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Abstract—We present a framework for image segmentation based on quadratic programing; i.e. by the minimization of a quadratic
regularized energy linearly constrained. In particular, we present a new variational derivation of the Quadratic Makov Measure Field
(QMMF) models that can be understood as a procedure for regularizing the model preferences (memberships or likelihood). We
also present efficient optimization algorithms. In the QMMFs the uncertainty in the computed regularized probability measure field is
controlled by penalizing the Gini’s coefficient and hence it affects the convexity of the QP problem. The convex case is reduced to
the solution of a positive definite linear system and, for that case, an efficient Gauss—Seidel scheme is presented. On the other hand,
we present a efficient Projected Gauss-Seidel with a subspace minimization for optimizing the non—convex case. We demonstrate the
proposal capabilities by experiments and numerical comparisons with interactive two-class segmentation as well as in the simultaneous
estimation of segmentation and (parametric and non-parametric) generative models. We present extensions to the original formulation
for including color and texture clues as well as imprecise user scibbles in an interactive framework.

Index Terms—Image segmentation, Quadratic programming, Interactive segmentation, Computer vision, Markov random fields,

Information measures, Subspace minimization.

1 INTRODUCTION

MAGE SEGMENTATION is an active research topic in

computer vision and image analysis. It is a core pro-
cess in many practical applications, see for instance the
listed in [1]. Image segmentation is an ill-posed problem
that is task and user dependent; this is illustrated by the
three possible segmentation of a single scene in Fig. 1.
Among many approaches, methods based on Markov
Random Field (MRF) models have become popular for
designing segmentation algorithms because their flexi-
bility for being adapted to very different circumstances
as: color, connected components, motion, stereo dispar-
ity, etc.; as for example: [1], [2], [3], [4], [5], [6].

The MRFs approach allows one to express the label as-
signment problem into an energy function that includes
spatial context information for each pixel and thus
promotes smooth segmentations. The energy function
codifies the compromise of assigning a label to a pixel by
depending on the value of the particular pixel and the
value of the surrounding pixels. Since the label space is
discrete, frequently, the segmentation problem requires
of the solution of a combinatorial (integer) optimiza-
tion problem. In that order, max—flow/graph—cut based
techniques are among the most successful optimization
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Fig. 1. Multi-class segmentation of a same scene ac-
cording to different criteria (codified in the user scrib-
bles). The columns correspond to segmentations by color,
semantic objects and planar regions, respectively. The
segmentation were computed with the multi-class EC—
QMMF algorithm using color histograms, see section 5.1.

algorithms [7], [8], [9], [10], [11]. In particular, graph-
cut based methods can solve the binary (two labels)
segmentation problem in polynomial time [5]. The search
for faster algorithms is, indeed, an active research topic.
Recently, some authors have reported advances in the so-
lution of the multi-label problem. Their strategy consists
in constructing an approximated problem by relaxing the
integer constraint [12], [13]. Additionally, there are two
important issues in discrete MRFs: the reuse of solutions
in the case of dynamic MRFs [8], [14] and to measure the
uncertainty in the label assignement [14].

However, the combinatorial approach (hard segmen-
tation) is neither the most computationally efficient
nor, in some cases, the most precise strategy for solv-
ing the segmentation problem. A different approach



is to directly estimate the uncertainties on the label
assignment (memberships) [1], [4], [6], [15], [16]. In the
Bayesian framework, such memberships can naturally
be expressed in terms of probabilities—leading to the
named probabilistic segmentation (PS) methods.

In this work, we present new theoretical insights,
extensions and computational efficient algorithms to the
recently reported PS method named Quadratic Markov
Measure Field (QMMF) models [1]. In particular, we
demonstrate that the data term (potential) in QMMFs is a
dissimilarity measure between discrete density distribu-
tions and satisfies the here proposed design guidelines
for PS methods. We also present efficient optimization
algorithms proper for the two-classes (binary) and multi-
classes segmentation problems. We demonstrate that the
solution to a convex QMMF is computed by solving
a linear system. On the other hand, since the entropy
control proposed in Ref. [1] affects the convexity of the
quadratic programing problem, then we propose a pro-
jection strategy combined with a subspace minimization
method for the nonconvex QMMEF case [17]. In addition,
we include extensions to the QMMEF framework that
widen its capabilities.

Preliminary results of this work were reported in [18],
[19], [20], [21]. We organize the paper as follows. In order
to make this paper self contained, Section 2 shows a brief
review of the original Bayesian derivation of the QMMF
models. Section 3 presents a new variational justifica-
tion of the QMMF models. The new QMMF viewpoint
shows that the data term is a dissimilarity measure (an
information measure) between discrete density distribu-
tions that preserves class preferences. Additionally, the
presented framework demonstrates that the low entropy
requirement (used in the original derivation [1]) is not a
constraint in the QMMF models. Section 4 presents new
efficient optimization algorithms. Then, experiments that
demonstrate the method performance are presented in
Section 5. Finally, our conclusions are given in Section 6.

2 BRIEF REVIEW OF ENTROPY—CONTROLLED
QuADRATIC MARKOV MEASURE FIELD MoD-
ELS: THE BAYESIAN DERIVATION

First we introduce the notation used in this paper. We
denote by r a pixel position in the image. Let £ = {r} be
the set of sites of a regular lattice that defines the image,
then R C L denotes the region of interest. Moreover,
K ={1,..., K} denotes the set of index classes and

$K ={zeR¥ |1T2=1,2 >0} (1)

is the simplex whose elements are probability measures;
where the vector 1 has all its entries equal to one and
its size is defined by the context. In our notation, given
2€RF then 2 =0 < z,>0fork=1,2,..., K.
Recently, in Ref. [1] the Entropy Controlled Quadratic
Markov Measure Field (EC-QOMMF) models for image
multiclass segmentation were proposed. Such models are

computationally efficient and produce Probabilistic Seg-
mentations of excellent quality. Whereas hard segmen-
tation procedures compute a hard label for each pixel,
PS approaches (as QMMFs) compute the confidence of
assigning a particular label to each pixel. In the Bayesian
framework, the amount of confidence (or uncertainty) is
represented in terms of probabilities. In that framework
pk(r) denotes the unknown probability of the pixel 7 € R
to belong to the class k € K. Such a vector field p is a
probability measure field; i.e., p(r) € $¥.

The QMMF formulation constructs on the generative
model:

g(r) = p(r)"1(r) +n(r) @)

where g is the observed image, the images vector I =
[[1, 15, ..., Ik]T is generated with a parametric model set
® with parameters ¢. Then we use indistinctly I;(r) or
®(r,0y) for the r—pixel-value in the kth image model;
where the parameters § = {6;}, Vk, are known or esti-
mated. A simple example of model is ®(r; 0;) = 05 +n(r).
In such a case the image regions are constant planes
defined by the scalar 6. In addition, 7 is a possible noise
(or residual) and the probability measure p(r) can be
understood as a matting vector [1], [16].

In the original proposal, the QMMF models are de-
rived from the observation model (2), assuming i.i.d.
Gaussian noise (with zero mean and standard deviation
o) and measure vectors p(r) with neglected entropy;
i.e., the product py(r)pi(r) ~ 0 for k # [ at any pixel
r [1]. Hence in the Bayesian regularization framework,
the conditional probability of the observation given the
matting factors and the image-models is given by:

Plglp6) o exp —2;anm—p<r>T<b<r,9k>n2]
: 3)
~ exp ZP(T)TDTP(T)l (4)

where the approximation (4) is valid in the low—entropy
limit;
D, < diag( —logd(r,0)) 5)

is a diagonal matrix associated with the pixel r. More-
over, 9y (r,0) € $¥ is the normalized probability measure
vector

01l 0) o xp | 5 5 lg(r) — 20| ©)

where the vector ¢ is the normalized version of the vector
v: the preferences of the data for the image-models; this
leads us to the next definition:

Definition The likelihood (model preference) vy (r,6) is
the conditional probability of observing a particular pixel
value g(r) by assuming that such a pixel is taken from
the image Ij:

def

ur(r,0) = P(g(r)|p(r) = €*, ®(r,6;))),  (7)



where ek is the kth canonical basis vector.

Last derivation is based on the assumption of Gaussian
noise 7). The generalization to other distributions, differ-
ent from the Gaussian, is justified in the low entropy
limit, see [1] for more details.

Following [1], given the model preferences o(r,§) €
SX, then an effective Probabilistic Segmentation (PS) of
g can be computed by solving the quadratic programing
(QP) problem:

minU(p,0) st p(r) € S5, for reR 8)
p
where the cost function has the form:

U6 = 53 Q)00

reR
A B Y RGO
reR (r,s)

where the scalars ;4 and A are hyper-parameters that
control the contribution of each term. The first term in
(9) is named the data term and attaches the solution, p,
to the likelihood, ©; the corresponding potential is given
by

Q(p(r), 0(r,0)) = p(r)" Drp(r)

where D, is given in (5). The second term in (9) is
the Gini’s index that controls the solution’s entropy.
The solution’s entropy is penalized (promoted to be
small) with p > 0 and conversely if y < 0. The third
term in (9) is named the regularization one and A > 0
promotes spatially smooth solutions. The corresponding
regularization potential is given by

R(p) = [lp(r) = p(s)]13 (1)

and (r,s) = {(r,s) € R| ||r — s|| = 1} denotes the set of
first neighbors.

In [1], the optimum p is computed with a Projected
Gauss-Seidel (PGS). Such an algorithm iterates Egs. (16)-
(18) in [1] with a clipping of negative values (projects to
Zero).

In addition, the QMMF models allows one the join
estimation of the segmentation and the image-model
parameters ¢. In such a case the memberships, p, and
the parameters, 6, are estimated by alternating partial
minimizations until convergence:

(10)

1) p < argmin, U(p,0) s.t. p € $%, keeping fixed 0,
2) 0 < argming U(p,0), keeping fixed p.
In order to guarantee convergence, it is required the
descent of the global energy at each iteration, thus,
for computationally efficiency purposes, these minimiza-
tions can approximately be achieved.

3 VARIATIONAL MOTIVATION FOR QMMFs

In the previous section is shown that, based on the
Bayesian regularization framework, the QMMF energy
cost (9) is derived from the observation model (2) and
by assuming that the matting factor p has low entropy.

Although in the low—entropy limit there exist many po-
tentials that can approximate the conditional probability
(3). For example, let 2,y € $X be discrete densities, then
in the low-limit entropy any of the following approxi-
mations are valid:

> log(afyk) & Y arlogye & > a} log yx.
k k k

However, the Q—potential is preferred because it pro-
duces probabilistic segmentations of good quality and
it has important algorithmic advantages. In this section,
we present a study on the Q—potential that enlightens
its properties and becomes unnecessary to enforce the
low—entropy constraint. We also present interesting ex-
tensions to the original QMMF model.

(12)

3.1

As we have said, a Probabilistic Segmentation (PS) con-
sists in estimating the probability measure field p such
that py(r) expresses the probability that the label kth is
the correct one at the pixel r. A simple PS is given by the
models preferences (likelihoods) ©. However, the simple
addition of noise, 7, in the data, g, may produce an
erroneous segmentation because the probability measure
field ¢ is also noise corrupted and needs to be filtered.

If one adopts a variational approach for filtering o,
then a regularized energy needs to be minimized. Such
an energy has, in general, two kind of terms: a data term
and a regularization term. The first one attaches the regu-
larized PS with the data (the likelihood ¢ in this case) and
the regularization term promotes a spatial smoothness.
Both terms are defined by potential functions. In a clas-
sical sense, a potential that promotes “data consistency”
has minimum energy when the regularized PS equals the
likelihood. Hence, it is natural that those potentials are
written in terms of distances (norms) or robust functions
(based on M-estimators) [22]. However, we need to take
into account that we deal with vectors of probability
measures (p(r),9(r) € $¥,Vr € R). Thus, we can also
use measures of differences between discrete densities,
known as information measures. All distances are infor-
mation measures but not all the information measures
are distances. For example, the popular Kullback-Leibler
divergence [23], [24], [25]:

Probabilistic Segmentation

KL(z,y) = Zxk log %, with z,y € $% (13)
Yk
k

is not symmetric, ie., KL(z,y) # KL(y,z). Thus, we
have a large set of possibilities for choosing and con-
structing the potentials in our regularized energy. How-
ever, we believe that the chosen information measure
(potential) should fulfill a minimum requisite introduced
in the following definition.

Definition Consistence Condition Qualification (CCQ).
The potential (information measure) M (x,y) preserves
the CCQ if given the measure vector z, then probability



measure r* = argmin, M (z,y) with € $¥ satisfies:
argmax,, rj = argmaxy Y.

If the CCQ is fullfiled for the couple of vectors 2 and
y, for a given information measure M, then we said that
x is CCQ w.r.t. y. CCQ implies that the allocation of the
mode in the model preferences, y, is preserved in z*.
It means that the hard segmentation computed with a
winner—takes—all (or Maximum Likelihood) estimator is
undistinguished if it is acquired from y or z*. As we
said, CCQ is the minimum requirement that one should
impose to the data term of a variational approach to
PS. A more restricted requisite is to preserve the order
preferences, see next definition.

Definition Order Consistence Condition Qualification (O-
CCQ). The potential (information measure) M (z,y) pre-
serves the O-CCQ if given the measure vector y, then
probability measure z* = argmin, M(z,y) with x € $¥
satisfies: x} > x} <= yr > yi, VEk, 1€ K.

The CCQ and O-CCQ definitions are guides for de-
signing probabilistic segmentation methods using a Vari-
ational Regularization approach; where the potentials
are intuitively chosen by the algorithm designer among
information measures, norms or semi-norms.

3.2 On The QMMF Data term

We note the following.

Proposition 3.1: The potential function @ (z,y) defined
in (10) is a dissimilarity measure (or information mea-
sure) between the discrete distributions z and y and
preserves O-CCQ.

To prove that @ (z,y) is an information measure we use
the generalized (o, 3, v, §)—information measure between
two probability density functions [24]:

a,B—a Y, Y—6
DR TRYL |~ TY

exp(a — ) —exp(y —9)’

with z,y € $¥. Then we note that (14) reduces to the Q-
dissimilarity (10) when o = v = § = 2 and in the limit
as 3 — 2, a direct result of the L'Hospital’s rule.

Now, we prove that the ()-dissimilarity preserves O-
CCQ. First we note that D, in (14) is a positive definite
diagonal matrix. In particular, any positive definite di-
agonal matrix is a Stieltjes matrix (see Appendix A) and
fulfill the general result stated on the next proposition.

Proposition 3.2: Let A is a Stieltjes matrix then the
solution to

1835 (.y) =

(7.6) (14)

argmin,, %zTAz st. 17z =1 (15)
is given by x = 7A711; where the positive Lagrange’s
multiplier 7 = (17A7'1)7! acts as a normalization
constant. Moreover = > 0 (is a probability measure
vector). Moreover if A is a diagonal matrix then x is
CCQ w.rt. the vector composed with the diagonal of A.

The proof of proposition 3.2 is presented in the Ap-
pendix A. Then, from this proposition and noting that

1 1

(=logyr)™ > (=logy))™t < wyi > yi, we can con-
clude that the QMMEF data term preserves the order on
the minimizer distributions (x, > z; <= yi, > y;) and
hence is O-CCQ. Note that the last result is preserved
for unnormalized likelihoods (zy > z; < ay; > ay,
with a scalar a # 0 ); i.e. the QMMF models can directly
use unnormalized likelihoods v.

The derivation of the QMMF data term (in partic-
ular the ()-dissimilarity) presented in this section is
an algebraic derivation. It is not in the sense of a
Bayesian derivation where the data term is fully de-
fined by the observation’s model and the residual dis-
tribution. Indeed, both derivations are complementary,
the Bayesian derivation allows us to have an initial
formulation. Then such a formulation is approximated
using a computational efficiency criterion. On the other
hand, the algebraic derivation, based on information
measures, validate the approximation used and allows
us to propose new extensions.

3.3 Relationship with other information measures

For comparison purposes, we review three information
measures: the Kerridge’s inaccuracy, the Q-dissimilarity
and the Euclidean distance. Although they are CCQ con-
sistent there are important differences in the computed
solution and algorithmic implications. In [1] is remarked
that quadratic potential (10) [¢ = v = § = 2 and the limit
as f — 2 in (14)] is justified by its numerical advantage:
it leads to a quadratic programming problem. However,
here we show that such a selection has beneficial impli-
cations on the solution p itself.
First we analize the Kerridge’s inaccuracy:

K(z,y) = —Zxk log yy. (16)
k
This can be derived from (14) with « = v =§ = 1 and
B — 1 [23], [26]. Such a potential is prone to produce
hard PS with low entropy, see the next proposition.
Proposition 3.3: The solution to

argmin, K(z,y) st 1Tz =1,2>0 17)

is z = e*"; where e*” is the k*—th vector of the standard
orthonormal basis and &£* = argmax; . Hence x is an
indicator vector and holds CCQ but do not O-CCQ.

The proof is presented in the Appendix A. This result
can be contrasted with the corresponding for the Q-
dissimilarity: the Kerridge’s inaccuracy results in a hard
labeling zero—entropy solutions), this is a disadvantage
due to the lack of information on the solution’s confi-
dence. In addition, the Euclidean distance

1
E(w,y) = 5l -yl

[base of the Gaussian Markov Measure Models
(GMMFs)] has the straightforward solution:

(18)

r=y (19)

and evidently holds O-CCQ.



TABLE 1
Some dissimilarities between the discrete distributions p and q.

Name Information Minimizer p O-CCQ Optimization Gaussian model
Measure given ¢ Problem parameters
Kerridge — Z z logy T = Lok 2 k21 No Combinatorial optimization | Easily computable
z Tk k k 0 otherwise. Y
-1
Q-dissimilarity || —4 >, @7 logyx Ty = % Yes Quadratic Programming Easily computable
1
Euclidean % Z k(zk — )2 T = Yk Yes Quadratic minimization No appropriate

Table 1 presents a summary of the discussed informa-
tion measures. We can see that both the Q-dissimililarity
and the Euclidean distance lead to Quadratic optimiza-
tion problems. However, the Q—dissimilarity is preferred
over the Euclidean distance because it has experimen-
tally demonstrated that produces results with lower
entropy [1]. This is an important property in the case
of the joint estimation of segmentation and distribution
parameters, see Section 3.4.3. In contrast, the use of the
Euclidean distance results in a collapse to a single model
(1], [20].

3.4 Generalizations to QMMFs
3.4.1 Inter—Pixel Affinity

In this section, we introduce the inter—pixel affinity w;.,
as a likelihood that the pixels r and s belong to the same
class. Let be the quadratic regularization potential

R(p(r),p(s)) = llp(r) — p(s)[|5wrs

then the purpose of w is to lead the class border to
coincide with large image gradients. For example, w can
be computed with :

(20)

~y

v+ 1T{g(r)} = T{g(s)}I3
where v is a positive parameter that controls the edge
sensibility and 7' is in general a nonlinear transformation
that depends on the task. Usually T is a transformation
of the space color for the pixel value (e.g. RGB space to
the Lab space [18]). However the Lab-space distance (as
the color human perceptual distance) hardly represents
the inter—class (objects) distances. Inter-class distances
are context and task dependent. For instance, if the task
is to segment the image in Fig. 1 into semantic regions
then the weights should be close to one in the whole
house facade, independently if there are large color
gradients within. Here, we propose a new inter—pixel
affinity measure based on the marginal likelihoods and
thus incorporates, implicitly, the non-euclidean distances
of the feature space. We chose T{g(r)} = 9(r, 8), then w,
is a prior that the pixels  and s belong to the same class.

21)

wTS

3.4.2 Color/Texture Based Interactive Segmentation

We propose an interactive method for image segmenta-
tion with color and texture features. The purpose is to
demonstrate that the final segmentation is improved by

combining multiples sources (likelihood vectors). This
combination of sources is naturally implemented in our
proposal. The method constructs on the computation
of significance degrees of color/texture features and it
is based on our previous work in [27]. Such signifi-
cances are used for weighting the original features. We
introduce the method using color/texture descriptors the
coefficients based on the discrete cosine transform (DCT)
of an image patch centered at r. Such image patchs have
size equal to W x W with three layers (the rgb—channels).
Then the feature vectors for the hand-labeled data are
denoted by §(r) € R3*W*. The method here presented
is general enough and accepts others color or texture
features.

Let 7 = {1,2,...,W?2} be the DCT coefficient index
set and ﬁ,(f )(r) the normalized likelihood of pixel r to
belong to the class k using only the j € J feature (in
rgb). Then, we assume that the confidence factor of a
given feature j is its capability for predicting the correct
pixels class. Such a confidence «; is large if the model
preferences v,(j )(r) of the hand-labeled pixels are large
for their respective models (and small for the other ones).
In particular the confidence of the jth source for the kth
class can be estimated with

1 NZ
A = 7|Rk| Z U](Cj)(’/‘, 9)

re€RL

(22)

If the likelihoods are normalized (3, v,(j )(r) = 1,Vj,7)
then «;;, = 1 represents a high confidence on the source
jth for predicting the kth label. Then the confidence of
the feature j on all the classes is a; = ), o, and its

normalization:
Q;

o

Qj =

(23)

Finally we propose to use
D, =Y a;DY
J

in the QMMF data term; where D, is the matrix in the
quadratic norm in (10) and DY’ = diag( — log %@ (r, 6))
is the contribution to the energy of the jth feature at the
rth pixel.

(24)

3.4.3 On the Image—Model Parameter Estimation

In Refs. [1], [20] we studied the particular case estimating
the mean of Gaussian Likelihood functions. In that case



the model preferences (likelihoods) are Gaussians of the
form

(25)

ok(r,6) = ——— exp (9(r) — my)?

V2moy,

then the parameter estimation step is computed with the
formulas:

T 5 2
20},

2, Pi(r)g(r)
my = =5 26
S VTS 2
2 2
0_2 —_ Zr pk: (T) (g(T) - mk) ) (27)
* >, Ph(r)
The  proof is  straightforward of  solving

Vo>, Q(p(r),o(r,0)) =0 for the parameters. Excepting
the precise definition of the weight, p?(r), formulas (26)
and (27) are similar to those used in the Expectation-
Maximization (EM) procedure. The class mean, my,
computed with (26) can be understood as the mean of
the data contributions to each class, k. Such contributions
correspond to p2(r).

Inspired in last analysis we propose a procedure for
updating non-parametric likelihood density functions
(as Histograms or Kernel-Histograms) in the QMMF
framework. The procedure is motivated in the multi-
class interactive segmentation context. We assume that
some pixels in the region of interest, R, are labeled such
that Rj, C R is the subset of labeled pixels with label k.
Then we define the multimap image A as A(r) = k if
r € Ry and A(r) = 0 if r € R\ |J, Ri. Hence A(r) =0
indicates the unlabeled pixels.

Thus, let g be an image such that g(r) € ¢, with
t = {t1,t2,...,tr} are the pixel values (maybe vectorial
values as in the case of color images). Then the regular
histogram for the kth class is computed with:

Hi(t) = |R—1k|26<|t—g<r>|> (28)
reR
| Zeer A B o))

Zren S(A(r) — k)

where |Ry| is the cardinality of the set R and § is the
Kronecker’s delta function. By analogy between (26) and
(29), we can understand the term §(A(r) — k) as the
contribution of the r—pixel to the histogram Hj,. Then in
a QMMF procedure, and if an estimate of p is available,
we can reestimate (update) the histograms with:

>rer PR(1)A(E = g(r)])
ZTE'R pi(r) .

Experiments that demonstrate this procedure are pre-
sented in subsection 5.4.

Hy(t) =

(30)

4 MINIMIZATION ALGORITHMS

In this section we present two new efficient minimiza-
tion algorithms for solving the QMMEF’s optimization
problem. The algorithms here presented are simpler,
require less memory and have faster convergence than

the original QMMF algorithm reported in [1]. First, we
present a discussion on the convergence of the Projected
Gauss-Seidel with Sub-Space Minimization algorithm.
Then we presents a memory efficient algorithm that
update entry-wise the measure field p. Although the
scheme is initially developed for the QMMFs convex
case, we show that it can be adapted to the non-convex
case using a subspace minimization strategy. Finally, we
present a faster algorithm with a vector-wise update
scheme.

4.1 On the Convergence of the Projected Gauss
Seidel with Subspace Minimization

Consider the general QP problem

min F(z) = %a:TAa: s.t. x>0 (31)

x

where the Hessian matrix A is a no—definite matrix with
non-zero diagonal elements. Then we iterate of two
steps: i) a Projected Gauss-Seidel (PGS) update scheme
and ii) a Subspace Minimization (SSM).

i) PGS. First, we consider the iterative update

formula
o 2t 4 bt (32)

(for t = 0,1,2,..., until convergence) where
u! = —e*VF(z)Te*, with k = 1 + (t mod K),
is a descent direction, e* the kth basis vector of
the canonical base. The step size h is computed
using the Newton formula: h = (3/Agi, where
the constant 3 is chosen such that ™! is kept
feasible: z't! > 0.
Now, by construction, u’ guarantees that z, is
the only updated element, then this algorithm
can be written simply as:

A.tko t\T k
kkT 614}: (I) € }7 (33)

with Ay, # 0. This update formula is, indeed,
the PGS scheme for (31).

ii) SSM. Let = be the current point computed the
PGS, then A = {k € K | 2, = 0} is the current
active constraint set. Thus, in order to accelerate
the convergence one can combine the upgrade
of z entry by entry with another strategy that
takes a subset of PGS updated entries. Let & be
the elements z; such that i ¢ A. Thus, let A be
the submatrix of A whose columns correspond
to elements in Z. An approximated solution to
this subproblem can be found with a Gauss
Seidel scheme too. However, it is more effective
to use a Newton’s method with step size that
guarantees a feasible point.

The described PGS-SSM is, indeed an active set meth-

ods for quadratic potentials [17].

Remark. The iteration of the PGS step by itself con-

verges to a solution (local minima). According with our

' max {O,



experiments, the SSM step improves significantly the
convergence time.

Note that if the problem (31) includes an equality con-
straint of the form Az = b where the matrix A has linear
independent rows, one can use a variable elimination
technique, see Ref. [17], in order to write the original
problem in form of (31). In our particular case, the
constraint 17p(r) = 1 (for all r and for a selected class i)
can be eliminated by substituting p;(r) =1 -3, pk(r)
into the energy U(p).

4.2 Memory Limited Gauss Seidel Scheme
Let d be a vector field defined as

de ~
di(r) el log O (1) — p.

Then, if the entropy control p is chosen such that the
energy (9) is kept convex (dy(r) > 0, Vk,r) then the
computation of p consists in solving a linear system. This
is stated in next proposition.

Proposition 4.1: (Convex QMMF) Let U(p) be the en-
ergy function defined in (9) and assume d, > 0, then the
solution to

(34)

minU(p) st 17p(r) =1, for r€Q

p
is a probability measure field: it holds p, > 0.
Proof: We present an algorithmic proof to this Propo-
sition. The optimal solution satisfies the Karush-Kuhn-
Tucker (KKT) conditions:

pi(r)de(r) + X Y (or(r) = p(s)) wes = m(r)

SEN,.

(35)

]lTp("r) =1 (36)

where 7 is the vector of Lagrange’s multipliers. Note that
the KKT conditions are a symmetric and positive definite
linear system that can be solved with very efficient algo-
rithms such as Conjugate Gradient or Multigrid Gauss-
Seidel. In particular, a simple Gauss-Seidel (GS) scheme
results from integrating (35) w.rt. k& (i.e. by summing
over k) and using (36):

7(r) = 2d(r)p(r) @)
Thus, from (35):
pi(r) = bi(r) [pr(r) + m(r)] (38)
where we defined:
o) Z NN weap(s) (39)
SEN,.
and ]
by (r) < (40)

di(r) + A Zse/\/,. Wy

Egs. (37) and (38) define a two step iterative algorithm.
Moreover, if (37) is substituted into (38), we can note that
if an initial p is chosen positive, then the GS scheme (38)
will produce a convergent nonnegative sequence. O

In addition, the entropy of the solution p can be
controlled by means of the ;1 parameter that penalizes
the Gini’s (entropy) coefficient. A positive i reduces the
entropy but may result in a negative value of d(r), see
(34), and hence it leads us to a nonconvex QP problem. In
this case, we can use the projection strategy for enforcing
the non-negativity constraint. Then at each iteration, the
projected p can be computed with

pi(r) = max {0, by, (r) [p(r) + = (r)]} -

Algorithm 1 summarizes the PGS procedure for updat-
ing a single vector p(r). The complete process repeats the
PGS step for all the pixel positions until convergence.
One can see that the GS scheme, here proposed [Egs.
(37) and (38)], is simpler than the originally reported in

[1].

Algorithm 1 Simple Projected Gauss Seidel for QMME.
Update procedure for the p(r) vector.

(41)

1: {Require}

i Let K be the number of classes, A\ > 0 the
regularization parameter, ¢ the normalized
likelihood and w the intra-pixel affinity;

ii. Given di(r) computed with (34) ;

iii.  Let r be the current pixel position and p > 0;

2: for all k£ do

3:  Update =(r) with (37);
4:  Update py(r) with (41);
5: end for

In order to accelerate the algorithm convergence, we
combine the PGS and the Subspace Minimization strate-
gies. First we update p(r) with the PGS scheme by
neglecting the nonnegative constraints. Next, at each
pixel, we estimate the active set A, from the non-positive
coefficients in p(r). Then, we refine the previous solution
by fixing p;(r) = 0 for i € A, and solving (8) for the
remaining p;(r) with i ¢ A,. If an updated coefficient
results negative, then the active set A, is updated and
a new partial solution is computed. The partial solution
after few subspace minimizations (we used 2 recursions
in our experiments) is used as starting point for a new
PGS iteration. The procedure details are in the Algorithm
2. Note that the subspace minimization (line 6) can
be computed with the same algorithm, in a recursive
procedure.

In Addition, the GS scheme for the binary (two classes)
segmentation can be simplified with the elimination of
the variable ps (using p» = 1 — p1). In such a case, the
GS update formula is given by

(r) = da(r) + A ZseNT Wrsp1(5)
Py = di(r) +da(r) + XY e pr Wrs
Finally, we can also use the projection strategy in the

non-convex case. In such a case, the projection needs to
take into account both py(r) and [1 — py(r)]; i.e.,

(42)

p1(r) < max{0, min{p;i(r),1}}. (43)



Algorithm 2 Non-Convex QMMEF with subspace mini-
mization

1: {Initialization}

i. Let K be the number of classes, A > 0 the
regularization parameter, ¢ the normalized
likelihoods and w the intra-pixel affinity;

ii. Compute dj(r) with (34) ;

iii.  Compute by (r) with (40) ;

V. Initialize p > 0; {e.g. p = ¥}

2: repeat
3.  forall r do
4 Update p(r) with Algorithm 1;

5: Compute an estimate of the active set for p(r):
A={keK|[p, <0}

6: Solve approximatelly (8) for p, fixing p; = 0 for
i € Aand p(s) for s # r.

7: Set p(r) = pp-

8: end for
9: until convergence

4.3 Vector-wise Gauss Seidel Scheme

Since the iterative update formula (38) [and its projected
version(41)] requires of a reduced amount of memory,
its is proper for processing large data, as video or
tomographic images (MRI or TC volumes). On the other
hand, we can improve the computational performance
(convergence rate) with an extra memory cost if, instead
of updating p(r) component by component, we update
the entire vector in a single step. First we write the KKT
conditions (35) for the full vector p(r):

Dp(r) + X 3 (p(r) = p(s) wrs = 7(r)1. (44)
SEN,.
Note that the KKT conditions (44) and (36) still are a
symmetric and positive definite linear system. Following
a similar algebraic procedure as the one used in section
4.2 we have the positive definite and diagonal dominant
system:

Hyp(r) = pr (45)
with H, = D, + A, — 1d", with 1 = 1/K; where we
define the diagonal matrix A, def ()\ Zye e wrs> I and
the kth component of the vector p(r) is computed with
(39). Then, the inverse matrix H, ! can efficiently be
computed with the Sherman-Morrison formula. Thus

B, 1d(r)" B,
1 —17B,d(r)
where we define the positive diagonal matrix B, =

diag[ b(r)] with the elements of b(r) computed with (40).
Hence, we note that

H ' = B, + (46)

. 1 dp(r)
1"Bd(r) = = 1
(=22 be(r)
ke
because A > 0 and then Z’:Eii = dk(r)-&-d)\kg:) PAEE L

Thus H~! = 0 (has non negative elements) is positive

definite (it does not have rows equal to zero). Conse-
quently, the iteration of

p(r) = H7'p(r), ¥r (47)

keeps p > 0 if the initial p is chosen positive.

Now, we give an extra step for simplify the update
formula. First, we note that B,1 = b(r)/K. Second, we
define pre-computable vector (independent of p):

- 1

d(T)T = md(T)TBT. (48)
Next, we define the product:
m(r) = d(r)"p(r). (49)

Finally, the kth component of p(r) in (47) can be com-
puted the simple formula:

pr(r) = bi(r) [pr(r) + 7(r)] .

Note the similarity with (39), the difference is the for-
mula for computing 7; compare (37) with (49). The
complete procedure is summarized in Algorithm 3.

(50)

Algorithm 3 Vector-wise GS for Convex QMMEF
1: {Initialize as Algorithm 2.}
2: Compute d(r)T with (48);
3: repeat
4:  for all r do
5: Compute 7 (r) with (49);
6
7
8

Update pg(r) with (50) for k =1,2,..., K;
end for
: until convergence

Note that, for the non-convex case, the substitution of
the PGS step in Algorithm 2 by the vector-wise update
scheme may produce a sub-optimal solution. This is
because the clipping of negative values in the updated
vector [with (50)] does not necessary guarantee to reduce
the energy. However, according with our experiments,
we have found that such a suboptimal strategy is faster
and produces suboptimal solutions of good quality.

5 EXPERIMENTS

We have presented theoretical aspects and practical im-
plication of the QMMF models. In following experiments
we focus on demonstrating the method capabilities.

5.1

The image segmentation task is obviously an ill-posed
problem, i.e. there exist multiple“valid” segmentations
for a particular image. User interaction is a popular way
for introducing prior (high level) knowledge for seg-
menting images with complex scenes. In this paradigm
the user labels by hand a subset of pixels. Then the
unknown labels are estimated with a segmentation al-
gorithm that takes into account the distribution of the

Multiclass interactive segmentation



Fig. 2. Interactive multi—class segmentations.

labelled pixels and the smoothness of the spatial seg-
mentation. Interactive segmentation is an approach that
allows us to develop general purpose tools. To illustrate
this, we can see three possible segmentations of the
image in Fig. 1. The first column shows scribbles given
by the user and the second column the corresponding
segmentations computed with the method here pre-
sented. The rows correspond to segmentation by color,
semantical objects (house, vegetation, fence, etc.) and
planar regions; respectively.

The likelihood functions are estimated using his-
tograms, as is described in section 3.4.3. Such histograms
are computed using (29). Thus the normalized his-
tograms are computed with hy; = Hy.(t;)/>, He(t;) and
the likelihood of the pixel r to belong to a given class &
(likelihood function, LF) is computed with:

LF, ki — M, Vk‘,
> (hji +€)
with € = 1 x 1078, a small constant. The ¢ scalar intro-
duces an uniform distribution that avoids a possible di-
vision by zero and guarantee positive likelihoods. Thus
the likelihood of an observed pixel value is computed
with vg(r) = LFy; such that i = argmin; ||g(r) — ¢;]|%.

In this experiments, we assume that the user’s labels
are correct; then, in the data term in (9), the sum over
all the pixels in the region of interest, {r € R}, is
replaced by the sum over the unlabeled pixels; i.e., for
{r € R : A(r) = 0}. Alternatively, the sum for all pixels
supposes may be incorrectly hand labelled pixels.

Figure 2 shows multi—class interactive segmentations
computed with the proposed algorithm implemented
in Matlab (in .m and .mex files). Moreover, we use

T{g(r)} = (r) in (21).

61

5.2 Color/Texture based Interactive Segmentation

Texture is evidently an important clue to be consider
in image segmentations. As color Likelihood Functions
(LFs), feature—texture LFs can be learned from user’s
scribbles and can be represented with non-parametric
(or parametric) models. In the case of color, it seems
natural that the joint LFs are represented by 3D his-
tograms (corresponding to the 3D color representation).

Fig. 3. Color and Texture based interactive segmenta-
tions: user’s scribbles (first column), color based segmen-
tation(second column) and color/texture based segmen-
tation (third column)

TABLE 2
Cross-validation results: Parameters, Akaike information
criterion, training and testing error.

[ Algorithm [ Params. [ AIC [ Training | Testing |
Graph Cut X,y 8.58 6.82% 6.93%
Rand. Walk. A,y 6.50 5.46% 5.50%
GMMEF Ay 6.49 5.46% 5.49%
QMMF A,y 6.04 5.02% 5.15%
QOMMF+EC A, 3.58 3.13% 3.13%

Since texture features vector are in general represented
in dimensions higher than 3, one can use a dimension
reduction technique (as PCA) in order to find a represen-
tation with linearly independent coordinates and then
use low-dimensional histograms. Different to the PCA
approach, in section 3.4.2 we proposed method that finds
the most significant features for segmenting a particular
image: it takes advantage of the information codified
in user’s scribbles. In the experiment, we use the five
most significant features (largest ) and 3D histograms
as Likelihood Function for each cosine transform rgb-
coefficient. According to our experiments, the use of the
whole feature vector produces similar results, but its
is more efficient in memory usage to use just the five
more significant DCT coefficients. The Fig. 3 presents
comparative results of a color-based segmentation and
the proposed color/texture based segmentation.

5.3 Quantitative Comparisson: Image Binary Inter-
active Segmentation

Next, we summarize our results of a quantitative study
on the performance of the segmentation algorithms:
the proposed Binary variant of QMMEF, the max—flow
(min-graph—cut), GMMF and Random Walker (RW).
The reader can find more details about this study in



TABLE 3
Adjusted parameters for the results in table 2.

[ [ GC | RW [ GMMF [ QMMF | EC-QMMF |
A(x10%) [l 0.128 | 2700 | 2100 4.7 230
7(x10°) 27 3.7 3.7 9.14 5700
pu(x10?%) — — — — —570

Fig. 4. Segmentation example from the Lasso’s data set.

our technical report [19]. We used our implementation
for the GMMF and RW algorithms, and the authors’
implementation of the max—flow/graph—cut algorithm
described in [28] for minimizing the energy:

v = Y {b<r>@1<m+u—b<r>wz<r>
r:A(r)=0
5 X wnli- 000 -6} 62
SEN,.

with b(r) € {0,1}.

The task is to segment color images into background
and foreground allowing interactive data labeling. The
generalization capabilities of the methods are compared
with a cross-validation procedure [25]. The comparison
was conducted on the Lasso benchmark database [7]; a
set of 50 images available online [29]. Such a database
contains a natural image set with their corresponding
trimaps and the ground truth segmentations. Actually, a
Lasso trimap is an image of class labels: no-process mask
(M = L\R), background, foreground and unknown;
where no error is assumed in the initial labelled pixels.
First column in Fig. 4 shows an image from the Lasso
database and second column the corresponding trimap;
the gray scale corresponds with the above class enumer-
ation. In this case, the region to process is labeled as
“unknown” and the boundary conditions are imposed
by the foreground and background labeled regions.

We opted to compute the weights using the standard
formula (21) (i.e. T{g(r)} = g(r) in (21) ). In order to
focus our comparison on the data term of the different
algorithms: QMMEFE, GC, GMMF and RW. In this task,
empirical likelihoods are computed from the histogram
of the hand labeled pixels [8]. Figure 5 shows examples
of segmented objects from images in the Lasso database.
One set corresponds to the results of the GraphCut (GC)
considered the estate of the art and the second group to
the EC-QMMFE.

The hyper parameters (A, i1, y) were trained by mini-
mizing the mean of the segmentation error in the image
set by using the Nelder and Mead simplex descent [30].
We implement a cross—validation procedure following
the recommendation in Ref. [25] and split the data set

10

R
%

(a) GraphCut

4

(b) EC-QMMF

Fig. 5. Segmented objects with GC (upper group) and
EC-QMMF (lower group) algorithms.

into 5 set s, 10 images per set. Figure 4 shows an example
of the segmented images. Table 2 shows summarizes
the Akaike Information Criterion (AIC) [25] and the
training and testing error. The AIC was computed for the
optimized (trained) parameters with the 50 image in the
database. Note that the AIC is consistent with the cross-
validation results: the order of the method performance
is preserved. Moreover the QMMEF algorithm has the
best performance in the group. Table 3 shows the learnt
parameters for the evaluated methods. In the case of the
EC-QMMEF, the computational time was about 0.2 sec.
for the Lasso images. This automatic learning parameter
process confirms that GMMF and RW, as close variants,
have similar performance [19]. However, it produces two
unexpected results:

i. Our GC based segmentation improves significantly
the reported results in [7]. Indeed, our basic GC
formulation of the method in [8] overcomes, signif-
icantly, the reported results with Likelihood Func-
tions based on Gaussian Mixtures [7].

ii. The learnt parameter ;1 (EC-QMMF) promotes large
entropy. In our opinion, there are three reasons for
such result: the Lasso dataset have a narrow band
of unknown pixels; the trimaps are correct, so that
the class models (histograms) are reliable; and the
hand-segmentations (ground truth) favor smooth
boundaries.

This results remark the importance of the presented
variational derivation for the QMMFs that does not
constraint the entropy to be small (Section 3). However,
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Fig. 6. Simultaneous segmentation and parameter esti-
mation. From left to right: original image (200 x 200 pixels),
noisy image (o = 1.8), segmentation with x = 0 and with
n = 20.

Percent of success
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Fig. 7. Simultaneous segmentation and parameter esti-
mation. Results on 100 Montecarlo experiments: number
of correct successful detected parameters versus the
SNR, see text.

next experiment demonstrates that for the simultaneous
estimation of the segmentation and the model parame-
ters the uncertainty in the solution (entropy) need to be
controlled and small.

5.4 Model parameter estimation

The entropy control allows us to adapt the algorithm
for different tasks. For example, lower entropy produces
better results for the task of simultaneously estimation
of segmentation and model parameters, see Section 3.4.3.
Next, we describe an experiment that demonstrate last
claim. The test image is the one shown in Fig. 6. The
image has 8 regions and the colors correspond to the
vertices of the rgb color—space cube. Then, such colors
are the model parameter my, for £ = 1,2,...,8. The
colors were normalized; i.e. m; = [0,0,0] (black) and
mg = [1,1,1] (white). Then the image was corrupted
with Gaussian noise with different standard deviation
(SNR) levels {c,}. For each noise level, 100 Montecarlo
experiments were performed. Each experiment consisted
of three stages: a) to generate a random noisy image
(with Gaussian noise), b) to initialize 12 means (1.5 the
number of true model number) and c) to estimate the
original image colors (parameters) and the segmentation
with QMMEF algorithm. The last step was implemented
with eight iteration of the Segmentation/Parameter-
estimation steps. We marked an experiment as “success”
if at least a mean (of the 12) converge to each region
My ={z € RE | |z —myl1 <1}, Vk. Figure 6 shows
an instance of the random images (with ¢ = 1.8); its
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Fig. 8. lterative estimation of empirical likelihood func-
tions by histograms of p?>~weighted data. Binary segmen-
tation: initial scribbles, first iteration and second iteration;
respective columns.

failed segmentation with the QMMF with p = 0 (no-
entropy control) and its successful segmentation with
EC-OMMF, 1 = 20. The over-segmentation (in the
EC-QMMF segmentation) can be reduced by grouping
regions, but such a step is beyond the scope of this
work. Figure 7 summarize the Montecarlo experiment
results. The )\ parameter was tuned with the thumb
rule: A = 10(1 + floor(o)); then 4 = 0 for the non-
entropy control case (QMMF) and p = A for EC-QMME.
As the QMMF (p = 0), our implementations based on
Gauss Markov Measure Fields (GMMEF, an early variant
of Random Walker [6]) collapsed to a single model [4].
This limitation of the GMMF model is discussed in [31],
see also [19].

Finally, we demonstrate the generalization of the
QMMFs for the joint task of segmentation and non-
parametric Likelihood Functions (LF) estimation,
based on histogram techniques. The segmentation
is computed after two iteration of the stages
Segmentation/Parameter-estimation. First at all, the
initial histograms are computed according (30) using
p = ©. Then, the QMMF-segmentation is computed.
After, the histograms are updated using (30). Finally,
the QMMF-segmentation is recomputed. Different from
Section 5.1, in this case the region of interest is the
complete image; i.e., the labels of the user marked
pixels (multimap) are also estimated. The process is
illustrated in Fig. 8: the erroneous segmentation after
the first iteration is product of inaccurate scribbles and
thus an inaccurate initial LF. The segmentation, after
two iterations, demonstrate the ability of the QMMFs
for estimating nonparametric class distributions.

6 CONCLUSIONS AND DISCUSSION

Image segmentation consists in partitioning an image
into regions with similar features of interest (color, tex-
ture, motion, depth, etc.) or semantical properties (kind



tissue in medical images, objects in a scene, roads in
aerial images, etc.). The image regions provides a com-
pact representation that allows one to make inference
on the image properties. Therefore image segmentation
is an active research topic in computer vision and image
analysis. It is a core process in many practical applica-
tions. In this work, we studied theoretical properties,
proposed new optimization algorithms and presented
practical extensions to a recent image segmentation
model.

We presented a derivation of the QMMF model in-
dependent of the minimal entropy constraint. Therefore,
based on prior knowledge, we can control the amount
of entropy increment, or decrement, in the computed
probability measures. We demonstrated that the QMMF
models are general and flexible to be used with di-
verse Likelihood Functions. As demonstration of such a
generalization, we presented experiments with iterative
estimation of likelihood functions based on histogram
techniques. We proposed robust likelihoods that improve
the method performance for segmenting textured re-
gions.

Our contributions in this work are mainly a more gen-
eral derivation of the QMMF models and more efficient
optimization algorithms. Along the paper we present a
series of experiments for demonstrating our proposals.
Additionally, we present an experimental comparison
with respect algorithms of the state of the art. We
selected the task of binary interactive segmentation for
conducting our comparison, first because it demonstrates
the use of the entropy control in the case of generic
likelihood functions. Second, a benchmark database is
online available, and finally our hyper—parameter train-
ing scheme demonstrates to be objective by, significantly,
improving the previously reported results with a graph
cut based method.

APPENDIX A
Definition (Stieltjes matrices [32]). A K x K Stieltjes
matrix A = (a;;) with 4,57 = 1,2,..., K satisfies: it is

symmetric and positive definite; it has positive diago-
nal elements, a; > 0; it has nonpositive off-diagonal
elements, a;; < 0, ¢ # j; and its inverse B = (b;;) is
nonnegative, b;; > 0,Vi,j =1,2,..., K.

Proof of Proposition 3.2: The KKT conditions of (15)
are

Az —7l1 = 0
172 -1 = o0,

(53)
(54)

where 7 is the Lagrange’s multiplier. Then from (53):
r = mA~'1. Substituting this result in (54), we have
alTA=11 =1, thus 7 = 1/(17 A=1). We conclude that
x > 0, since A is Stieltjes matrix, A lis positive definite
and non-negative. Thus, 17 A='1 > 0 (sum over all the
elements) and A~'1 > 0 (sum over rows). Note that A~!
has not rows equal zero. O
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Proof of Proposition 3.3: The KKT conditions of (17)
are: d — 7l = 172 — 1 = 0,27¢ = 0, and z,¢ = 0;
where d;, ef _ logyi, 7 is the Lagrange’s multiplier of
the equality constraint and ¢ is the vector of Lagrange’s
multiplier of the nonnegativity constraints. Then, by the
Fundamental Theorem of the Linear programing [17] it
can be seen that the KKTs are fullfil with: z = e« with
k* = argmin dy, ™ = dj- and £ given by the first KKT. [

k
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