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Abstract. We propose a robust method for computing discontinuous phase maps from 

fringe pattern with carrier frequency. Our algorithm is based on the minimization of an edge-

preserving regularized cost functional, specifically, on a robust regularized potential which uses 

the Plate with Adaptive Rest Condition paradigm (PARC), i.e. a second order edge preserving 

potential. Given that the proposed cost function is no-convex, our method uses as initial point an 

over smoothed phase computed with a standard fringe analysis method and then reconstructs the 

phase discontinuities. Although the method is for general purpose, it is introduced in the context 

of interferometric Gauge Blocks calibration. The performance of the algorithm is demonstrated 

by numerical experiments with both synthetic and real data. © Optical Society of America 

(OSA)  

OCIS codes: 120.265, 0120.3180, 120.3940, 120.6650, 100.3190. 
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1. INTRODUCTION 

The phase recovering from discontinuous fringe patterns is a challenging problem with relevant 

importance when phase stepping method are not applicable because of fast transient phenomena 

either of the studio object or illumination condition. In this paper we present a general algorithm 

for computing discontinuous phases and illumination component maps. Given that the proposed 

cost function is not quadratic our method uses as starting point the unwrapped phase1,2 of the one 

computed with a standard fringe analysis algorithm (for instance the one proposed by Takeda et 

al.3 or Womack4). Such an initial phase has phase discontinuities over smoothed and a residual 

tilt product of the remaining carrier frequency. The proposed method detects the phase 

discontinuities and reconstructs the discontinuous phase. Our algorithm can be applied to those 

cases where a good approximation of the discontinuous phase is available. In this sense our 

method is close related with phase refinement method recently reported by Rivera5, however the 

in this paper we focus on the detection and reconstruction of phase discontinuities. 

We use as studio case the observed interferograms in the Gauge Block (GB) calibration 

process6,7,8. The GB calibration task, by interferometric means, is performed by primary 

metrology laboratories. For instance, some of those laboratories are: the National Institute of 

Standards and Technology (NIST) in the United States of America, the National Research 

Council (NRC) in Canada, the National Physics Laboratory (NPL) in the UK, and the Centro 

Nacional de Metrologia (CENAM) in Mexico.  

Calibration of GBs is the first step of the dissemination chain of the length standard: the 

meter; only this primary length standard is determined with higher precision than GBs. This 

highly precise calibration task is performed with optical interferometers (previously calibrated 

with respect to the  primary length standard. The primary GBs, optically calibrated, are used as 
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standards for calibrating others GBs. That less precise secondary calibration is performed with 

mechanical comparators. 

This paper concerns about GB calibration by interferometric techniques. Specifically, we 

present an algorithm for phase retrieval from a single interferogram of GBs. In figure 1, we show 

interferograms that corresponds to GBs of different material: Tungsten-carbide [Fig. 1(a)] and 

steel [Fig. 1(b)]. These fringe patterns were obtained from the video signal of the GB 

Interferometer of the CENAM. That explains the spurious column shift in the image. Such an 

interferometer is a commercial instrument based on a Twyman-Green setup with two different 

wavelength lasers beams: 633 nm and 540. The procedure for estimating the GB length is 

described by Pugh and Jackson6 and it is briefly described follows. The GBs, to be measured, are 

wrung onto a lapped reference plate and positioned in the interferometer such that open fringes 

across the GB and plate are observed. The fringe pattern spatial frequency is controlled by a 

piezo-nano-actuator (PZT) that produces a tilt of the reference mirror. The GB introduces fringe 

displacements  in the GB region with respect to the fringes in the plate region. Such relative 

fringe displacements are known as fringe fractions. A coarse measure of the GB length is 

computed from the relative phase between the interferograms corresponding to 633 nm and 543 

nm wavelength. This GB length is computed with a limited precision: with an error between ± 

1.5 µm with respect to the true length. In a second stage, the initial measure is improved with the 

high precision phase map computed from the interferogram corresponding to 543 nm (Fig. 1). 

Unfortunately, if one uses standard fringe analysis algorithms for estimating the correction phase 

map, then the phase discontinuity between the GB and the plate is over-smoothed; i.e. the 

correction phase map is corrupted. In this paper we present a fringe analysis method, for 

interferograms with frequency carrier, which recovers discontinuous phase maps; as the ones 
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shown in Fig.  1. Such interferograms can be represented by the observation model (or direct 

model): 

 rr
T

rrr rbag ηφω +++= )ˆˆcos(ˆˆ ,  (1) 

where [ ]Tyxr ,=  represents the position of the pixel r in the regular lattice L, â  and b̂  are the 

background and contrast illumination components, respectively; [ ]Tyx ωωω ˆ,ˆˆ =  is the spatial 

carrier frequency, φ̂  is the phase, and η  represents independent additive noise introduced in the 

image at the acquisition time.  The task is to compute an estimation φ  of the phase map φ̂  for 

each pixel of the fringe pattern. Based on prior knowledge of the experimental set-up, we can 

make the considerations stated in Table I. 

 

Table I. Prior knowledge about the fringe pattern. 

   

Prior knowledge in Table I needs (and must) be taken into account in order to effectively recover 

the phase, φ̂ ,  from an interferogram of GB. For such a purpose, in last decade several authors 

a) The illumination components (background and contrast) are piecewise smooth because the 

elements in the image (reference plate and GB) may be composed of different materials. 

b) The phase is piecewise smooth because of the GB. 

c) The carrier frequency, ω̂ , is constant, but its precise value is unknown. However a 

estimation, ω , of the carrier can be computed. Moreover, the carrier frequency was 

chosen in a way such that an opened fringe interferogram is observed.  
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have proposed methods using regularization techniques9 like: Quadrature filters10, adaptive 

quadrature filters11 or robust cost functions5,12.  But those techniques neither consider the 

illumination components nor phase discontinuities in the analysis. Herein we propose a method 

for computing an estimation, φ , of the fractional displacement of the fringe pattern in the GB 

calibration task, φ̂ , given the fringe pattern, g , and a estimation of the carrier frequency, ω .  To 

solve such an inverse problem, we minimize a regularized cost function of the general form13:  

 ( ) ( ) ( )lbaRgbaDglbaU ,,,,;,,,;,,, φλωφωφ += ,  (2) 

where first term, D, is known as the data term and promotes fidelity of the computed variables to 

the observed data, i.e. the estimated phase and illumination components (φ , a  and b , 

respectively) should be consistent with the observed data, g ,  and the estimated frequency, ω , 

according to model in Eq. (1). Note that we propose the joint estimation of the phase and the 

illumination components. Second term, R, codifies our a priori information about the solution, 

i.e. the a priori information expressed in Table I. Generally, the regularization term is expressed 

as a potential that promotes smooth solutions. Finally, the field l acts as a phase discontinuity 

indicator map. Given that the phase discontinuity locations are not known in advance, our 

method also estimates the edge detector field, l. 

The paper is organized as follows. Section 2 presents a review of the regularization 

method based on the Plate with Adaptive Rest Condition paradigm12 (PARC potentials). Such a 

method is a second order edge preserving regularization method that deals naturally with first 

and second order discontinuities: steps and slope breaks, respectively.  Section 3 presents the 

method for the analysis of discontinuous fringe pattern. The method is based on the minimization 

of a regularized cost function with PARC potentials and it includes the joint estimation of the 
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illumination components. Section 4 shows experiments in both synthetic and real data that 

demonstrate the method performance. Finally, our conclusions are presented in section 5. 

2. REGULARIZATION USING PARC POTENTIALS 

Bayessian regularization, based on Markov Random Fields (MRF) theory13, is a general and well 

accepted theoretical framework for solving inverse problems  in image processing tasks. Such a 

theory has been effective to formulate algorithms for solving fringe analysis problems; for 

instance: fringes filtering10,11,closed fringe analysis5,14,15, phase unwrapping1,2,16,17 and phase 

stepping18,19.  In the MRF framework, the data term in Eq. (2) is formulated as a negative log-

likelihood that depends on the observation model [Eq. (1)] and on the noise distribution13. 

Therefore, by assuming the noise, η , with identical independent Gaussian distribution, then the  

data term is expressed by: 

 ( ) ( )[ ]∑
∈

+−−=
Lr

r
T

rrr rbaggbaD
2

cos,;,, φωωφ . (3) 

On the other hand, the regularization term, R, must be expressed in a form such that 

imposes a penalty for violation the prior knowledge stated in Table I, section 1.  

In order to choose the right form of the regularization term, we make the next 

consideration: robust regularized methods for image restoration based on first order potentials 

(i.e. in the adaptive membrane) promote flat (almost constant) reconstructions12,20,21,22,23,24. Those 

potentials are of the form: 

 ( ) ( ) ( )[ ]∑
∈

Φ+−=
Lrs

rsrssr lllR 22, φφφ , (4) 
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where the convex potential, ( )⋅Φ , controls the discontinuities detection process and rs  are 

cliques of first neighbor pixel pair s, i.e. { }2:),( <−= srsrrs . It is well known that first order 

edge-preserving regularization potentials tend to sub-estimate slopes in the restored image. That 

produces a flatness of the slopes and introduces artificial edges in large slopes: The well-known 

staircase effect12,21,25,26. That is a limitation of first order edge-preserving regulatization 

potentials in fringe analysis because if the carrier frequency is estimated with a limited accuracy, 

then the residual carrier appears as a remaining constant slope in the phase. On the other hand, 

second order regularization terms (the thin plate model) are expressed as the summation of 

quadratic potentials. Such summation runs over cliques of pixels triads, qrs , in horizontal, 

vertical and diagonal positions (see Fig. 2)5: 

 ( ) ( )∑
∈

+−=
Lqrs

srqfR 22 φφφ . (5) 

In spite of the quadratic potential (5) promotes smooth gradient solutions, this tends to over-

smooth edges. That motivated to Geman and Reynolds to proposed the robust second order 

potentials21, 

 ( ) ( ) ( )[ ]∑
∈

Φ++−=
Lqrs

qrsqrssrq lllR 222, φφφφ , (6) 

that preserves slope changes. However, it is well known that potential (6) over-smoothes steps in 

φ . Recently, Rivera and Marroquin12  proposed a new family of robust second order potential: 

the so-called plates with adaptive rest condition (PARC) potentials. PARC potentials can deal 

with ramps (regions with smooth variations in the intensity gradient) and first order 
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discontinuities (spatial steps). That is a significant advantage with respect to potentials based on 

the Geman and Reynolds’ formulation. In this paper we implement the second order edge-

preserving potentials with explicit line process12 (PARC-EL). The PARC-EL based 

regularization term is expressed as a summation over cliques of size three of the form (see Fig. 

2): 

 ( ) ∑
∈

=
Lrqs

qrs llR ),(,3 φρφ ,  (7) 

with the PARC-EL potential, ),( lqrs φρ ,  defined by 

 ( ) [ ] [ ]222 )1()1(, rsqrrsrsqrqrqrs lllll −+−+∆−∆= µφφφρ ; (8) 

where we define rq

def

qr φφφ −=∆ , rsφ∆  is defined in a similar way, and rsl  acts as a first and 

second order discontinuities detector; i.e. rsl is close to zero if there is a step or an abrupt change  

in the φ -slope between the first neighbor pixel pair sr, . 

The behavior of the PARC-EL potential is following explained. The contribution of the 

regularization term is computed as a compromise between the two terms in (8) which relative 

contributions are controlled by the positive parameter µ ; by depending of the values of the local 

differences, qrφ∆  and rsφ∆ , we have three cases:  
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a. Second order smoothness. If the thin plate potential is relatively small, µφφ 2<∆−∆ rsqr , 

then the minimum cost is achieved with 1≈qrl  and 1≈rsl . This implies the case of first 

order smoothness: µφ <∆ qr  and µφ <∆ rs . 

b. Second order discontinuities preservation. For large plate potential values, 

µφφ 2>∆−∆ rsqr , with µφ >∆ qr  and µφ >∆ rs , the PARC-EL potential behaves as the  

Geman-Reynolds robust potential [Eq. (6)] and the minimum cost (close to µ2 ) is 

achieved with 0≈qrl  and 0≈rsl . 

c. First order discontinuities preservation. For µφ <∆ qr  and µφ >∆ rs , the PARC-EL 

potential becomes robust to the largest difference, i.e. the minimum potential cost is 

obtained with 1≈qrl  and 0≈rsl . For the case when µφ >∆ qr  and µφ <∆ rs , the 

PARC-EL potentials has a similar behavior and the minimum cost is obtained with 

0≈qrl  and 1≈rsl . 

Next section presents the complete functional for phase recovery with second order 

discontinuities. 

3. EDGE PRESERVING FUNCTIONAL FOR FRINGE ANALYSIS BASED 

ON PARC-EL POTENTIALS 

The carrier frequency, [ ]Tyx ωωω ˆ,ˆˆ =  in model (1), can be estimated with a limited precision. 

Because such a residual error, standard fringe analysis methods3,4 introduce a constant slope in 

the recovered (estimated) phase, 0φ . Moreover, given that the mentioned standard fringe analysis 

algorithms (Takeda et al.  3 and Womack4) assume limited bandwidth phases (smooth phases) 
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then the real phase discontinuities will be over smoothed.  In this work we proposed to use the 

0φ  as an initial phase (starting point) and then to detect and reconstruct the phase discontinuities. 

For such a purpose we use PARC-EL potentials in the regularization term, R: to recover 

piecewise smooth-sloped phase maps. Moreover, we assume that illumination components 

discontinuities coincide with phase discontinuities (see Fig. 1). So that, phase and illumination 

steps are coupled in the PARC-EL potential by a unique edge detector field, l. Therefore, we 

propose to compute the phase and the illumination components minimizing the cost function: 

 

( ) ( )[ ]
( ) ( ){

( ) [ ]},)1()1(                  

                  

cos,,,

222

,,

22

2

rsqrrsrsqrqrc

Lsrq
rsrsqrqrbrsrsqrqra

Lr
r

T
rrr

llll

blblalal

rbaglbaU

−+−+∆−∆+

∆−∆+∆−∆+

+−−=

∑

∑

∈

∈

µφφλ

λλ

φωφ

 (9)  

where the positive regularization parameters, aλ , bλ , cλ , and µ , control the relative contribution 

of each term to the total cost. The minimization, of (9), is performed by alternating 

minimizations with respect to φ , a , b  and l ; such a scheme consists of iterating until 

convergence the Algorithm for analysis of discontinuous fringe patterns (ADFP). 

_____________________________________________________________________________ 

ADFP Algorithm.  

_____________________________________________________________________________ 

1. Choose aλ , bλ , cλ  and µ ; 

2. Compute an approximation of the carrier frequency, [ ] ;, T
yx ωωω =  

3. Set 10 =ra , 10 =rb and 10 =rl for all Lr ∈ ; 

4. Compute an initial phase, 0
rφ  for all Lr ∈ ; {By using a standard fringe analysis method3,4 

and then by unwrapping the computed phase1,2.} 
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5. for ...,1,0=k  

6.           Compute ( )kkkk lbaU ,,,minarg1 φφ
φ

=+ , using as initial guess ;kφφ =  

7.           Compute ( )kkk

a

k lbaUa ,,,minarg 11 ++ = φ ; 

8.           Compute ( )kkk

b

k lbaUb ,,,minarg 111 +++ = φ ; 

9.           Compute ( )lbaUl kkk

l

k ,,,minarg 1111 ++++ = φ ; 

10.            if εφφ <− − 2

2

1kk  

11.                     STOP, with solution ( )1111 ,,, ++++ kkkk lba φ ; 

12. end for 

_____________________________________________________________________________ 

 

In this work we compute an estimation, [ ]Tyx ωωω ,= , of the fringe pattern carrier frequency 

with the method reported by Huntley27. Note that, because of the cosine function, the 

minimization with respect to (w.r.t.) the phase 1+kφ   (step 1 of ADFP algorithm) leads us to the 

solution of a non- linear equation system. For solving such a non- linear system we use simple 

gradient descent algorithm that uses as starting point the result of the previous step, kφ , i.e. by 

assuming  fixed kk ba ,  and kl , then 1+kφ  is computed as the fixed point of the gradient descent 

iteration: 

 ( )kk
t

kkk
t

k
t lbaU ,,, 111

1
+++

+ ∇−= φαφφ φ ;  (10) 
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where α  is the step size, kk φφ =+1
0  is the initial guess and ( )kk

t
kk lbaU ,,, 1+∇ φφ  denotes the 

partial gradient of the cost function U  w.r.t. the phase φ  and evaluated at 1+k
tφ . The initial phase, 

0φ , is be computed with a standard spatial fringe analysis algorithm4,28. We noted that if the 

initial phase is a homogeneous map equal to 0, the ADFP algorithm computes a wrapped phase, 

i.e. discontinuities (edges) are inroduced at those sites where the phase is wrapped. Additionally, 

steps 2, 3 and 4 (in the ADFP algorithm) correspond to perform quadratic minimizations, i.e. to 

solve the linear systems: ( ) 0,,, 1 =∇ + kk
t

k
a lbaU φ , ( ) 0,,, 11 =∇ ++ kk

t
k

b lbaU φ , and 

( ) 0,,, 111 =∇ +++ lbaU k
t

kk
l φ , respectively. Such minimizations can be achieved with standard fast 

minimization algorithms as a Gauss-Seidel scheme or the conjugate gradient29. More details of 

the procedure for computing the discontinuities detector field, l , are given in the Appendix A. 

ADFP algorithm requires us to find the exact partial minimization and therefore it is 

computationally inefficient. However, in practice, such partial minimizations are not fully 

achieved, but approximated in a way such that: 

( ) ( ) ( ) ( ) ( ) 0,,,,,,,,,,,,,,, 1111111111 ≥≥≥≥≥ ++++++++++ kkkkkkkkkkkkkkkkkkkk lbaUlbaUlbaUlbaUlbaU φφφφφ
 

is satisfied at each iteration. The convergence to, at least, a local minimum is guaranteed because 

( )lbaU ,,, φ  is bounded by zero.  

5. EXPERIMENTS 

This section shows the results computed with the proposed ADFP algorithm in both synthetic 

and real data.  
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The first experiment corresponds to the analysis of one-dimensional synthetic data.  

Figure 3(a) shows the synthetic data (values of phase and illumination elements a and b) 

generated with the direct observation model [see Eq. (1)] and setting:  

 { }otherwiserifar 0.1,165976.0 ≤≤= , 

{ }otherwiserifbr 9.0,165975.0 ≤≤= , 

and 

{ }otherwiserrifrr 005.02.0,16597005.02.1 +≤≤+=φ . 

Then, the one-dimensional fringe pattern was generated using a known frequency, ω , and 

corrupted with additive Gaussian noise. The experiments were performed using the real carrier 

frequencies; however, the phase has a small slope that simulates a residual carrier. Figure 3(b) 

shows the results computed by using the no-robust thin plate potential, Eq. (5): Note the over-

smoothness of the  phase and the steps in the illumination components.   Figure 3(c) shows the 

results computed by using first order edge-preserving potentials  and coupling edges of phase and 

the illumination components, i.e. Eq. (4) with ( ) 2)1( rsrs ll −=Φ µ   and the parameter 001.0=µ  

for controlling the edge detection sensibility. In spite of discontinuities and illumination 

components are correctly computed, one can note that the phase slopes are sub-estimated. It is 

also well known that first order edge-preserving potentials introduce spurious edges in large 

slopes (a staircase effect). Panel (d) shows results computed with the proposed method.  Table II 

shows the L2-norm of the error vector of the phase and the illumination components computed 

by using different regularization potentials in Eq. (9): thin plate [Eq. (4)], robust membrane [Eq. 
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(5)] and PARC-EL [Eqs. (7) and (8)]. In spite of the robust membrane potential computes 

accurate illumination components (piecewise constant) the phase slope is underestimated. The 

best phase map (with piecewise smooth gradient) is computed with PARC-EL potentials. Last 

row in Table II shows the computational times for the compared regularized cost functions. We 

note, as expected, an extra computational cost of the PARC-EL formulation w.r.t. the Quadratic 

Plate based formulation but such a computational cost is not significantly if we take into account 

the phase improvement. Moreover such a computational times can be reduces if, instead of a low 

efficient simple  gradient descent scheme [see (10)], one uses a more efficient minimization 

algorithms as the Newton or Gauss-Newton ones29. 

 

Table II. L2 error of results and computational times computed with different potentials. 

 

 

Thin Plate 

(Quadratic) 

Robust Membrane 

(Half-Quadratic) 

Robust Thin Plate  

(PARC-EL) 

Phase (φ ) 4.9819 1.8936 0.9952 

Background (a ) 0.4447 0.7123 0.5156 

Contrast (b ) 0.5122 0.6959 0.7704 

Computational time (secs.) 40 25 51 

 

 

Figure 4 shows the results computed from one-dimension real data. In this experiment a 

tungsten-carbide GB was wrung on a steel reference plate and the interferogram was acquired 

with the TESA Gauge Block Interferometer at CENAM. The results, showed in Fig. 4(b), show 

steps (discontinuities) in the phase (doted line) and in the illumination components (continuous 
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lines). One can observe  a small tilt in the computed phase map in the GB region: Such a tilt may 

result from an incorrect wrung process of the GB on the reference plate. One can also note that 

the edges are not well defined in the data [Fig. 4(a)] and as consequence sharp discontinuities are 

not detected, see Fig. 4(b).  The quality of such results can be improved by the two-dimensional 

processing of the fringe pattern.  

Figure 5 shows the components computed with the proposed method in the two-

dimensional fringe pattern showed in Fig 1(a). Figure 5(a) shows the piecewise phase map with 

the relative fractional phase between the GB and the reference plate. Figures 5(b) and 5(c) show 

the background and the contrast components, respectively. Finally, figure 5(d) shows the 

discontinuities map (edges). In this case, the computed discontinuities are sharp and located 

according with the observed edges in the noisy interferogram [in Fig. 1(a)].  The data were not 

preprocessed for reducing the noise or correcting the spurious column shift in the image.  

6. CONCLUSIONS 

We presented a regularization model for analysis of interferogram with discontinuities. The 

method estimates the phase map and the illumination components according with the 

interference equation.  

The presented algorithm is a method for detect and reconstruct the spatial phase 

discontinuities provided an initial phase previously computed with a standard method. So that, in 

principle, if an over-smoothed discontinuities phase can be computed from a fringe pattern with 

(or without) carrier then our algorithm can be used for detect and restore such phase 

discontinuities.  However, in general, the problem of close fringe analysis is beyond the scope of 

the proposed method (the reader can see Ref. 5 for more details about a method addressing such 

a problem). 
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Our algorithm uses as initial data the unwrapped phase computed with a standard fringe 

analysis algorithm. Given that such standard algorithms3,4 assume smoothes (limited bandwidth) 

phase and illumination components the initial phase has over smoothed phase discontinuities. 

We assume that the discontinuity locations are not known in advance and so that they need to be 

estimated. The proposed method effectively detects and reconstructs the phase discontinuities. 

The presented ADFP algorithm is based on the minimization of a cost function that uses, as 

regularization potentials, thin plate potentials with adaptive rest condition, PARC potentials. 

PARC potentials constrain the solution to be piecewise with almost constant slopes. PARC 

potentials allow to recover discontinuous phase maps with piecewise smooth gradients, so that 

they are particularly useful when the carrier frequency is estimated with limited accuracy, so that 

a residual constant slope remains in the initial phase.   
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APPENDIX A. GAUSS-SEIDEL SCHEME FOR COMPUTING THE 

DISCONTINUITIES DETECTOR FIELD. 
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The one-dimensional (1D) case of the algorithm for computing the discontinuities detection field 

(step 9 in the ADFP algorithm)  is presented.   However this method can straightforward be 

extended to the two-dimensional case. Let Nba ℜ∈φ,, and 1−ℜ∈ Nl , then we define: 

,1−−=∆ ii

def

i xxx for .,...,2,1 Ni = Therefore the 1D version of the cost function (9)  is written 

as 

( ) ( ) ( ){

( ) [ ]},)1()1(                  

                  

),,(,,,

2
1

22
11

1

2

2
11

2
111

−−−

−

=
−−−−

−+−+∆−∆+

∆−∆+∆−∆+= ∑

iiiiiic

N

i
iiiibiiiiad

llll

blblalalbaQlbaU

µφφλ

λλφφ

 

where ),,( φbaQ  represents the independent terms of l . Then from  

( )
0

,,,
2
1 1 =

∂
∂

i

d

l
lbaU φ

, 

we have 

 
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ] ;0)1()1(

)1(
)1(

1111

1111

1111

=−+∆−∆++∆−∆∆+
∆−∆++∆−∆∆+

∆−∆++∆−∆∆

−−++

−−++

−−++

iiiiiciiiiic

iiiibiiiiib

iiiiaiiiiia

llliWll
blbliWblblb

alaliWalala

µφφλφφφλ
λλ

λλ
 

 (11) 

where { }otherwiseNxifxW 0;11)( −<= . The Gauss-Seidel scheme corresponds to solve (11) 

for il , keeping fixed φ,,ba  and ),( 11 −+ ii ll , for ;,...,3,2 Ni = where 1−il  is the previously 

updated value. Such procedure is iterated for all the pixels until convergence. Note that the edge 

detector variable il  is associated to the pair of pixels in the clique 1, −ii . 
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List of Figure Captions 

1. Interferograms of GB on a steel plate: a) Tungsten carbide and b) steel. 

 

2. Cliques of pixels in positions: (a) horizontal, (b) vertical and (c) and (d) diagonal. 

 

3. (a) Synthetic one dimensional data: Phase (continuous line), background (point-dash line) 

and contrast (pointed line). Computed results with: b) Quadratic thin plate potential, c) robust 

membrane potential, and d) PARC potential. The original data were corrupted with a white 

noise signal with mean equal zero and standard deviation of 0.5 radians. 

 

4. Real data from TESA interferometer. a) Central column of the interferogram in Fig. 1(a), b) 

Computed results with the proposed ADFP algorithm: Phase (doted line), illumination 

components (solid lines) and edges (makers). 

 

5. Two dimension fringe pattern analysis with the proposed ADFP algorithm: a) Phase map, b) 

background illumination, c) contrast component and d) detected edge map. 
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