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October 2019

Rafael Murrieta Cid (CIMAT) Optimal Control-PMP- and Games October 2019 1 / 21



Outline

1 Optimal Control-PMP-

2 Games Concepts

3 Pursuit-Evasion Games

Rafael Murrieta Cid (CIMAT) Optimal Control-PMP- and Games October 2019 2 / 21



Optimal Control-PMP-

Rafael Murrieta Cid (CIMAT) Optimal Control-PMP- and Games October 2019 3 / 21



Optimal Control

Optimal control theory has as a main objective to determine the optimal controls u(t)∗ and
optimal trajectory x(t)∗ for a dynamical system.

Indeed, the optimal control when applied yields the optimal trajectory.
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Functional to be optimized

The functional to be optimized has the following form:

J(x , u) =

∫ tf

ts
L(x(t), u(t)) dt + G(x(tf )) (1)

One wants to find

min
u∈U

J(x , u) (2)

under : ẋ = f (x , u)

with : x(ts) = xs

where:

x is the state variable, such that x(t) ∈ Ω is an open set of Rn or x(t) ∈ M is a n-dimensional
manifold, for all t .

u is the control variable, such that u(t) ∈ U subset of Rm of admisible controls, for all t .

L is the running cost function.

G(x(tf )) is the terminal cost function.
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System Hamiltonian

The system Hamiltonian is defined as follows:

Definition

H(x , u, ψ) = 〈ψ(t), f (x , u)〉+ L(x , u) (3)

ψ(t) is the adjoint or costate variable.
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Pontryagin Maximum Principle

Pontryagin Maximum Principle gives necessary conditions for the optimal control problem.

Theorem (PMP)

Let x∗(t) and u∗(t),the optimal trajectory and control respectively of the functional (1). Then, there
exists ψ∗(t) such that:

ψ̇∗ = − ∂H(x∗,u∗,ψ∗)
∂x with ψ∗(tf ) =

∂G(x∗(tf ))
∂x . This is known as the adjoint equation.

ẋ∗(t) = f (x∗(t), u∗(t)).

u∗(t) optimizes the Hamiltonian, that is, when one wants to maximize the Hamiltonian, one
has H(x∗, u∗, ψ∗) ≥ H(x∗, u, ψ∗), and when one wants to minimize the Hamiltonian, one has
H(x∗, u∗, ψ∗) ≤ H(x∗, u, ψ∗). Furthermore, H(x∗(t), u∗(t), ψ∗(t)) is constant in the domain
of t.
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Geometric interpretation of the PMP

It is convient to consider functional J as a state variable.

Then one has x̂(t) = (J(x(t), u(t)), x(t)), and its velocity vector is
˙̂x(t) = f̂ (x , u) = (L(x(t), u(t)), f (x(t), u(t))).

Let D be the line passing through (0, xf ) parallel to the axis x̂0.

Among all the trajectories starting at x̂s = (0, xs) and reaching D, one looks for the one that
maximizes the first coordinate x0 of the intersection point x = (x0, xf ) with D.

For the optimality principle, if u∗(t) is the optimal control then for all moment t , the trajectory
associate to u∗(t) is at ∂R(x̂s, t), the frontier of R(x̂s, t), the reachable region of x̂s at time t .

Consider all other trajectories of control û(t), such that those trajectories are different from
the one generated by the optimal control u∗(t) by small time intervals and which are
infinitesimal close to u∗(t).

The set of states reached by those perturbed trajectories constitute a convex cone C with
vertex x(t , u∗(t)) and within R(xs, t).
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Geometric interpretation PMP

Figure: x0, f (x, u) and Ψ .
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Geometric interpretation of the PMP

This cone C can be locally approximated to the set R(xs, t).

It does not intersect la half line D− on the vector f̂ (x(t), u∗(t)) tangent to trajectory x̂(t) for all
t , otherwise it contradicts the optimality of u∗(t).

It is possible to find a hyperplane H tangent to C at point x(t , u∗(t)), dividing C and the half
line D−, containing vector f̂ (x(t), u∗(t)).

Since the adjoint vector, ψ̂ = (ψ0, ψ
∗), is the one that optimizes and makes constant the

Hamiltonian, then ψ̂ is ortogonal to al hyperplane H at all time.

Following the principle of optimal evolution, the projection of vector f̂ (x(t), u∗(t)) on the line
parallel to ψ̂(t), passing through x(t , u(t)), should be maximal for control u(t).

This previous point is equivalent to have a maximal projection of f (x(t), u∗(t)) on ψ(t).
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Games Concepts
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Definitions

Payoff

A standard representation [Isaacs65, Basar95] of the payoff is

J(x(ts), u, v) =

∫
tf

ts
L(x(t), u(t), v(t))︸ ︷︷ ︸ dt + G(x(tf ))︸ ︷︷ ︸

running cost terminal cost

For problems of minimum time [Isaacs65, Basar95], as in this game, L(x(t), u(t), v(t)) = 1 and
G(tf , x(tf )) = 0. Therefore in our game, the payoff is represented as

J(x(ts), u, v) =

∫ tf (x(ts),u,v)

ts
dt = tf (x(ts), u, v)− ts (4)

Note that tf (x(ts), u, v) depends on the sequence of controls u and v applied to reach the point
x(tf ) from the point x(ts).
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Definitions

Value of the game

For a given state of the system x(ts), V (x(ts)) represents the outcome if the players implement
their optimal strategies starting at the point x(ts), and it is called the value of the game or the value
function at x(ts) [Isaacs65, Basar95]

V (x(ts)) = min
u(t)∈Û

max
v(t)∈V̂

J(x(ts), u, v) (5)

where Û and V̂ are the set of valid values for the controls at all time t . V (x(t)) is defined over the
entire state space.
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Definitions

Open and closed-loop strategies

Let γp(x(t)) and γe(x(t)) denote the closed-loop strategies of the DDR and the evader,
respectively, therefore u(t) = γp(x(t)) and v(t) = γe(x(t)).
A strategy pair (γ∗p (x(t)), γ∗e (x(t))) is in closed-loop (saddle-point) equilibrium [Basar95] if

J(γ∗p (x(t)), γe(x(t))) ≤ J(γ∗p (x(t)), γ∗e (x(t)))

≤ J(γp(x(t)), γ∗e (x(t)))∀γp(x(t)), γe(x(t))
(6)

where J is the payoff of the game in terms of the strategies. An analogous relation exists for
open-loop strategies.
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Necessary Conditions for Saddle-Point Equilibrium Strategies

Theorem (Pontryagin’s Maximum Principle - PMP)

Suppose that the pair {γ∗p , γ∗e } provides a saddle-point solution in closed-loop strategies, with
x∗(t) denoting the corresponding state trajectory. Furthermore, let its open-loop representation
{u∗(t) = γp(x∗(t)), v∗(t) = γe(x∗(t))} also provide a saddle-point solution (in open-loop polices).
Then there exists a costate function p(·) : [0, tf ]→ Rn such that the following relations are
satisfied:

ẋ∗(t) = f (x∗(t), u∗(t), v∗(t)), x∗(0) = x(ts) (7)

H(p(t), x∗(t), u∗(t), v(t)) ≤ H(p(t), x∗(t), u∗(t), v∗(t)) ≤ H(p(t), x∗(t), u(t), v∗(t)) (8)

p(t) = ∇V (x(t)) (9)

ṗT (t) = −
∂

∂x
H(p(t), x∗(t), u∗(t), v∗(t)) (Adjoint Equation) (10)

pT (tf ) =
∂

∂x
G(tf , x∗(tf )) along ζ(x∗(t)) = 0 (11)

where

H(p(t), x(t), u(t), v(t)) = pT (t) · f (x(t), u(t), v(t)) + L(x(t), u(t), v(t)) (Hamiltonian) (12)

and T denotes the transpose operator.
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Pursuit-Evasion Games
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Variants

Target capturing in an environment without obstacles

R. Isaacs. Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. John Wiley and Sons. Inc., 1965.

Y.C. Ho et. al., Differential Games and Optimal Pursuit-Evasion Strategies, IEEE Transactions
on Automatic Control, 1965.
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Evader
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Pursuer

Evader

(b)

Pursuer

Evader

(c)

Figure: Target capturing.
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Variants
Target tracking in an environment with obstacles

S. M. LaValle et. al., ”Motion strategies for maintaining visibility of a moving target”, in Proc.
IEEE Int. Conf. on Robotics and Automation, 1997.
H.H. González-Baños et. al., Motion Strategies for Maintaining Visibility of a Moving Target In
Proc IEEE Int. Conf. on Robotics and Automation, 2002.
R. Murrieta-Cid et. al., Surveillance Strategies for a Pursuer with Finite Sensor Range,
International Journal on Robotics Research, Vol. 26, No 3, pages 233-253, March 2007.
S. Bhattacharya and S. Hutchinson , On the Existence of Nash Equilibrium for a Two Player
Pursuit-Evasion Game with Visibility Constraints, The International Journal of Robotics
Research, December, 2009.

Trajectory: known or unknown

Visibility Region

EvaderPursuer

Figure: Target tracking.
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Variants
Target finding in an environment with obstacles

V. Isler et. al., “Randomized pursuit-evasion in a polygonal enviroment”, IEEE Transactions on
Robotics, vol. 5, no. 21, pp. 864-875, 2005.
R. Vidal et. al., “Probabilistic pursuit-evasion games: Theory, implementation, and
experimental evaluation”, IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp.
662-669, 2002.

(a) (b) (c)

(d) (e) (f)

Figure: Target finding.
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Target finding in an environment with obstacles

L. Guibas, J.-C. Latombe, S. LaValle, D. Lin and R. Motwani, “Visibility-based pursuit-evasion
in a polygonal environment”, International Journal of Computational Geometry and
Applications, vol. 9, no. 4/5, pp. 471-494, 1999.
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Thanks... Questions?

murrieta@cimat.mx
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