+1}=H^n(X_\infty,\mathbb{C})
$$

Assume $\{\phi_1,...,\phi_\mu\}$ be a basis for $\Omega_f,$ we consider the corresponding Leray residues

$$
\eta_i = c_i \cdot Res_{f=1}(\frac{\phi_i}{(f-1)^{l(i)}})
$$

イロト イ押 トイヨ トイヨ トーヨー

 QQ

Here $c_i \in \mathbb{C}$ is a normalizing constant.

• Then,

$$
S(\eta_i, \eta_j) = * \times res_{f,0}(\phi_i, \tilde{C}\phi_j)
$$

• The isomorphism Φ is as follows,

$$
\Phi^{-1}: [z^i dz] \longmapsto c_i.[\mathit{res}_{f=1}(z^i dz/(f-1)^{[l(i)]})]
$$

with $c_i \in \mathbb{C}$, and z^i in the basis mentioned above.

イロメ イ押 メイヨメ イヨメ

÷.

 $2Q$

For instance if $f = x^3 + y^4$, then as basis for Jacobi ring, we choose

$$
z^i: 1, y, x, y^2, xy, xy^2
$$

• The basis correspond to top forms with degrees

$$
I(i) = \sum \alpha_i(\omega_i + 1).
$$

l(*i*) : 7/12, 10/12, 11/12, 13/12, 14/12, 17/12

• The Hodge filtration is defined via

$$
F^p:=\mathbb{C}.\{\omega; p-1 < l(\omega) < p\}.
$$

イロメ イ押 メイヨメ イヨメ

÷. QQ

• The above basis projects onto a basis

$$
\bigoplus_{-1
$$

 $h^{1,0} = h^{0,1} = 3$. Therefore, because Φ is an isomorphism.

$$
<1.\omega, y.\omega, x.\omega> = \Omega_f^{0,1}, \qquad \langle y^2 \omega, xy \omega, xy^2 \omega> = \Omega_f^{1,0}
$$

where $\omega = dx \wedge dy$, and the Hodge structure is pure, because $Gr_2^W H^n(X_\infty) = 0$.

> \overline{y} $\langle 1.$ *dx* \wedge *dy*, *y*.*dx* \wedge *dy* \overline{y} $\langle y \rangle$ $\langle y \rangle$ $\langle x \rangle$ $<$ c_1 *.xy*²*.dx* ∧ *dy*, *xy.dx* ∧ *dy*, *y*²*.dx* ∧ *dy* >

> > **≮ロ ▶ ⊀ 御 ▶ ⊀ ヨ ▶ ⊀ ヨ ▶**

重。 QQ

Graded polarizations on primitive subspaces-Consequences

Theorem

Assume f : C *ⁿ*+¹ → C *is a holomorphic isolated singularity germ. The modified Grothendieck residue provides a polarization for the extended fiber* Ω*^f , via the aforementioned isomorphism* Φ*. Moreover, there exists a unique set of forms* {*Res* ^d*^k* } *polarizing the primitive subspaces of Gr^W ^k* Ω*^f providing a graded polarization for* Ω*^f .*

$$
\widehat{Hes}_k = \widehat{Res} \circ (id \otimes f^k) : PGr_k^W \Omega_f \otimes_{\mathbb{C}} PGr_k^W \Omega_f \to \mathbb{C}, \quad (8)
$$

 290

Corollary

The polarization S of Hⁿ (*X*∞) *will always define a polarization of* Ω*^f , via the isomorphism* Φ*. In other words S is also a polarization in the extension, i.e. of* Ω*^f .*

Assume f : C *ⁿ*+¹ → C *is a holomorphic hypersurface germ with isolated singularity at* 0 ∈ C *n*+1 *. The variation of mixed Hodge structure is polarized. This VMHS can be extended to the puncture with the extended fiber isomorphic to* Ω*^f , and it is polarized. The Hodge filtration on the new fiber* Ω*^f correspond to an opposite Hodge filtration on Hⁿ* (*X*∞, C)*.*

イロト イ押 トイヨ トイヨ トー

つくへ

Riemann-Hodge bilinear relations for Grothendieck pairing on Ω*f*- new result

Corollary: Assume the holomorphic isolated singularity Milnor fibration $f: X \to T$ can be embedded in a projective fibration of degree *d* with *d* >> 0. Suppose f is the corresponding map to N on $H^n(X_\infty)$, via the isomorphism Φ. Define

$$
P_I = PGr_I^W := \text{ker}(\mathfrak{f}^{I+1} : Gr_I^W \Omega_f \to Gr_{-I-2}^W \Omega_f)
$$

Going to *W*-graded pieces;

$$
\widehat{\text{Res}}_I: \text{PGr}_I^W \Omega_f \otimes_{\mathbb{C}} \text{PGr}_I^W \Omega_f \to \mathbb{C}
$$
 (9)

イロメ イ押 メイヨメ イヨメ

 QQ

is non-degenerate and according to Lefschetz decomposition

$$
Gr^W_l\Omega_f=\bigoplus_r\mathfrak{f}^rP_{l-2r}
$$

we obtain a set of non-degenerate bilinear forms,

$$
\widehat{Hes}_I = \widehat{Hes} \circ (id \otimes f') : PGr_I^W \Omega_f \otimes_{\mathbb{C}} PGr_I^W \Omega_f \to \mathbb{C}, \qquad (10)
$$

$$
\widehat{Res}_I = res_{f,0} (id \otimes \widetilde{C}. f') \qquad (11)
$$

イロト イ押 トイヨ トイヨ トーヨー

 200

such that the corresponding hermitian form associated to these bilinear forms is positive definite. In other words,

- $Res_l(x, y) = 0$, $x \in P_r$, $y \in P_s$, $r \neq s$
- If $x \neq 0$ in P_l ,

$$
\textit{Const}\times \textit{res}_{f,0}~(\textit{C}_1x,\tilde{\textit{C}}.\ \mathfrak{f}^{\textit{I}}.\bar{x})>0
$$

where C_l is the corresponding Weil operator.

Real splitting of a MHS

MHS
$$
(H, F, W)
$$
 and $\mathfrak{g} = \mathfrak{gl}(H) = \text{End}_{\mathbb{C}}(H)$.

$$
\mathfrak{g}^{-1,-1} = \{X; X(P^{q}, G) \subset \bigoplus_{r \leq p-1, s \leq q-1} I^{r,s}\}.
$$

Theorem

(P. Deligne) Given a mixed Hodge structure (*W*, *F*)*, there exists* a unique $\delta \in \mathfrak{g}_{\mathbb{R}}^{-1,-1}(\mathsf{W},\mathsf{F})$ *s.t.* $(\mathsf{W},\mathsf{e}^{-\mathsf{i}\delta}.\mathsf{F})$ is a mixed Hodge *structure which splits over* R*.*

Theorem

The bigrading $J_1^{p,q}$ *defined by* $J_1^{p,q} := e^{-i\delta} J^{p,q}$ *is split over* R. *The operator* $\tilde{C}_1 = Ad(e^{-i.\delta}).\tilde{C}: \Omega_f \to \Omega_f$ *defines a real splitting MHS on* Ω*^f .*

イロト イ団ト イヨト イヨト

÷.

 2990

• This says if
$$
\Omega_{f,1} = \bigoplus_{p < q} J_1^{p,q}
$$
 then
\n
$$
\Omega_f = \Omega_{f,1} \oplus \overline{\Omega_{f,1}} \oplus \bigoplus_{p} J_1^{p,p}, \qquad \overline{J_1^{p,p}} = J_1^{p,p}
$$

• The relation (7) is valid when the operator \tilde{C} is replaced with \tilde{C}_1 ;

 $\mathcal{S}(\Phi^{-1}(\omega),\Phi^{-1}(\eta))= \ast \times \ \text{res}_{f,0}(\omega,\tilde{C})$ $0\neq *\in\mathbb{C}$

and this equality is defined over $\mathbb R$.

イロメ イ押 メイヨメ イヨメ

重。 $2Q$

*The signature associated to the modified Grothendieck pairing Res*_{*f*,0} *associated to an isolated hypersurface singularity germ f; is equal to the signature of the polarization form associated to the MHS of the vanishing cohomology given by*

$$
\sigma = \sum_{p+q=n+2} (-1)^q h_1^{pq} + 2 \sum_{p+q \ge n+3} (-1)^q h_1^{pq} + \sum (-1)^q h_{\neq 1}^{pq}
$$
\n(12)

 w *here h*₁ = dim $H^n(X_\infty)_1$, $h_{\neq 1}$ = dim $H^n(X_\infty)_{\neq 1}$ are the *corresponding Hodge numbers. This signature is* 0 *when the fibers have odd dimensions.*

イロメ イ押 メイヨメ イヨメ

つへへ

(P. Deligne) Let $V \rightarrow \triangle^{*n}$ *be a variation of pure polarized Hodge structure of weight k, for which the associated limiting mixed Hodge structure is Hodge-Tate. Then the Hodge filtration* F *pairs with the shifted monodromy weight filtration* W[−*k*]*, of* V*, to define a Hodge-Tate variation over a neighborhood of* 0 *in* 4∗*ⁿ .*

The form *Res* polarizes the complex variation of HS studied by G. Pearlstein-Fernandez in case of isolated hypersurface singularities.

4 ロ) (何) (日) (日)

つくへ

(G. Pearlstein-J. Fernandez) Let V *be a variation of mixed Hodge structure, and*

$$
\mathcal{V}=\bigoplus_{p,q} I^{p,q}
$$

denotes the C∞*-decomposition of* V *to the sum of C*∞*-subbundles, defined by point-wise application of Deligne theorem. Then the Hodge filtration* F *of* V *pairs with the increasing filtration*

$$
\bar{U}_q = \sum_k \bar{\mathcal{F}}^{k-q} \cap \mathcal{W}_k \tag{13}
$$

イロメ イ押 メイヨメ イヨメ

 290

ă.

to define an un-polarized C*VHS.*

Let V *be an admissible variation of polarized mixed Hodge structure associated to a holomorphic germ of an isolated hyper-surface singularity. Set*

$$
U' = \overline{F_{\infty}^{\vee}} * W. \tag{14}
$$

∢ ロ ▶ . ∢ 何 ▶ . ∢ ヨ ▶

つくい

Then U' extends to a filtration U' of V *by flat sub-bundles, which pairs with the limit Hodge filtration* F *of* V*, to define a polarized* C*-variation of Hodge structure, on a neighborhood of the origin.*

Corollary

The mixed Hodge structure on the extended fiber Ω*^f , can be identified with*

$$
\Phi(U'=\overline{F_\infty^\vee}*W)
$$

- Suppose $f: X \rightarrow T$ a degenerate family of of curves having isolated singularity.
- Suppose that

$$
J^1(H^1_s)=H^1_{s,\mathbb{Z}}\setminus H^1_{s,\mathbb{C}}/\digamma^0H^1_{s,\mathbb{C}}
$$

$$
J(\mathcal{H})=\bigcup_{s\in S^*}J^1(H_s)
$$

here we have assumed the Hodge structures have weight -1 , and dim(S) = 1.

イロト イ押 トイヨ トイヨト

÷. QQ

Extensions of Hodge structure-new result

On *S* [∗] we have an extension of integral local classes

 $0 \to \mathcal{H}_s \to \mathcal{J}_s \to \mathbb{Z}_s \to 0$

• On the Gauss-Manin systems we get

$$
0\to M\to N\to \mathbb{Q}_{S^*}^H[n]\to 0
$$

• The extended Jacobian simply is

$$
X_0=J^1(\Omega_f)=\Omega_{f,\mathbb{Z}}\setminus \Omega_f/F^0\Omega_f
$$

Theorem

The extension of a degenerate 1-parameter holomorphic family of Θ*-divisors polarizing the Jacobian of curves in a projective fibration, is a* Θ*-divisor polarizing the extended Jacobian.*

K ロ ト K 個 ト K 君 ト K 君 ト (

 \equiv

 290

• At the level of local systems,

$$
\kappa: \begin{array}{ccc}\n\kappa: \begin{array}{ccc}\n\mathcal{H} & \otimes & \mathcal{H} \rightarrow & \mathbb{C} \\
\downarrow & & \downarrow \\
\kappa_J: \begin{array}{ccc}\nJ & \otimes & J \rightarrow & \mathbb{C} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\times: & \mathbb{Q} & \otimes & \mathbb{Q} \rightarrow & \mathbb{C}\n\end{array}\n\end{array} \tag{15}
$$

At the level of Gauss-Manin systems,

$$
K: \begin{array}{cccc} G & \otimes & G \end{array} \rightarrow \begin{array}{cccc} \mathbb{C}[t, t^{-1}] \\ \downarrow & \downarrow & \\ K_J: & N & \otimes & N \end{array} \rightarrow \begin{array}{cccc} \mathbb{C}[t, t^{-1}] \\ \downarrow & \downarrow & \\ \downarrow & \downarrow & \\ \times: & \mathbb{Q}_S^H & \otimes & \mathbb{Q}_S^H \end{array} \rightarrow \begin{array}{cccc} \mathbb{C}[t, t^{-1}] \end{array} \tag{16}
$$

 \equiv 990

メロトメ 御 トメ 君 トメ 君 トー

- • A hyper-surface ring is a ring of the form $R := P/(f)$, where *P* is an arbitrary ring and *f* a non-zero divisor.
- Localizing we may assume *P* is a local ring of dimension $n + 1$.
- $P = \mathbb{C}\{x_0, ..., x_n\}$ and *f* a holomorphic germ, or $P = \mathbb{C}[x_0, ..., x_n]$ and then *f* would be a polynomial.
- We assume $0 \in \mathbb{C}^{n+1}$ is the only singularity of f.
- **•** the *R*-modules have a minimal resolution that is eventually 2-periodic.

イロメ 不優 トメ ヨ メ ス ヨ メー

 QQ

Hochster Theta Invariant

Definition

(Hochster Theta pairing) The theta pairing of two *R*-modules *M* and *N* over a hyper-surface ring *R*/(*f*) is

$$
\Theta(M,N) := I(\text{Tor}_{2k}^R(M,N)) - I(\text{Tor}_{2k+1}^R(M,N)), \qquad k >> 0
$$

Hochster theta pairing is additive on short exact sequences,

Theorem

(Moore-Piepmeyer-Spiroff-Walker) If f is homogeneous with isolated singularity at 0*, and n odd the restriction of the pairing* (−1) (*n*+1)/2Θ *to*

$$
im(ch^{\frac{n-1}{2}}): K(X)_{\mathbb{Q}}/\alpha \to \frac{H^{(n-1)/2}(X,\mathbb{C})}{\mathbb{C}.\gamma^{\frac{n-1}{2}}}
$$

 290

is positive definite. i.e. $(-1)^{(n+1)/2} \Theta(v, v) \geq 0$ with equality *holding if and [o](#page-0-0)[n](#page-42-0)ly if* $v = 0$, *In this way* θ *is [se](#page-40-0)[m](#page-42-0)[i-](#page-40-0)[de](#page-41-0)[fini](#page-0-0)[te](#page-42-0) on* Short author

Positivity of Hochster theta pairing/C-new result

Theorem

Let S be an isolated hypersurface singularity of dimension n over C*. If n is odd, then* (−1) (*n*+1)/2Θ *is positive semi-definite* \mathcal{O} *On* $G(R)_{\mathbb{Q}}$ *, i.e* $(-1)^{(n+1)/2} \Theta(M,M) \geq 0$ *.*

イロト イ押 トイヨ トイヨト

÷. QQ