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Vector Fields and Distributions

Let us assume that the state transition’s equation ẋ = f (x , u) has the form:

ẋ = α1(x)u1 + α2(x)u2 + · · ·+ αm(x)um (1)

In that case the state transition’s equation can be expressed as:

ẋ = A(x)u (2)

Let us assume that matrix A(x) is not singular.

Definition

A vector field over a manifold, X , is a function that associates to each element x ∈ X a vector ~V (x)

An example of a vector field is the velocity field.

Each vector ~V (x) represents the infinitesimal change of the state with respect to time.

ẋ =

[
dx1

dt
,

dx2

dt
, . . . ,

dxn

dt

]
(3)

evaluated at the point x ∈ X
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Vector Fields and Distributions

Note that for a fixed control u the state transition’s equation ẋ = f (x , u) defines a vector field,
since ẋ is expressed as a function of x .

Let us assume that the state transition’s equation is given by a state space X and a set of
inputs (space of controls) U = Rm.

What we want is to define all the vector fields that can be generated using the available
controls (inputs).

Definition

The set of all the vector fields that can be generated using the inputs u ∈ U is called the
distribution, it is denoted as ∆(x).

∆(x) = span{α1(x), α2(x), . . . , αm(x)} (4)
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Vector Fields and Distributions

A distribution can be considered as vector space.

αi can be interpreted as a vector field.

Given inputs of the form [0,. . . ,0,1,0,. . . ,0], if ui = 1 and uj = 0 then the state transition’s
equation yields ẋ = αi (x).

Each of the inputs of this form can generate a base of the vector field.

The dimension of the distribution is the number of vectors in its base. That is, the maximun
number of linear independent vector fields that can be generated.

Rafael Murrieta-Cid (CIMAT) August 2020 5 / 16



Example of the DDR

 ẋ
ẏ
θ̇

 =

 cos θ 0
sin θ 0

0 1

( u1
u2

)
(5)

The input u = [1, 0] yields the vector field ~V = [cos θ, sin θ, 0].

Using the input u = [0, 1] the vector field ~W = [0, 0, 1] is obtained.

Any other vector field can be generated using a linear combination of ~V and ~W .

In this case the distribution ∆(x) has dimension 2, it can be expressed as

∆(x) = span{~V , ~W} (6)
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Lie Bracket

This operation is denoted by
[
~V , ~W

]
and it is called Lie bracket.

The calculation of the Lie bracket is given by:[
~V , ~W

]
= D ~W · ~V − D~V · ~W (7)

where

D~V =


∂V1
∂x1

∂V1
∂x2

· · · ∂V1
∂xn

∂V2
∂x1

∂V2
∂x2

· · · ∂V2
∂xn

...
... · · ·

...
∂Vn
∂x1

∂Vn
∂x2

· · · ∂Vn
∂xn

 (8)

and

D ~W =


∂W1
∂x1

∂W1
∂x2

· · · ∂W1
∂xn

∂W2
∂x1

∂W2
∂x2

· · · ∂W2
∂xn

...
... · · ·

...
∂Wn
∂x1

∂Wn
∂x2

· · · ∂Wn
∂xn

 (9)
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Lie Bracket

The i-th element of the Lie bracket is given by:

[
~V , ~W

]
i

=
n∑

j=1

(
Vj
∂Wi

∂xj
−Wj

∂Vi

∂xj

)
(10)

Three useful properties are 1) symmetry[
~V , ~W

]
= −

[
~W , ~V

]
(11)

2) Jacobi identity [[
~V , ~W

]
, ~U
]

+
[[
~W , ~U

]
, ~V
]

+
[[
~U, ~V

]
, ~W
]

= 0 (12)

3) bilinearity, for any a, b ∈ R and any ~U, ~V , ~W .[
a~U + b~V , ~W

]
= a

[
~U, ~W

]
+ b

[
~V , ~W

]
[
~U, a~V + b ~W

]
= a

[
~U, ~W

]
+ b

[
~U, ~W

] (13)
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Lie Bracket

The Lie bracket allows one to generate vector fields that are not originally in ∆(x).

That is, the Lie bracket allows to find velocities that originally are not directly allowed by the
state transition equation.

For instance, in the DDR or the car-like robot the Lie bracket generates a vector field that
moves the robot in direction perpendicular to its heading.

This is done, generating combinations of the vector fields ~V and ~W .
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Control Lie algebra CLA

CLA denotes the control Lie algebra. For a state transition equation of the form

ẋ = α1(x)u1 + α2(x)u2 + · · ·+ αm(x)um (14)

First, consider the set of all vector fields that can be generated by taking Lie brackets[
αi (x), αj (x)

]
of vector fileds αi (x) and αj (x), for i 6= j .

Next, consider taking Lie brackets of the new vector fields with each other, and with the
original vector fields (including nested Lie bracket operations).

Thus, describing a control Lie algebra requires characterizing all vectors that are obtained
under the algebraic closure of the bracket operation.
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Integrability and Frobenius Theorem

In some cases the state transitions equation can be integrable, if so it can be expressed in
terms of x and u without using ẋ .

But there are cases in which is not possible to integrate ẋ = f (x , u) analytically.

The Frobenius theorem allows one to determine whether or not ẋ = f (x , u) is integrable.

Theorem

Frobenius theorem: The state transition equation is integrable if and only if all the vector fields that
can be obtained by the Lie bracket operation are contained in ∆(x). In terms of the dimension, the
state transition equation ẋ = f (x , u) is integrable if dim(CLA(∆(x)) = dim(∆(x))

For a proof of the above theorem, see [1, 2]

A system whose state transition equation is not integrable is called a nonholonomic system.
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Controllability and Chow Theorem

Definition

The system is locally controllable from x , if the set of reachable points from x , for an admisible
trajectory, contains a neighborhood of x .

Definition

The system is small-time locally controllable from x , if the set of reachable points from x , for an
admisible trajectory before a given time T , contains a neighborhood of x , for any T .

Theorem

Chow Theorem: A symmetric system without drift is small-time locally controllable from x, if and
only if the dimension of the control Lie algebra is equal to the dimension n of the state space X,
that is, dim(CLA(∆(x)) = n.

For a proof of the above theorem see [2].
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Controllability

Small time local controllability (STLC) implies local controllability, converse is not true.

A Dubins car can only move forward.

The Dubins car is controllable but it is not STLC.

An airplane is like a Dubins car but in 3D.
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Example

A car-like robot or a DDR.

V = [cos θ, sin θ, 0]

W = [0, 0, 1]
(15)

Z1 =
V1∂W1

∂x
−

W1∂V1

∂x
+

V2∂W1

∂y
−

W2∂V1

∂y
+

V3∂W1

∂θ
−

W3∂V1

∂θ

Z1 = cos θ0− 0 + sin θ0− 0 + 0− 1(− sin θ) = sin θ

Z2 =
V1∂W2

∂x
−

W1∂V2

∂x
+

V2∂W2

∂y
−

W2∂V2

∂y
+

V3∂W2

∂θ
−

W3∂V2

∂θ

Z1 = cos θ0− 0 + sin θ0− 0 + 0− 1 cos θ) = − cos θ

Z3 =
V1∂W3

∂x
−

W1∂V3

∂x
+

V2∂W3

∂y
−

W2∂V3

∂y
+

V3∂W3

∂θ
−

W3∂V3

∂θ

Z3 = 0

(16)

Rafael Murrieta-Cid (CIMAT) August 2020 14 / 16



Example

A car-like robot or a DDR.

One can observe that ~Z is linear independent of ~V and ~W
The matrix

A =

 cos θ sin θ 0
0 0 1

sin θ − cos θ 0

 (17)

has a determinant det(A) 6= 0 for any (x , y , θ).

This implies that dim(CLA(∆(x)) = 3, from the Frobenius theorem, the state transition equation is
not integrable, hence the system is nonholonomic. Furthermore, from the Chow theorem the
system is small-time locally controllable.
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Laumond Theorem

Definition

Let X be a set, d1 and d2 are two metrics over X , d1 and d2 are equivalent if for any ε > 0
1) ∃δ1 > 0 such that d1(x , y) < δ1 =⇒ d2(x , y) < ε. 2) ∃δ2 > 0 such that
d2(x , y) < δ2 =⇒ d1(x , y) < ε.

Theorem

If a collision free path exists for a holonomic system then a feasible path also exists for a
nonholonomic car-like robot with the same geometry provided that the system fulfil the next
properties: 1) The system is symmetric without drift, 2) The system is STLC, 3) The metric to
measure the distance between the robot and the obstacles is equivalent (it induces the same
topology) as the metric of the shortest paths for the nonholonomic system, and 4) there is any
ε > 0 clearance between the robot and the obstacles.

For a proof of the theorem see [3, 4, 5]
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