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Analysis of fringe patterns with partial–field and/or closed fringes is still a

challenging problem that requires the development of robust methods. This

paper presents a method for fringe pattern analysis with those characteristics.

The method is initially introduced as a phase refinement process for computed

coarse phases, as those obtained from partial–field patterns with a full-field

method for open fringes analysis. Based on the phase refinement method,

it is proposed a propagative scheme for phase retrieval from closed–fringe

interferograms. The algorithm performance is evaluated in real data with

no homogeneous illumination components and shows a superior performance

than state of the art methods.

1. Introduction

In interferogram analysis, we often face the problem of computing phase from interferograms

with partial–field fringes, i.e. inteferograms where the fringe pattern is visible in a subregion

of the image. The interferogram analysis with full–field methods1,2 introduces artifacts at the

border of the interferogram region. One common solution to this problem is to use phase step-

ping techniques.3 However, such methods are not applicable in fast transients phenomena.

Other solution is based on inverse problem theory. In his framework, the robust quadrature

filter (RQF) method 4 proposed a regularized solution that, effectively, recovers the wrapped

phase in irregular domains, with an additional computational cost required for minimizing

the cost function. Other challenging problem in the analysis of fringe patterns is the process-

ing of closed fringe patterns. This problem has captured the attention of researchers in fringe

analysis for the last years, see Refs. [5]–[14]. Although there has been important advances,

the performance of the reported methods is seriously reduced if the processed fringe pattern

has a wide band, it is not normalized and it is corrupted by noise.

In this paper, we present two algorithm for dealing with the problems of:

1

Mariano Rivera
(Submitted to JOSA A, 2004)



1. Phase refinement. Our method uses the fringe pattern as data and a phase computed

with an open–fringes full-field analysis method (as ones in Refs. [1,2]) as initial guess.

The artifacts, in initial phase, are systematically reduced by an iterative algorithm.

2. Phase recovering from closed–fringe interferograms. This new method for closed–fringes

analysis is the most important contribution of the paper and it is based on the pre-

viously proposed refinement method (last point). As previous reported methods, our

method uses a propagative scheme. The knowledge propagation scheme from a seed

site to the whole interferogram was reported in5 for the first time: they propagated the

sign of absolutes frequency. Since then, this is the underlying idea in closed fringe anal-

ysis methods: propagation of frequency signs or entire phase.6,8, 9, 12,14 In our method,

a quality map leads the propagation path. The needed of a quality map was noted by

Villa et al.8 Afterward, Servin et al. used a binarization of the fringe pattern as qual-

ity map in the fringe follower method.9 Unfortunately, the performance of the fringe

quantization is degraded by noise and spatial variations in background/contrast illumi-

nation components. Differently to the last mentioned techniques, our quality map does

not constraint the phase propagation to follow fringes and at the same time it avoids

saddle and stationary points—that is well known may induce propagative algorithm to

carry out a wrong phase. Finally, it is important to remark that our method is based

on alternated minimizations of quadratic cost functions, i.e. in alternated solution of

linear systems. As result, we have a numerically stable algorithm.

Now, we introduce our notation. An image is a regular lattice of pixels, the set of such

pixels is denoted by L and the pixel position is denoted by r = [x, y]T . Then a fringe pattern,

g, with or without closed fringes, is modeled by

gr = ar + br cos(fr) + ηr, (1)

for all r ∈ T ⊆ L; where T is the subregion that contains the observed fringe pattern, a is the

background illumination component, b is the fringe contrast, f is the unknown phase and η

represents additive independent noise. In general, the terms a and b are also unknown and

need be estimated. If a and b have limited bandwidth, i.e. they have smooth spatial variations,

then a preprocessing of the fringe pattern can reduce significantly the contribution of a, b

and η in (1).9,14 If such preprocess is successfully achieved, then one obtains a normalized

fringe pattern:

ĝr = b̂r cos fr, (2)

where b̂ is an estimation of b. Afterward, on can use an existing method for demodulating

closed–fringe patterns of the form ĝ, for instance the regularized phase–tracking method

(RPT).9,14 More recently, Legarda et al.12 modified the RPT method for computing b and f ,
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simultaneously. Although our formulation admits the straightforward generalization for the

joint estimation of b and f , in this paper, we focus in the estimation of the phase. We prefer

the form (2), instead of the form ĝr = cos fr, because it avoids the component–wise division

by small values b̂r at those noisy and low contrast sites.

The paper is organized in two part: sections 2 and 3, respectively. In section 2 introduces

the method for refining a initial phase. Section 3 extends the phase refinement methods for

computing phases from closed fringes. Numerical experiments that demonstrate the methods

performance are presented in subsections of the respective parts. Finally, our conclusions are

given in section 4.

2. Robust Phase Refinement Method

2.A. Mathematical Formulation

The phase refinement method assumes that there are available approximations of contrast,

b̂, and phase, ψ, in the domain of interest, R (we assume in this point that R = T , but

in general R ⊆ T ). Such approximations can be computed using standard fringe analysis

methods, for instance, the Discrete Fourier Transform based method1 or the one reported in

Ref.2 Such methods introduce artifacts at the image borders or along phase discontinuities.

So that, in order to compute the true phase, f = ψ + φ, we need to estimate a residual

phase, φ. Now, we suppose that ψ is close enough to f such that the first order Taylor series

approximate very well the model, i.e.

E(φr; ψr)
def
= ĝr − b̂r(cos ψr − φr sin ψr) ≈ 0. (3)

As it is common to have large residuals at the edges, or at noisy regions, we relax the

constraint (3) to be small almost everywhere: Then those pixels with large residuals need be

treated as outliers. Therefore, we propose to compute the residual phase, φ, and an outliers

detector field, ω, as the minimizers of the regularized (robust) half-quadratic cost function

(see Refs.15–20):

U1(φ, ω; ψ) =
∑
r∈R

[ω2
rE

2(φr; ψr) + µ (1− ωr)
2]

+λ
∑

〈q,r,s〉∈R

[ψq + φq − 2 (ψr + φr) + ψs + φs]
2 , (4)

where ωr ∈ [0, 1] is an indicator variable that weights the individual contribution of the

data; λ and µ are positive parameters that control the solution smoothness and the outliers

detection, respectively. We used λ = 0.2 and µ = 0.01 in our experiments. The regularization

term involves cliques of size 3, 〈q, r, s〉, that correspond to horizontal, vertical and diagonals

pixel triads (see figure 1). Such term is, the well known, thin plate model that penalizes

changes in the second derivative of the recovered phase, ψ + φ.
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Given an initial phase ψ, and the residual phase φr = 0, for all r ∈ R, The refined phase

ψ + φ is computed with a two step method. In the first step, the weight, ω, and the residual

phase, φ, are computed by an alternated minimization of (4); i.e., U1 is minimized with

respect to (w.r.t.) ω by keeping φ fixed and then it is minimized w.r.t. φ with ω fixed. The

minimization w.r.t. ω results in the closed formula:

ωr = µ/[µ + E2(φr; ψr)]. (5)

Note that ωr ≈ 1 for those sites where the square error E2(φr; ψr) is small with respect to µ.

On the other hand, ωr ≈ 0 for those pixels where the model does not fit very well the data, so

that the regularization term has more control over the computation of φ. In the second step,

the phase ψ is updated by the computed residual φ, i.e.: ψr = ψr + φr. These two steps are

iterated until convergence, such convergence is guaranteed if the computed residual phase,

φ, is small, so that:

‖ĝ − b̂. ∗ cos ψ‖ ≥ ‖ĝ − b̂. ∗ (cos ψ − φ sin ψ)‖ ≈ ‖ĝ − b̂. ∗ cos(ψ + φ)‖ ≥ 0

is satisfied in each iteration, where .∗ denotes the component-wise product of vectors. Note

that if a residual phase, φ, increases significantly the error at some pixels, then outliers

detection will promotes a smooth reconstruction of the phase at those problematic sites.

The details of the phase refinement procedure are formalized in algorithm 1.

Algorithm 1 Phase Refinement.

To refine a initial phase ψ in a subregion R ⊆ T ,

Given ε > 0 ;

For all the pixels r ∈ R:

while
∥∥∥ĝ − b̂. ∗ cos ψ

∥∥∥ < ε do

φr ← 0;

ω ← arg minω U1(φ, ω; ψ); {use (5)}
φ ← arg minφ U1(φ, ω; ψ); {see Appendix A}
ψr ← ψr + φr;

end while

2.B. Refinement phase experiments

The performance of the phase refinement method is demonstrated by the experiment illus-

trated by figure 2. Panel 2–(a) shows an original fringe pattern of a progressive lens generated

with a Moire deflectometry setup. Panel 2–(b) shows the wrapped phase computed with the

Fourier method.1 The region of interest and the wrapped refined phase are shown in panels

Panel 2–(d) and 2–(c), respectively. Figure 3 shows a detail of the results in figure 2. Note
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that the original wrapped phase, panel 3–(a), is distorted by a border effect; such defect is

corrected in the refined phase, panel 3–(c). It is important to remark that we show wrapped

phases only for visualization purposes: the recovered refined phase is unwrapped.

3. Closed–Fringe Analysis

3.A. Method for closed–fringe analysis

Now, we extend the refinement phase method for analyzing closed–fringe interferograms.

Initially, the seed phase, ψ, is available for a small compact region, R, of the interferogram

(note that R ⊂ T ). Then we define the region S that contains the pixels located in a narrow

band (with width defined by d) around R:

S = {s ∈ T | s /∈ R, r ∈ R, ‖r − s‖ < d}. (6)

We used d = 2 in all the experiments. The initial phase ψ in R can be computed with a

method for opened–fringe patterns in a small region with such characteristics. Once the initial

conditions are established (ψ, φ = 0, R and S), we compute and propagate the phase using

again an iterative strategy of two steps. In the first step, we refine of the phase ψ + φ in R.

Then, we grow R in, at least, one pixel in the second step. The phase refinement is achieved

using the previously presented method [based on (4)]. As it is known, RPT method9,14,12

may produce a wrong phase due to an unsuccessful normalization of the fringe pattern. In

our approach, the grown pixels are chosen such that they minimize the risk of growing a

wrong phase. Our growing phase strategy is detailed below.

Once the step of phase refinement is performed, we proceed to grow the region R. First,

ψ is extrapolated to those pixels in S by minimizing a cost function,

U2(ψ) =
∑

〈q,r,s〉:{q,r,s}∩S 6=∅
(ψq − 2ψr + ψs)

2 , (7)

that promotes an extrapolation with constant slope and keeps fixed the values of ψ in R.

Afterward, the region R is grown by moving some pixels from S (at least one). The selection

of a candidate pixel, r ∈ S to be included in R, is done taking into account: a) the confidence

of the extrapolated phase, b) the number of its neighbor pixels in R and their confidence

and finally c) R is grown preferably along the fringes (i.e. the extrapolated phase is almost

constant). In order to implement such constraints, we compute a “confidence measure”,

ω̂ ∈ [0, 1], by minimizing the cost function:

U3(ω̂) =
∑
r∈S

{[
ω̂2

rE
2(ψr) + µ(1− ω̂r)

2
]
+ λ̂

∑
s∈Nr

brs(ω̂r − ω̂s)
2

}
(8)
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w.r.t. ω̂ by keeping fixed ψ and φ; where Nr = {s | s ∈ R ∪ S, |r − s| < 2} is the set of first

eight neighbor pixels to r, brs ∈ [0, 1] is a weight factor that measures the alignment of the

pixel pair 〈r, s〉 with the local fringe and λ̂ is a positive regularization parameter. The third

term in (8) produces an anisotropic smoothing of ω̂ along the fringes. The weights, brs, are

directly computed from the fringe pattern with:

brs = exp[−(r − s)T Jr(r − s)], (9)

where

J = trace(ττT )I − ττT , (10)

is the local inertia tensor;21 with τ
def
= [ĝxσ, ĝyσ]T , where ĝlσ denotes the l–directional deriva-

tive smoothed with a Gaussian kernel (defined by σ) and I is the identity matrix. Note that

for λ̂ = 0, the minimizer (8) corresponds to (5). Next, we effectively grow the region, R,

where the phase can be computed by including the immediate neighbor pixels with high

confidence. The smoothing of ω̂ and a constrain on the support of grown pixels promote

smooth wavefronts and avoid the propagation to be trapped in local minimum. As saddle

and stationary points may induce the algorithm to produce a wrong phase, we implement a

scanning strategy that leaves such problematic sites for the last, once the surrounding pixels

have been demodulated. This scanning strategy is based on the assumption that the fringe

patterns are locally monochromatic: just one frequency is present in a small region. That

is, the fringe patterns have a well defined local structure: small directional derivatives along

the fringes and large ones across them, except in problematic sites. This growing scheme is

implemented with the updating formula:

Rn+1 = Rn ∪ {r ∈ S | cr · ω̂r > θ, card(Nr ∩Rn) ≥ 2}, (11)

where

cr = (λ1r − λ2r) / (λ1r + λ2r) (12)

is the local coherency that can be understood as a normalization of ‖∇fr‖; λ1 ≥ λ2 are the

eigenvalues of the inertia tensor, J , defined in (10) and the cardinality operator, card(·),
returns the number of elements in a set. Then, a pixel is grown if at least 2 neighboring

pixels are in R and its weighted confidence, cr · ω̂r, pass a threshold, θ; if no pixel pass

the threshold, then the one with largest cr · ω̂r is selected. The growing of R completes an

iteration of wavefront propagation. The iterations continue until the phase is estimated in

the region of interest: R = T .

It is important to note that, in the closed fringe analysis method, the phase refinement

step can be performed in a narrow band close to the border between R and S (we use a

band 3 pixels wide) with a subsequent reduction of the computational time. The details of

the closed fringe method are formalized in algorithm 2.
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Algorithm 2 Closed Fringe Analysis.

To compute the phase in a subregion T ⊆ L with closed fringes,

Set the threshold θ

Define the subregion R ⊂ T .

ψ ← seed phase in R;

Compute J , with (10); {Inertia tensor field}
Compute the eigenvalues field, λ1 ≥ λ2, of J ;

Compute brs and cr, with (9) and (12), respectively;

while R 6= T do

Refine ψ with Algorithm 1;

Compute S with (6); {narrow band around R}
ψ ← arg minψ U2(ψ); {extrapolate ψ in S}
ω ← arg minω U3(ω); {extrapolate ω in S}
R+ ← {r ∈ S | cr · ω̂r > θ, card(Nr ∩R) ≥ 2}
if R+ = ∅ then

R+ ← {arg maxr∈S{cr · wr}};
end if

R ← R ∪R+;

end while
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3.B. Closed–fringe analysis experiments

In order to illustrate the algorithm behavior, we show a sequence of the phase propagation in

figure 4. The synthetic fringe pattern is shown in top–left panel and the final recovered phase

is shown in bottom–right panel. One can observe that: sites without a well–defined orientation

(as the fringe centers) are leaved for the least, the phase propagation is preferably performed

along the fringes and such propagation has a smooth wavefront. These characteristics reduce

the risk of computing a wrong phase.

Figure 5 shows the result of an experiment designed to demonstrates the performance of

the closed fringe analysis method. Panel ??–(a) shows the normalized fringe pattern of a real

ESPI image. The fringe pattern shows the relative deformation of a steel plate when a thermal

stress is applied. For illustration purposes, we show in panel 5–(b) plots of the gray level of

the fringes. These plots corresponds to the row (top) and the column (bottom) that crossing

at the minimum phase (fringe center). Panel 5 –(c) shows the binarization of the fringes. As

one can see, the normalization process is not successfully achieved as is appreciated in the

figure and the fringes are not correctly distinguished. Therefore, a scanning strategy that

follow fringes will compute a wrong phase. However, our method estimates the right phase

in spite of the fact that we set b̂ = 1 in the whole domain. Panel 5–(d) shows the computed

coherency map that defines the local threshold in (11). Panel 5–(e) shows the computed

phase with the proposed method and the rewrapped phase is shown in panel 5–(f).

For comparison purposes, figure 6 presents the rewrapped phase of results computed with:

the RPT method reported in9 [panel 6-(a)] and the RPT variant with the joint estimation of

the phase, f , and the contrast, b.12 The dynamic range of the unwrapped phases are about

3.0 and 15.0 radians for the phases in panels 6-(a) and 6-(b), respectively. In spite of the

improvement in the computed phase with the Legarda et al. method, the contrast term, b,

with frequency bandwidth closed to the fringe pattern mislead the joint estimation of phase

and contrast.

4. Conclusions

First, we presented a phase refinement method that improves phase computed, initially, from

a fringe pattern with incomplete domains. The method is based on the iterative minimization

of a robust half–quadratic cost function with explicit outliers rejection. Such minimization

is achieved by alternately solving a liner system and computing a closed formula.

In second part of the paper, we generalized the phase refinement method in order estimate

the phase from closed fringe patterns. This generalization is based on a successive growth of

the region of phase refinement. The method has shown, in real experiments, to be robust for

analyzing fringes with spatial variable illumination conditions (see experiment of figure 5) .

It is important to remark that both algorithms are based in the minimization of quadratic
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cost functions (with linear residuals) that allows us to use simple, fast and stable mini-

mization algorithms. The outliers detection improves the performance of the methods for

recovering phases from noisy fringe patterns or in the case that the initial seed phase had

regions with large residuals.
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Appendix A. Gauss-Seidel equations for computing the refined phase

The computation of refined phase φ in Algorithm 1 is computed by minimizing (4) w.r.t. φ,

keeping fixed ω. Such quadratic minimization can be achieved with many algorithms. In this

appendix we present the detailed equation of a Gauss-Seidel scheme. The componentwise

update formula is:
φij =

ω2
ij sin ψij[b̂ij cos ψij − gij] + λV (i, j)

ω2
ij b̂ij sin2 ψij + λW (i, j)

,

with the follow definitions:

V (i, j)
def
=

1∑
c=−1

[P1(i− c, j) + P2(i, j − c) + P3(i− c, j − c) + P4(i− c, j + c)],

W (i, j)
def
=

1∑
c=−1

[N2
1 (i− c, j) + N2

2 (i, j − c) + N2
3 (i− c, j − c) + N2

4 (i− c, j + c)];

where

Pm(k, l)
def
= φijN

2
m(k, l)−Qm(k, l)Nm(k, l),

Nm(k, l)
def
= Am(k, l)

∂

∂φij

Qm(φ, k, l);
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and

A1(k, l) =

{
1 if 〈(k − 1, l), (k, l), (k + 1, l)〉 ∈ R

0 otherwise,

A2(k, l) =

{
1 if 〈(k, l − 1), (k, l), (k, l + 1)〉 ∈ R

0 otherwise,

A3(k, l) =

{
1 if 〈(k − 1, l − 1), (k, l), (k + 1, l + 1)〉 ∈ R

0 otherwise,

A4(k, l) =

{
1 if 〈(k − 1, l + 1), (k, l), (k + 1, l − 1)〉 ∈ R

0 otherwise,

Q1(k, l)
def
= ψk−1,l + φk−1,l − 2(ψk,l + φk,l) + ψk+1,l + φk+1,l,

Q2(k, l)
def
= ψk,l−1 + φk,l−1 − 2(ψk,l + φk,l) + ψk,l+1 + φk,l+1,

Q3(k, l)
def
= ψk−1,l−1 + φk−1,l−1 − 2(ψk,l + φk,l) + ψk+1,l+1 + φk+1,l+1,

Q3(k, l)
def
= ψk−1,l+1 + φk−1,l+1 − 2(ψk,l + φk,l) + ψk+1,l−1 + φk+1,l−1.
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List of Figure Captions

Figure 1. Cliques with triads of pixels 〈q, r, s〉.

Figure 2. Phase refinement. (a) Fringe pattern. (b) Approximated phase. (c) Mask. (d)

Computed refined phase. The phases in (b) and (d) are rewrapped for display purposes.

Figure 3. Details of the phase refinement, the illustrated region corresponds to a rectangu-

lar region (80 × 80 pixels) located at the left and button of the panels 2-b, 2-c and 2-d,

respectively. (a) Approximated phase. (b) Mask. (d) Refined phase.

Figure 4. Phase propagation sequence. Top–left panel: synthetic fringe, sequence: phase prop-

agation.

Figure 5. Closed fringe analysis. (a) Fringe pattern. (b) Gray scale plot of the row (top)

and the column (bottom) that crossing at the fringe center. (c) Binary map of fringes. (d)

Coherency map. (e) Computed phase. (f) Rewrapped phase, for display purposes.

Figure 6. Phase tracker reconstructions with (a) RPT reported in ref.9 (b) RPT with join

estimation of the phase, f , and the contrast, b.12
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Fig. 1. Cliques with triads of pixels 〈q, r, s〉. riveraf1.eps.
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Fig. 2. Phase refinement. (a) Fringe pattern. (b) Approximated phase. (c)

Mask. (d) Computed refined phase. The phases in (b) and (d) are rewrapped

for display purposes. riveraf2.eps.
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Fig. 3. Details of the phase refinement, the illustrated region corresponds to a

rectangular region (80× 80 pixels) located at the left and button of the panels

2-b, 2-c and 2-d, respectively. (a) Approximated phase. (b) Mask. (d) Refined

phase. riveraf3.eps.
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Fig. 4. Synthetic fringe pattern (top–left) and a computed phase propagation

sequence. riveraf4.eps.
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Fig. 5. Closed fringe analysis. (a) Fringe pattern. (b) Gray scale plot of the row

(top) and the column (bottom) that crossing at the fringe center. (c) Binary

map of fringes. (d) Coherency map. (e) Computed phase. (f) Rewrapped phase,

for display purposes. riveraf5.eps.
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Fig. 6. Phase tracker reconstructions with (a) RPT reported in ref.9 (b) RPT

with join estimation of the phase, f , and the contrast, b.12 riveraf6.eps.
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