Basic Concepts: Stability, Controlability and Observability

Rafael Murrieta-Cid

Centro de Investigación en Matemáticas (CIMAT)

murrieta@cimat.mx

August 2020

Ratael Murrieta-Cid (CIMAT)

August 2020 1 / 13

Outline

Ratael Murrieta-Cid (CIMAT)

・ロト・西ト・ヨト・ヨー もくの

Preliminaries and Stability

- Stability addresses properties of a vector field at a given point.
- Let X be a smooth manifold over which a vector field is defined.
- X might be the configuration or state space.
- The given point x_G can be interpreted in motion planning as the goal.
- Let $f(\cdot)$ be a velocity vector field, which yields a velocity vector $\dot{x} = f(x)$.
- For a dynamical system of the form $\dot{x} = f(x, u)$, the control u can be fixed by designing a feedback plan or feedback motion policy $\Pi : x \to u$.
- This design process yields $\dot{x} = f(x, \Pi(x))$. The process of designing a stable feedback plan is referred to in control literature as feedback stabilization.

Stability

- An equilibrium point x for $\dot{x} = f(x)$ is such that f(x) = 0.
- Stability for *x* at the equilibrium point implies:

$$||x(t_0)|| < \delta \to ||x(t)|| < \epsilon \tag{1}$$

 An equilibrium point x_G ∈ X is called Lyapunov stable if for any open set O₁ of x_G there exists another open neighborhood O₂ of x_G such that x_I ∈ O₂ implies that x(t) ∈ O₁ ∀ t > 0.

and ϵ

(b) Open sets O₁ and O₂

• • • • • • • • • • • • •

Figure: Stability

Stability

- Stability is weak in the sense that it does not imply that x(t) converges to x_G when t tends to infinity. The state only lies around x_G.
- Corvengency requieres a stronger notion called asymptotic stability.
- A point x_G is an equilibrium point asymptotically stable of f if:
 - It is an equilibrium point of f in the sense of Lyapunov.
 - **(2)** There exists an open set *O* around x_G such that for any point $x_I \in O$, x(t) converges to x_G when t tends to infinity.
- For $X = \mathbb{R}^n$, the second condition can be expressed as follows:
- There exists δ > 0 such that for any x_l ∈ X with ||x_l − x_G|| < δ the state x(t) converges to x_G when t tends to infinity.
- Asymptotic stability does not imply nothing about how much time takes the convergency.
- If x_G is asymptotically stable and there exist some m > 0 and some $\alpha > 0$ such that

$$||\mathbf{x}(t) - \mathbf{x}_G|| \le m e^{-\alpha t} ||\mathbf{x}_I - \mathbf{x}_G|| \tag{2}$$

(日)

then x_G is called exponentially stable.

Summary Stability

Definition

Stability for x at the equilibrium point:

$$|x(t_0)|| < \delta \rightarrow ||x(t)|| < \epsilon$$

for $t > t_0$

Definition

```
Asymptotic stability: ||x(t)|| \rightarrow 0 as t \rightarrow \infty
Define a function
```

$$V: X \to \mathbb{R}$$

such that V(x) > 0 for $x \neq 0$ and V(0) = 0 for x = 0, V(x) is called a candidate Lyapunov function.

Theorem

x(0) is an equilibrium point if there exists a Lyapunov function V such that

$$\frac{dV}{dt} \leq 0$$

For a proof of the above theorem, see [1, 2].

Ratael Murrieta-Cid (CIMAT)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

(3)

(4)

(5)

Example

Consider the following differential equation with solution x on \mathbb{R}

$$\dot{x} = -x. \tag{6}$$

Considering that x^2 is always positive around the origin it is a natural candidate to be a Lyapunov function to help us study *x*. So let $V(x) = x^2$ on \mathbb{R} . Then,

$$\dot{V}(x) = V'(x)\dot{x} = 2x \cdot (-x) = -2x^2 < 0.$$
 (7)

This shows that the above differential equation, *x*, is asymptotically stable about the origin.

Controllability

Four versions of nonlinear controllability.

Let *V* be a neighborhood of a point $x \in \mathcal{M}$. Let $R^V(x, T)$ indicate the set of reachable points at time *T* by trajectories remaining inside *V* and satisfying $\dot{x} = f(x, u)$ where $u \in \Omega$, a subset of \mathbb{R}^l , $x \in \mathcal{M}$, a C^{∞} connected manifold of dimension *m*, and let

$$R^{V}(x, \leq T) = \bigcup_{0 < t < T} R^{V}(x, t)$$
(8)

Definition

The system is **controllable** from x if, for any $x_{goal} \in M$, there exists a T > 0 such that $x_{goal} \in R^{\mathcal{M}}(x, \leq T)$

Definition

The system is **accessible** from x if $R^{\mathcal{M}}(x, \leq T)$ contains a full-dimensional subset of \mathcal{M} for some T > 0.

Rafael Murrieta-Cid (CIMAT)

Controllability

Definition

The system is **small-time locally accessible** (STLA) from *x* if $R^V(x, \leq T)$ contains a full-dimensional subset of $\mathcal{M} \forall$ neighborhoods *V* and $\forall T > 0$.

Definition

The system is **small-time locally controllable** (STLC) from *x* if $R^V(x, \leq T)$ contains a neighborhood of *x* \forall neighborhoods *V* and $\forall T > 0$.

The phrase "small-time" indicates that the property holds for any time T > 0, and the phrase "locally" indicates that the property holds for arbitrarily small (but full-dimensional) "room for maneuver" around the initial state.

Controllability

Figure: accesible, STLA, STLC, image taken from [4]

Reachable spaces for three systems on \mathbb{R}^2 . (a) This system is accessible from x, but neither small-time locally accessible nor small-time locally controllable. The reachable set is two-dimensional, but not while confined to the neighborhood V. (b) This system is small-time locally accessible from x, but not small-time locally controllable. The reachable set without leaving V does not contain a neighborhood of x. (c) This system is small-time locally controllable from x.

Observability

Considering a system Σ ,

where $u \in \Omega$, a subset of \mathbb{R}^l , $\mathbf{x} \in M$, a C^{∞} connected manifold of dimension m, $\mathbf{y} \in \mathbb{R}^p$, f and g are C^{∞} functions, and assume the trajectories of Σ to satisfy the initial condition $\mathbf{x}(t^0) = \mathbf{x}^0$. The input-output map of the pair (Σ , \mathbf{x}^0), the indistinguishable property between states \mathbf{x}^0 and \mathbf{x}^1 , and the observability of a system Σ , are defined as follows.

Definition

Let $(u(t), [t^0, t^1])$ be the admissible input that gives rise to a solution $(\mathbf{x}(t), [t^0, t^1])$ of $\dot{\mathbf{x}} = f(\mathbf{x}, u(t))$ satisfying the initial condition. This, in turn, defines an output $(\mathbf{y}(t), [t^0, t^1])$ by $\mathbf{y}(t) = g(\mathbf{x}(t))$. Then, the *input-output map of* Σ *at* \mathbf{x}^0 is denoted by

$$\Sigma_{\mathbf{x}^0} : (u(t), [t^0, t^1]) \mapsto (\mathbf{y}(t), [t^0, t^1]).$$
(10)

< ロト < 同ト < ヨト < ヨト

Observability

Definition

A pair of states \mathbf{x}^0 and \mathbf{x}^1 are *indistinguishable*, denoted $\mathbf{x}^0 I \mathbf{x}^1$, if (Σ, \mathbf{x}^0) and (Σ, \mathbf{x}^1) realize the same input-output map, i.e., for every admissible input $(u(t), [t^0, t^1])$.

$$\Sigma_{\mathbf{x}^0} : (u(t), [t^0, t^1]) = \Sigma_{\mathbf{x}^1} : (u(t), [t^0, t^1]).$$
(11)

Definition

 Σ is said to be observable at \mathbf{x}^0 if $I(\mathbf{x}^0) = {\mathbf{x}^0}$ and Σ is observable, if $I(\mathbf{x}) = {\mathbf{x}}$ for every $\mathbf{x} \in M$. $I(\cdot)$ returns the set of indistinguishable elements of the argument.

A note

Because of its nice properties, many times, it is assumed that the state transition equation $\dot{x} = f(x, u)$ of the dynamical system is a Lipschitz function.

Definition

A state transition equation is called Lipschitz continuous, if there exists a positive real constant c such that, for all states x and x',

$$||f(x, u) - f(x', u)|| \le c||x - x'||$$
(12)

This still is a broad class of systems.

- Sastry-99. S. Sastry. *Nonlinear Systems: Analysis, Stability, and Control.* Springer- Verlag, Berlin, 1999.
- Bullo and Lewis-99. F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems. Springer-Verlag, Berlin, 2004.
- LaValle-06. S. M. LaValle *Planning Algorithms*, Chapter 13, Cambridge University Press, 2006.
- Choset et al-05. H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki and S. Thrun, *Principles of Robot Motion: Theory, Algorithms, and Implementations*, MIT press, 2005.
- Hermann et. al-77. R. Hermann and A. J. Krener, Nonlinear Controllability and Observability, *IEEE Trans. Automatic Control*, Vol. 22.No 5. pp 728-740, 1977.