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We present two robust algorithms for fringe patterns analysis with partial–

field and closed fringes, respectively. The algorithm for partial–field fringe

patterns is presented as a refinement method for precomputed coarse phases.

Such algorithm consists of the minimization of a regularized cost function

that incorporates an outliers rejection strategy that becomes robust the

algorithm. With based on the phase refinement method, it is proposed a

propagative scheme for phase retrieval from closed–fringe interferograms.

The algorithm performance is demonstrated by demodulating closed fringes

interferograms with complex spatial distribution of stationary points and

gradients in the illumination components. c© 2004 Optical Society of America

OCIS codes: 120.2650, 120.3180, 120.5050, 120.6650, 120.3940.
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1. Introduction

In interferogram analysis, we often face the problem of computing phase from in-

terferograms with partial–field fringes, i.e. inteferograms where the fringe pattern is

visible in a subregion of the image. The interferogram analysis with full–field meth-

ods1,2 introduces artifacts at the border of the interferogram region. One common

solution to this problem is to use phase stepping techniques.3 However, such methods

are not applicable in fast transients phenomena. Other solution is based on inverse

problem theory. In his framework, the robust quadrature filter (RQF) method4 pro-

posed a regularized solution that, effectively, recovers the wrapped phase in irregular

domains, with an additional computational cost required for minimizing the cost func-

tion. Other challenging problem in the analysis of fringe patterns is the processing

of closed fringe patterns. This problem has captured the attention of researchers in

fringe analysis for the last years.5,6, 7, 8, 9, 10,11,12,13,14 Although there has been impor-

tant advances, the performance of the reported methods is seriously reduced if the

processed fringe pattern has a wide band, it is not normalized and it is corrupted by

noise.

In this paper, we present two algorithm for dealing with the problems of:

1. Phase refinement. Our method uses the fringe pattern as data and a phase

computed with an open–fringes full-field analysis method (as ones in Refs.1,2)

as initial guess. The artifacts, in the initial phase, are systematically reduced
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by an iterative algorithm.

2. Phase recovering from closed–fringe interferograms. This new method for

closed–fringes analysis is the most important contribution of the paper and

it is based on the previously proposed refinement method (last point). As previ-

ous reported methods, our method uses a propagative scheme. The knowledge

propagation scheme from a seed site to the whole interferogram was reported

in5 for the first time: they propagated the sign of absolutes frequency. Since

then, this is the underlying idea in closed fringe analysis methods: propaga-

tion of frequency signs or entire phase.6,8, 9, 12,14 In our method, a quality map

leads the propagation path. The needed of a quality map was noted by Villa et

al.8 Afterward, Servin et al. used a binarization of the fringe pattern as quality

map in the fringe follower method.9 Unfortunately, the performance of the fringe

quantization is degraded by noise and spatial variations in background/contrast

illumination components. Differently to the last mentioned techniques, our qual-

ity map does not constraint the phase propagation to follow fringes and at the

same time it avoids saddle and stationary points—that is well known may in-

duce propagative algorithm to carry out a wrong phase. Finally, it is important

to remark that our method is based on alternated minimizations of quadratic

cost functions, i.e. in alternated solution of linear systems. As result, we have a

numerically stable algorithm.
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Now, we introduce our notation. An image is a regular lattice of pixels, the set of

such pixels is denoted by L and the pixel position is denoted by r = [x, y]T . Then a

fringe pattern, g, with or without closed fringes, is modeled by

gr = ar + br cos(fr) + ηr, (1)

for all r ∈ T ⊆ L; where T is the subregion that contains the observed fringe pattern,

a is the background illumination component, b is the fringe contrast, f is the unknown

phase and η represents additive independent noise. In general, the terms a and b are

also unknown and need be estimated. If a and b have limited bandwidth, i.e. they

have smooth spatial variations, then a preprocessing of the fringe pattern can reduce

significantly the contribution of a, b and η in (1).9,14 If such preprocess is successfully

achieved, then one obtains a normalized fringe pattern:

ĝr = b̂r cos fr, (2)

where b̂ is an estimation of b. Afterward, on can use an existing method for demodulat-

ing closed–fringe patterns of the form ĝ, for instance the regularized phase–tracking

method (RPT).9,14 More recently, Legarda et al.12 modified the RPT method for

computing b and f , simultaneously. Although our formulation admits the straight-

forward generalization for the joint estimation of b and f , in this paper, we focus in

the estimation of the phase. We prefer the form (2), instead of the form ĝr = cos fr,

because it avoids the component–wise division by small values b̂r at those noisy and

low contrast sites.
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The paper is organized in two part: sections 2 and 3, respectively. In section 2

introduces the method for refining a initial phase. Section 3 extends the phase refine-

ment methods for computing phases from closed fringes. Numerical experiments that

demonstrate the methods performance are presented in subsections of the respective

parts. Finally, our conclusions are given in section 4.

2. Robust Phase Refinement Method

2.A. Mathematical Formulation

The phase refinement method assumes that there are available approximations of

contrast, b̂, and phase, ψ, in the domain of interest, R (we assume in this point that

R = T , but in general R ⊆ T ). Such approximations can be computed using standard

fringe analysis methods, for instance, the Discrete Fourier Transform based method1

or the one reported in Ref.2 Such methods introduce artifacts at the image borders or

along phase discontinuities. So that, in order to compute the true phase, f = ψ + φ,

we need to estimate a residual phase, φ. Now, we suppose that ψ is close enough to

f such that the first order Taylor series approximate very well the model, i.e.

E(φr; ψr)
def
= ĝr − b̂r(cos ψr − φr sin ψr) ≈ 0. (3)

As it is common to have large residuals at the edges, or at noisy regions, we relax the

constraint (3) to be small almost everywhere: Then those pixels with large residuals

need be treated as outliers. Therefore, we propose to compute the residual phase,
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φ, and an outliers detector field, ω, as the minimizers of the regularized (robust)

half-quadratic cost function:15,16,17,18,19,20

U1(φ, ω; ψ) =
∑
r∈R

[ω2
rE

2(φr; ψr) + µ (1− ωr)
2]

+λ
∑

〈q,r,s〉∈R

[ψq + φq − 2 (ψr + φr) + ψs + φs]
2 , (4)

where ωr ∈ [0, 1] is an indicator variable that weights the individual contribution of

the data; λ and µ are positive parameters that control the solution smoothness and the

outliers detection, respectively. We used λ = 0.2 and µ = 0.01 in our experiments. The

regularization term involves cliques of size 3, 〈q, r, s〉, that correspond to horizontal,

vertical and diagonals pixel triads (see figure 1). Such term is, the well known, thin

plate model that penalizes changes in the second derivative of the recovered phase,18

ψ + φ.

Given an initial phase ψ, and the residual phase φr = 0, for all r ∈ R, The refined

phase ψ + φ is computed with a two step method. In the first step, the weight, ω,

and the residual phase, φ, are computed by an alternated minimization of (4); i.e., U1

is minimized with respect to (w.r.t.) ω by keeping φ fixed and then it is minimized

w.r.t. φ with ω fixed. The minimization w.r.t. ω results in the closed formula:

ωr = µ/[µ + E2(φr; ψr)]. (5)

Note that ωr ≈ 1 for those sites where the square error E2(φr; ψr) is small with respect

to µ. On the other hand, ωr ≈ 0 for those pixels where the model does not fit very

well the data, so that the regularization term has more control over the computation
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of φ. In the second step, the phase ψ is updated by the computed residual φ, i.e.:

ψr = ψr + φr. These two steps are iterated until convergence, such convergence is

guaranteed if the computed residual phase, φ, is small, so that:

‖ĝ − b̂. ∗ cos ψ‖ ≥ ‖ĝ − b̂. ∗ (cos ψ − φ sin ψ)‖ ≈ ‖ĝ − b̂. ∗ cos(ψ + φ)‖ ≥ 0

is satisfied in each iteration, where .∗ denotes the component-wise product of vec-

tors. Note that if a residual phase, φ, increases significantly the error at some pixels,

then outliers detection will promotes a smooth reconstruction of the phase at those

problematic sites. The details of the phase refinement procedure are formalized in

algorithm 1.

Algorithm 1 Phase Refinement.

To refine a initial phase ψ in a subregion R ⊆ T ,

Given ε > 0 ;

For all the pixels r ∈ R:

while
∥∥∥ĝ − b̂. ∗ cos ψ

∥∥∥ < ε do

φr ← 0;

ω ← arg minω U1(φ, ω; ψ); {use (5)}

φ ← arg minφ U1(φ, ω; ψ); {see Appendix A}

ψr ← ψr + φr;

end while
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2.B. Refinement phase experiments

The performance of the phase refinement method is demonstrated by the experiment

illustrated by figure 2. Panel 2–(a) shows an original fringe pattern of a progressive

lens generated with a Moire deflectometry setup. Panel 2–(b) shows the wrapped

phase computed with the Fourier method.1 The region of interest and the wrapped

refined phase are shown in panels Panel 2–(d) and 2–(c), respectively. Figure 3 shows

a detail of the results in figure 2. Note that the original wrapped phase, panel 3–(a),

is distorted by a border effect; such defect is corrected in the refined phase, panel

3–(c). It is important to remark that we show wrapped phases only for visualization

purposes: the recovered refined phase is unwrapped.

3. Closed–Fringe Analysis

3.A. Method for closed–fringe analysis

Now, we extend the refinement phase method for analyzing closed–fringe interfero-

grams. Initially, the seed phase, ψ, is available for a small compact region, R, of the

interferogram (note that R ⊂ T ). Then we define the region S that contains the pixels

located in a narrow band (with width defined by d) around R:

S = {s ∈ T | s /∈ R, r ∈ R, ‖r − s‖ < d}. (6)

We used d = 2 in all the experiments. The initial phase ψ in R can be computed

with a method for opened–fringe patterns in a small region with such characteristics.
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Once the initial conditions are established (ψ, φ = 0, R and S), we compute and

propagate the phase using again an iterative strategy of two steps. In the first step,

we refine of the phase ψ + φ in R. Then, we grow R in, at least, one pixel in the

second step. The phase refinement is achieved using the previously presented method

[based on (4)]. As it is known, RPT method9,12,14 may produce a wrong phase due

to an unsuccessful normalization of the fringe pattern. In our approach, the grown

pixels are chosen such that they minimize the risk of growing a wrong phase. Our

growing phase strategy is detailed below.

Once the step of phase refinement is performed, we proceed to grow the region R.

First, ψ is extrapolated to those pixels in S by minimizing a cost function,

U2(ψ) =
∑

〈q,r,s〉:{q,r,s}∩S 6=∅
(ψq − 2ψr + ψs)

2 , (7)

that promotes an extrapolation with constant slope and keeps fixed the values of ψ in

R. Afterward, the region R is grown by moving some pixels from S (at least one). The

selection of a candidate pixel, r ∈ S to be included in R, is done taking into account:

a) the confidence of the extrapolated phase, b) the number of its neighbor pixels in

R and their confidence and finally c) R is grown preferably along the fringes (i.e. the

extrapolated phase is almost constant). In order to implement such constraints, we

compute a “confidence measure”, ω̂ ∈ [0, 1], by minimizing the cost function:

U3(ω̂) =
∑
r∈S

{[
ω̂2

rE
2(ψr) + µ(1− ω̂r)

2
]
+ λ̂

∑
s∈Nr

drs(ω̂r − ω̂s)
2

}
(8)

w.r.t. ω̂ by keeping fixed ψ and φ; where Nr = {s | s ∈ R ∪ S, |r − s| < 2} is the
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set of first eight neighbor pixels to r, drs ∈ [0, 1] is a weight factor that measures the

alignment of the pixel pair 〈r, s〉 with the local fringe and λ̂ is a positive regularization

parameter. The third term in (8) produces an anisotropic smoothing of ω̂ along the

fringes. The weights, drs, are directly computed from the fringe pattern with:

drs = exp[−(r − s)T Jr(r − s)], (9)

where

J = trace(ττT )I − ττT , (10)

is the local inertia tensor;21 with τ
def
= [ĝxσ, ĝyσ]T , where ĝlσ denotes the l–directional

derivative smoothed with a Gaussian kernel (defined by σ) and I is the identity matrix.

Note that for λ̂ = 0, the minimizer (8) corresponds to (5). Next, we effectively grow

the region, R, where the phase can be computed by including the immediate neighbor

pixels with high confidence. The smoothing of ω̂ and a constrain on the support of

grown pixels promote smooth wavefronts and avoid the propagation to be trapped in

local minimum. As saddle and stationary points may induce the algorithm to produce

a wrong phase, we implement a scanning strategy that leaves such problematic sites for

the last, once the surrounding pixels have been demodulated. This scanning strategy

is based on the assumption that the fringe patterns are locally monochromatic: just

one frequency is present in a small region. That is, the fringe patterns have a well

defined local structure: small directional derivatives along the fringes and large ones

across them, except in problematic sites. This growing scheme is implemented with
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the updating formula:

Rn+1 = Rn ∪ {r ∈ S | cr · ω̂r > θ, card(Nr ∩Rn) ≥ 2}, (11)

where

cr = (λ1r − λ2r) / (λ1r + λ2r) (12)

is the local coherency that can be understood as a normalization of ‖∇fr‖; λ1 ≥ λ2 are

the eigenvalues of the inertia tensor, J , defined in (10) and the cardinality operator,

card(·), returns the number of elements in a set. Then, a pixel is grown if at least 2

neighboring pixels are in R and its weighted confidence, cr · ω̂r, pass a threshold, θ; if

no pixel pass the threshold, then the one with largest cr · ω̂r is selected. The growing

of R completes an iteration of wavefront propagation. The iterations continue until

the phase is estimated in the region of interest: R = T .

It is important to note that, in the closed fringe analysis method, the phase refine-

ment step can be performed in a narrow band close to the border between R and S

(we use a band 3 pixels wide) with a subsequent reduction of the computational time.

The details of the closed fringe method are formalized in algorithm 2.
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Algorithm 2 Closed Fringe Analysis.

To compute the phase in a subregion T ⊆ L with closed fringes,

Set the threshold θ

Define the subregion R ⊂ T .

ψ ← seed phase in R;

Compute J , with (10); {Inertia tensor field}

Compute the eigenvalues field, λ1 ≥ λ2, of J ;

Compute drs and cr, with (9) and (12), respectively;

while R 6= T do

Refine ψ with Algorithm 1;

Compute S with (6); {narrow band around R}

ψ ← arg minψ U2(ψ); {extrapolate ψ in S}

ω ← arg minω U3(ω); {extrapolate ω in S}

R+ ← {r ∈ S | cr · ω̂r > θ, card(Nr ∩R) ≥ 2}

if R+ = ∅ then

R+ ← {arg maxr∈S{cr · wr}};

end if

R ← R ∪R+;

end while
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3.B. Closed–fringe analysis experiments

In order to illustrate the algorithm behavior, we show a sequence of the phase propa-

gation in figure 4. The synthetic fringe pattern is shown in top–left panel and the final

recovered phase is shown in bottom–right panel. One can observe that: sites without

a well–defined orientation (as the fringe centers) are leaved for the least, the phase

propagation is preferably performed along the fringes and such propagation has a

smooth wavefront. These characteristics reduce the risk of computing a wrong phase.

Figure 5 shows the result of an experiment designed to demonstrates the perfor-

mance of the closed fringe analysis method. Panel 5–(a) shows the normalized fringe

pattern of a real ESPI image. The fringe pattern shows the relative deformation of

a steel plate when a thermal stress is applied. For illustration purposes, we show in

panel 5–(b) plots of the gray level of the fringes. These plots corresponds to the row

(top) and the column (bottom) that crossing at the minimum phase (fringe center).

Panel 5 –(c) shows the binarization of the fringes. As one can see, the normalization

process is not successfully achieved as is appreciated in the figure and the fringes

are not correctly distinguished. Therefore, a scanning strategy that follow fringes will

compute a wrong phase. However, our method estimates the right phase in spite of

the fact that we set b̂ = 1 in the whole domain. Panel 5–(d) shows the computed co-

herency map that defines the local threshold in (11). Panel 5–(e) shows the computed

phase with the proposed method and the rewrapped phase is shown in panel 5–(f).
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For comparison purposes, figure 6 presents the rewrapped phase of results computed

with: the RPT method reported in9 [panel 6-(a)] and the RPT variant with the

joint estimation of the phase, f , and the contrast, b.12 The dynamic range of the

unwrapped phases are about 3.0 and 15.0 radians for the phases in panels 6-(a)

and 6-(b), respectively. In spite of the improvement in the computed phase with the

Legarda et al. method, the contrast term, b, with frequency bandwidth closed to the

fringe pattern mislead the joint estimation of phase and contrast.

4. Conclusions

First, we presented a phase refinement method that improves phase computed, ini-

tially, from a fringe pattern with incomplete domains. The method is based on the

iterative minimization of a robust half–quadratic cost function with explicit outliers

rejection. Such minimization is achieved by alternately solving a liner system and

computing a closed formula.

In second part of the paper, we generalized the phase refinement method in order

estimate the phase from closed fringe patterns. This generalization is based on a

successive growth of the region of phase refinement. The method has shown, in real

experiments, to be robust for analyzing fringes with spatial variable illumination

conditions (see experiment of figure 5) .

It is important to remark that both algorithms are based in the minimization of

quadratic cost functions (with linear residuals) that allows us to use simple, fast and
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stable minimization algorithms. The outliers detection improves the performance of

the methods for recovering phases from noisy fringe patterns or in the case that the

initial seed phase had regions with large residuals.
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Appendix A. Gauss-Seidel equations for computing the refined phase

The computation of refined phase φ in Algorithm 1 is computed by minimizing (4)

w.r.t. φ, keeping fixed ω. Such quadratic minimization can be achieved with many al-

gorithms. In this appendix we present the detailed equation of a Gauss-Seidel scheme.

The componentwise update formula is:

φij =
ω2

ij b̂ij sin ψij[b̂ij cos ψij − gij] + λV (i, j)

ω2
ij b̂

2
ij sin2 ψij + λW (i, j)

,

with the follow definitions:

V (i, j)
def
=

1∑
c=−1

[P1(i− c, j) + P2(i, j − c) + P3(i− c, j − c) + P4(i− c, j + c)],

W (i, j)
def
=

1∑
c=−1

[N2
1 (i− c, j) + N2

2 (i, j − c) + N2
3 (i− c, j − c) + N2

4 (i− c, j + c)];
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where

Pm(k, l)
def
= φijN

2
m(k, l)−Qm(k, l)Nm(k, l),

Nm(k, l)
def
= Am(k, l)

∂

∂φij

Qm(φ, k, l);

and

A1(k, l) =





1 if 〈(k − 1, l), (k, l), (k + 1, l)〉 ∈ R

0 otherwise,

A2(k, l) =





1 if 〈(k, l − 1), (k, l), (k, l + 1)〉 ∈ R

0 otherwise,

A3(k, l) =





1 if 〈(k − 1, l − 1), (k, l), (k + 1, l + 1)〉 ∈ R

0 otherwise,

A4(k, l) =





1 if 〈(k − 1, l + 1), (k, l), (k + 1, l − 1)〉 ∈ R

0 otherwise,

Q1(k, l)
def
= ψk−1,l + φk−1,l − 2(ψk,l + φk,l) + ψk+1,l + φk+1,l,

Q2(k, l)
def
= ψk,l−1 + φk,l−1 − 2(ψk,l + φk,l) + ψk,l+1 + φk,l+1,

Q3(k, l)
def
= ψk−1,l−1 + φk−1,l−1 − 2(ψk,l + φk,l) + ψk+1,l+1 + φk+1,l+1,

Q4(k, l)
def
= ψk−1,l+1 + φk−1,l+1 − 2(ψk,l + φk,l) + ψk+1,l−1 + φk+1,l−1.
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List of Figure Captions

Figure 1. Cliques with triads of pixels 〈q, r, s〉.

Figure 2. Phase refinement. (a) Fringe pattern. (b) Approximated phase. (c) Mask.

(d) Computed refined phase. The phases in (b) and (d) are rewrapped for display

purposes.

Figure 3. Details of the phase refinement, the illustrated region corresponds to a

rectangular region (80 × 80 pixels) located at the left and button of the panels 2-b,

2-c and 2-d, respectively. (a) Approximated phase. (b) Mask. (d) Refined phase.

Figure 4. Phase propagation sequence. Top–left panel: synthetic fringe, sequence:

phase propagation.

Figure 5. Closed fringe analysis. (a) Fringe pattern. (b) Gray scale plot of the row

(top) and the column (bottom) that crossing at the fringe center. (c) Binary map of

fringes. (d) Coherency map. (e) Computed phase. (f) Rewrapped phase, for display

purposes.

Figure 6. Phase tracker reconstructions with (a) RPT reported in ref.9 (b) RPT with

join estimation of the phase, f , and the contrast, b.12
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Fig. 1. Cliques with triads of pixels 〈q, r, s〉. riveraf1.eps.
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Fig. 2. Phase refinement. (a) Fringe pattern. (b) Approximated phase. (c)

Mask. (d) Computed refined phase. The phases in (b) and (d) are rewrapped

for display purposes. riveraf2.eps.
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Fig. 3. Details of the phase refinement, the illustrated region corresponds to a

rectangular region (80× 80 pixels) located at the left and button of the panels

2-b, 2-c and 2-d, respectively. (a) Approximated phase. (b) Mask. (d) Refined

phase. riveraf3.eps.
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Fig. 4. Synthetic fringe pattern (top–left) and a computed phase propagation

sequence. riveraf4.eps.
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Fig. 5. Closed fringe analysis. (a) Fringe pattern. (b) Gray scale plot of the row

(top) and the column (bottom) that crossing at the fringe center. (c) Binary

map of fringes. (d) Coherency map. (e) Computed phase. (f) Rewrapped phase,

for display purposes. riveraf5.eps.
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Fig. 6. Phase tracker reconstructions with (a) RPT reported in ref.9 (b) RPT

with join estimation of the phase, f , and the contrast, b.12 riveraf6.eps.
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