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My major interests lie in Hodge theory, and its related areas. Hodge theory and
its arithmetic applications are quite interesting for me both over the field of complex
numbers C and in the l-adic (p-adic) case. Many parts of Hodge theory such as
intractions with K-theory, representation theory, modular forms, Calabi-Yau varieties
and mirror symmetry are of my interest.

Ph.D studies

One of the important subject of study in Hodge theory and D-modules is the
behaviour of the underlying variation of (mixed) Hodge structures in the extensions.
We will consider the VMHS associated to isolated hypersurface singularities in the
affine space Cn+1. The mixed Hodge structure would be the Steenbrink limit mixed
Hodge structure. Classically there are two equivalent ways to define this MHS.
One method which is actually due to J. Steenbrink himself is by applying a spectral
sequence argument to the resolution of the singularity in projective fibration followed
with Invariant cycle theorem. Another method which is equivalent to the first is to
define it by the structure of lattices in the Gauss-Manin system associated to VMHS
on the punctured disc.

Theorem 0.1. [R1] Assume f : (Cn+1, 0) → (C, 0), is a holomorphic germ with
isolated singularity at 0, with f : X → T the associated Milnor fibration. Embed
the Milnor fibration in a projective fibration fY : Y → T of degree d (with d large
enough), by inserting possibly a singular fiber over 0. Then, the isomorphism Φ
makes the following diagram commutative up to a complex constant;

(1)

R̂esf,0 : Ωf × Ωf −−−→ Cy(Φ−1,Φ−1)

y×∗
S : Hn(X∞)×Hn(X∞) −−−→ C

∗ 6= 0

where,

R̂esf,0 = resf,0 (•, C̃ •)

Key words and phrases. Mixed Hodge structure, Opposite filtration, p-adic period map, Mo-
tivic fundamental group, Algebraic cycles, Modularity of Calabi-Yau manifolds, Bloch-Beilinson
filtration, l-adic local systems.
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and C̃ is defined relative to the Deligne decomposition of Ωf , via the isomorphism
Φ. If Jp,q = Φ−1Ip,q is the corresponding subspace of Ωf , then

(2) Ωf =
⊕
p,q

Jp,q C̃|Jp,q = (−1)p(d−1)/d

In other words;

(3) S(Φ−1(ω),Φ−1(η)) = ∗ × resf,0(ω, C̃.η), 0 6= ∗ ∈ C

Corollary 0.2. (Riemann-Hodge bilinear relations for Ωf) Assume the holomorphic
isolated singularity Milnor fibration f : X → T can be embedded in a projective
fibration of degree d with d >> 0. Suppose f is the corresponding map to N on
Hn(X∞), via the isomorphism Φ. Define

Pl = PGrWl := ker(fl+1 : GrWl Ωf → GrW−l−2Ωf )

Going to W -graded pieces;

(4) R̂esl : GrWl Ωf ⊗C Gr
W
l Ωf → C

is non-degenerate and according to Lefschetz decomposition

Ωf =
⊕
r

frPl−2r

we will obtain a set of non-degenerate bilinear forms,

(5) R̂esl ◦ (id⊗ fl) : PGrWl Ωf ⊗C PGr
W
l Ωf → C,

(6) R̂esl = resf,0 (id⊗ C̃. fl)
where C̃ is as in 8.6.1, such that the corresponding hermitian form associated to
these bilinear forms is positive definite. In other words,

• R̂esl(x, y) = 0, x ∈ Pr, y ∈ Ps, r 6= s
• If x 6= 0 in Pl,

resf,0 (Clx, C̃. f
l.x̄) > 0

where Cl is the corresponding Weil operator, cf. 2.2.8, and the conjugation
is as in 8.10.

Here X∞ is the canonical Milnor fiber, and Ωf is the module of relative differentials
associated to f . The above theorem gives a formulation of Riemann-Hodge bilinear
relations for Grothendieck residue.

In [R2] I have provided several proofs for the above conjecture using different
techniques. In [R5] we have tried to extend the above result for any admissible
variation of mixed Hodge structure using D-modules.
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Theorem 0.3. [R5] AssumeM = (M,F,W,K) be a polarized MHM with underlying
admissible variation of mixed Hodge structure K, defined on a Zariski dense open
subset U of an algebraic manifold X. Assume X \ U = D is a normal crossing
divisor defined by a holomorphic germ f . Then the extended MHM is polarized and
in a neighborhood of D, the polarization of the extension of M is given either by a
sign modification of the Grothendieck residue associated to the holomorphic germ f
defining the normal crossing divisor or partial residues of a moderate extension of
the former polarization. Moreover, the Hodge filtration on the extended fibers are
opposite to the limit Hodge filtration on K. These Hodge filtrations pair together to
constitute a polarized complex variation of HS.

The induced bilinear forms on the corresponding family of Jacobians will also
behave similarly.

Theorem 0.4. [R5] The extension of the Poincare product on the canonical fibers of
the Neron model for a degenerate projective family having an admissible variation of
Hodge structure is given either by the sign modification of the residue pairing or the
partial residues as in Theorem 0.2. This process describes the extended Jacobian as
the Jacobian of the Opposite Hodge filtration on the module of relative differentials
or the Jacobi ring, and in this way provides a non-natural isomorphism between the
canonical and extended Jacobians.

The asymptotic behavior of Hodge structure in a degenerate family of varieties
has its origin in the work of W. Schmid proving the two famous nilpotent orbit and
sl2-orbit theorems. It provides a significant approach in the study of period map
which is one of the attractive and non-separable part of research in Hodge theory. I
believe the Lie algebra analysis provides a suitable background for research in this
area and opens inter-actions with other areas such as Shimura varieties.

In [R4] I have tried to extend the Higher residue pairing of Kyoji Saito to crystalline
site. There exists a K = Frac(W (k))-sesquilinear form

WKf ( , ) : W Ĥf
(0) ×W Ĥ

f
(0) → W ÔS,0[[t]]

The period map construction between crystalline and etale cohomology with co-
efficient in Cp provides an isomorphism;

RΓalgdR(X)⊗K Cp → RΓet(X,Qp)⊗Qp Cp

where K is the field of fractions of W (k), and K̄ is a fixed algebraic closure. The
form of K. Saito is one of the beatiful constructions both in algebraic and differential
geometry, [S1].

1. research plan

As a purspective I prefer to do research in Hodge theory by the following motiva-
tions
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1.1. Hodge theory and representation theory of Lie algebras. Many stan-
dard methods of Lie algebras and their representations can be applied to the theory
of polarized variation of mixed Hodge structures, their asymptotic behavior and
naturally to other parts of Hodge theory. Lie algebra analysis provides a deeper un-
derstanding of the limit Hodge structures and the boundary points of period domains
in the compactifications.

Let L(W ) be the set of all gradings of W the weight filtration for a Hodge structure
(H,F,W ). There is a natural injection

L(W )→ W gl
0

which assigns to any grading H = ⊕Hl the semisimple endomorphism T ∈ gl(H)

with integral eigenvalues whose l-eigenspace is Hl. W
gl
0 is a Lie subalgebra of gl(H)

containing W gl
−1 as a nilpotent ideal. The C-algebraic group expW gl

−1 acts simply
transitively on L(W ), by

(exp(X), T )→ ead X(T ) = T + [X,T ] + ... ∈ T +W gl
−1

This implies there exists a unique Z ∈ g−1,−1 such that

Jp,q = eZJp,q, Z̄ = −Z

Thus we may write Z = −2iδ. One defines another Hodge filtration

F̃ := ei.δ.F

Since δ ∈ g−1,−1
R ⊂ W gl

−2, this element leaves W invariant and acts trivially on the

quotient GrWl . Therefore both F, F̃ induce the same filtrations on GrWl H. Now it
is clear that

e−i.δ.Jp,q = ei.δ.Jp,q

gives a real splitting for H.

Theorem 1.1. ([CKS] sec. 2) Given a mixed Hodge structure (W,F ), there exists
a unique δ ∈ g−1,−1

R (W,F ) s.t. (W, e−iδ.F ) is a mixed Hodge structure which splits
over R. Every morphism (W,F ) commutes with δ, thus, the morphisms of (W,F )
are precisely those morphisms of (W, ei.δ.F ) which commute with this element.

Perhaps one of the two most important observations in asymptotic Hodge theory
is the nilpotent orbit and sl2 orbit theorems,

Theorem 1.2. (Nilpotent Orbit Theorem - W. Schmid) ([SCH] Theorem 4.9 and
4.12)
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Let Φ : (4∗)r × 4n−r → D be a period map, and let N1, ..., Nr be monodromy
logarithms. Let

(7) ψ : (4∗)r ×4n−r → Ď

be the un-twisted period map; then

• The map ψ extends holomorphically to (4)r ×4n−r.
• For each w ∈ 4n−r, the map θ : Cr ×4n−r → Ď given by

θ(z, w) = exp(
∑
zjNj).ψ(0, w)

is a nilpotent orbit. Moreover, for, w ∈ C a compact subset, there always
exists α > 0 such that θ(z, w) ∈ D for Im(zj) > α.
• For any G-invariant distance on D, there exists positive constants β,K such

that for Im(zj) > α,

(8) d(Φ(z, w), θ(z, w)) ≤ K
∑
j

(Im(zj))
βe−2πIm(zj).

Moreover, the constants α, β,K depend only on the choice of the metric d
and the weight and Hodge numbers used to define D. They may be chosen
uniformly for w in a compact subset.

Nilpotent orbit theorem is the basic tool to study the limit mixed Hodge structure.
Limit Hodge filtrations can be considered as a naive boundary point of period do-
mains. Its proof concerns the study of some estimates on the invariant metric on Ď
obtained by polarization.

Theorem 1.3. (sl2-orbit Theorem - W. Schmid) ([SCH] Theorem 5.3) Let z →
exp(z.N).F be a nilpotent orbit. Then there exists,

• A filtration F√−1 := exp(iN).F0 lies in D.
• A homomorphism ρ : sl(2,C)→ g, Hodge at F√−1.
• N = ρ(X−)
• A real analytic GR-valued function g(y), such that;
• For y >> 0, exp(iy.N).F = g(y) exp(iyN).F0, where F0 = exp(−iN).F√−1.
• Both g(y) and g(y)−1 have convergent power series expansion at y = ∞ of

the form 1 +
∑
Any

−n with

(9) An ∈ Wn−1g ∩ ker(adN)n+1

This theorem first discovered by W. Schmid and later was developed by E. Cattani
and A. Kaplan and also G. Pearlstein in different directions. sl2-orbit theorem should
be understood as a matter of interaction of representation theory with Hodge struc-
tures. In other words it distinguishes from a nilpotent orbit another sub-orbit which
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is split over R. They both provide a rich back ground in the study of asymptotic
behaviour of Hodge structures.

Let X be an irreducible Hermitian symmetric domain, and G the corresponding
simple R-algebraic group, T ⊂ GC a maximal algebraic torus. The restriction to T
of the adjoint representation

T → GC → Gl(glC)

breaks into 1-dimensional eigenspaces on which T acts through characters:

gC = t⊕ (
⊕
α∈R

gα)

Properties of adjoint representation for the automorphism group of the polarization
form and root system structure of its lie algebra allows to describe these structures
and classify their Mumford-Tate groups and Mumford-Tate domains systematically.

A significant presentation of this can be that of CM Hodge structures, related to
CM abelian varieties and class field theory.

Theorem 1.4. [K] (a) For a simple complex abelian g-fold A, the following are
equivalent:

• The Mumford-Tate group of H1(A) is a torus.
• End(A)Q has maximal rank 2g over Q.
• End(A)Q is a CM field.
• A ∼= Cg/Φ(a) for some CM type (E,Φ) and an idea a ⊂ OE.

(b) Furthuremore, any complex torus of the form above is algebraic.

1.2. Modularity of Calabi-Yau varieties. The Shimura-Taniyama-Weil conjec-
ture on modularity of L-function of Elliptic curves proved by A. Wiles, has been
generalized over Calabi-Yau varieties in higher dimensions.

Theorem 1.5. (Shimura-Tanyama-Weil Conjecture - A. Wiles) [W] Suppose E is
a semi-stable Elliptic curve defined over Q. Then E is modular.

A Calabi-Yau manifold is a compact complex manifold with trivial canonical bun-
dle. A one dimensional Calabi-Yau manifold is an Elliptic curve. A simply connected
Calabi-Yau manifold is a K3 surface.

Conjecture 1.6. (Modularity Conjecture) [Y] Any rigid Calabi-Yau 3-fold X over
Q is modular in the sense that, up to finite Euler factors,

L(H3
et(X̄,Q), s) = L(f, s), f ∈ S4(Γ0(N))

The question arises to which higher dimensional Calabi-Yau varieties are modular.
For K3 surfaces the question has been answered positively by Shioda and Inose.
This conjecture has been answered in some special cases in low dimension 3. Special
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properties of Calabi-Yau manifolds and their variations has made this line of research
involving many beautiful number theoretic motivations. The question mainly says
that the L-function of a Calabi-Yau variety defined over Q is the L-function of a
modular form.

Studying Calabi-Yau variations in its own way provides a good example of HS.
Their variation satisfies special symmetries, that makes them interesting for math-
ematicians in different areas such as Mirror symmetry, Hodge theory and Number
theory, [N].

1.3. Algebraic cycles and higher Chow groups and motives. Hodge theory
initiates with theory of algebraic cycles, Chow groups, Intermediate Jacobians, Abel-
Jacobi maps and regulators which connect them together. The cycle class and Abel-
Jacobi maps are,

clk : CHk(X)→ H2k(X,Z(k))

Φk : CHk
hom(X)→ Jk(X) :=

H2k−1(X,C)

F 0H2k−1(X,C) +H2k−1(X,Z)

Conjecture 1.7. [L] For smooth and proper X defined over Q̄, the complex Abel-
Jacobi map

Φk : CHk
hom(X/Q̄)Q → Jk(X(C))Q

is injective.

Since Φk is in general not injective, one anticipate that the kernel of Φk can be
explained by kernels of successive higher regulator maps, defining a filtration

CHk(X/C)Q = F 0 ⊃ F 1 ⊃ ... ⊃ F k ⊃ 0

where F 1 = ker clk,Q, F
2 = ker Φk,Q. This is fortified by Beilinson conjectural

formula

GrlFCH
k(X)Q = ExtMM(1, h2k−l(X)(k))

where MM is the conjectural category of mixed motives, [L].

Conjecture 1.8. [L] For smooth complex projective variety X, that can be defined
over a number field, the regulator map

r : CHj(X, 1)Q → Γ(H2j−1(X,Q(j)))

is surjective, where Γ(−) = hom(1,−).
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All of these concepts can also be studied in a family of varieties and the concept
of a normal function corresponds to sections for the bundle of Jacobians associated
to a VHS.

ν : S → OS
(∐
t∈S

J(H2r−m−1(Xt,Q(r)))
)

∇J : Γ(J )→ Γ(ΩS ⊗R2r−m−1ρ∗Ω
•<r−1
X/S )

and ν is called horizontal if ∇J(ν) = 0, [L].
In case of degenerate families their limit or extension behavior, their singularties

and infinitesimal properties becomes interesting. Different techniques in asymptotic
of HS can be applied to obtain information on the limit.

1.4. Motivic fundamental group. The concept of motives concerns the compar-
ison theorems between de Rham, Betti or l-adic cohomologies. The comparison
theorem concerns an isomorphism between de Rham and Betti cohomologies which
is given by integration along homology cycles, for dR-B and concerns an isomorphism
between crystalline and etale cohomology after a base change by Fontaine ring, for
dR-et. . The reduction of the latter says crystalline and etale cohomologies are
equivalent in some sense.

The role of the projective line minus three points X = P \ {0, 1,∞} in relation to
Galois theory can be traced back to the theorem,

Theorem 1.9. (Belyi-1979) Every smooth projective algebraic curve defined over Q̄
can be realized as a ramified cover of P1.

Belyi deduced that the absolute Galois group of Q acts faithfully on the profinite
completion of the fundamental group of X, i.e. the map

Gal(Q̄/Q)→ Aut(π̂1(X(C, b))

Theorem 1.10. [B] There is an ind-object

O(πmot1 (X,
−→
10 ,−

−→
11)) ∈ Ind(MT (Z))

whose Betti and de Rham realizations are the affine rings OπB1 (X,
−→
10 ,−

−→
11)) and

O(πdR1 (X)), respectively.

there is an exact sequence

0→ I → Q[πtop1 (X(C), x))]→ Q→ 0

where I is the augmentation ideal. Then one has

O(πB1 (X, x)) = lim
N→∞

(Q[πtop1 (X, x)]/IN+1)∨
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when X = P1 \ {0, 1,∞} we have

OdR1 (X)) ∼=
⊕
n≥0

H1
dR(X)⊗n

This notion is closely related to the former construction and K-theory of number
fields with their decomposition into eigen-spaces of Adams operations. It involves
many open questions from Grothendieck till now, as C. Soule, S. Bloch, etc... , [KP].

1.5. Galois representations and l-adic local systems. The classical finiteness
theorem for abelian varieties generalizing that of G. Faltings has been discussed in
the l-adic case by P. Deligne.

Theorem 1.11. [CS] Let S be a finite set of places of K. There are only finitely
many isogeny classes of abelian varieties over K, of a given dimension which have
good reductions outside S.

This theorem mainly states that in an abelian scheme fiberation there exists finitely
many isomorphism classes of polarized abelian varieties. In other words, there could
be finitely many isomorphism classes of monodromy representations for (S, s)/C of
rank ≤ r and weight n. The theorem has already discussed by P. Griffiths concern-
ing Z-polarized variation of Hodge structure over S. In addition to beauty of this
theorem and its proof, its generalization for the schemes over finite fields opens more
interesting ideas of ramification theory using Swan index of l-adic representations of
etale fundamental group and the Deligne-Weil group.

Theorem 1.12. [D], [HM] There are only finitely many irreducible lisse Q̄l-sheaves
of given rank up to twist on a normal connected scheme X of finite type over a finite
field of char > 0.

Let Rr(X) be the set of lisse Q̄l-Weil sheaves on X of dimension r and up to semi-
simplification. For X connected such a sheaf is nothing but an r-dimensional l-adic
representation of W (X). A weaker version of the theorem then says the number of
classes of irreducible sheaves in Rr(X) with bounded wild ramification is finite up
to twist.

Theorem 1.13. (P. Deligne) Assume X is smooth separated /Fq be connected, and
X̄ be a normal compactification of X with D = X̄ \X a normal crossing divisor. Let
Rr(X,D) be the set of representations whose Swan conductor along any smooth curve
mapping to X̄ is bounded by D. Then the set of irreducible sheaves V ∈ Rr(X,D)
is finite up to twist by elements of R1(Fq).

The proof concerns a parametrization of the Frobenius attached to each point of
the variety. Studying the irregularity of l-adic representations using the Swan index
is another deep construction in the l-adic Hodge theory which also uses local class
field theory tools. I believe that this theorem with its different generalizations is one
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of the elegant constructions in mathematics both in statement and proof. I think
it has the value of working out more and the capacity to generate more knowledge,
[HM].
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