Optimal Control-PMP- and Games

Rafael Murrieta Cid

Centro de Investigación en Matemáticas (CIMAT)

October 2019

Ratael Murrieta Cid (CIMAT)

Optimal Control-PMP- and Games

Image: A matrix

October 2019 1 / 21

(3)

Outline

Optimal Control-PMP-

Pursuit-Evasion Games

Ratael Murrieta Cid (CIMAT)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Optimal Control-PMP-

Ratael Murrieta Cid (CIMAT)

Optimal Control-PMP- and Games

October 2019 3 / 21

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Optimal Control

- Optimal control theory has as a main objective to determine the optimal controls u(t)* and optimal trajectory x(t)* for a dynamical system.
- Indeed, the optimal control when applied yields the optimal trajectory.

Functional to be optimized

The functional to be optimized has the following form:

$$J(x, u) = \int_{t_s}^{t_f} L(x(t), u(t)) dt + G(x(t_f))$$
(1)

One wants to find

$$\min_{u \in U} J(x, u)$$
(2)
under : $\dot{x} = f(x, u)$
with : $x(t_s) = x_s$

< □ > < □ > < □ > < □ > < □ > < □ >

where:

- x is the state variable, such that x(t) ∈ Ω is an open set of ℝⁿ or x(t) ∈ M is a n-dimensional manifold, for all t.
- *u* is the control variable, such that $u(t) \in U$ subset of \mathbb{R}^m of admisible controls, for all *t*.
- *L* is the running cost function.
- *G*(*x*(*t*_{*f*})) is the terminal cost function.

System Hamiltonian

The system Hamiltonian is defined as follows:

Definition

$$H(x, u, \psi) = \langle \psi(t), f(x, u) \rangle + L(x, u)$$

 $\psi(t)$ is the adjoint or costate variable.

(3)

Pontryagin Maximum Principle

Pontryagin Maximum Principle gives necessary conditions for the optimal control problem.

Theorem (PMP)

Let $x^*(t)$ and $u^*(t)$, the optimal trajectory and control respectively of the functional (1). Then, there exists $\psi^*(t)$ such that:

• $\dot{\psi}^* = -\frac{\partial H(x^*, u^*, \psi^*)}{\partial x}$ with $\psi^*(t_f) = \frac{\partial G(x^*(t_f))}{\partial x}$. This is known as the adjoint equation.

•
$$\dot{x}^*(t) = f(x^*(t), u^*(t)).$$

u*(t) optimizes the Hamiltonian, that is, when one wants to maximize the Hamiltonian, one has H(x*, u*, ψ*) ≥ H(x*, u, ψ*), and when one wants to minimize the Hamiltonian, one has H(x*, u*, ψ*) ≤ H(x*, u, ψ*). Furthermore, H(x*(t), u*(t), ψ*(t)) is constant in the domain of t.

< □ > < □ > < □ > < □ > < □ > < □ >

Geometric interpretation of the PMP

- It is convient to consider functional J as a state variable.
- Then one has $\hat{x}(t) = (J(x(t), u(t)), x(t))$, and its velocity vector is $\dot{\hat{x}}(t) = \hat{f}(x, u) = (L(x(t), u(t)), f(x(t), u(t)))$.
- Let *D* be the line passing through $(0, x_f)$ parallel to the axis \hat{x}_0 .
- Among all the trajectories starting at $\hat{x}_s = (0, x_s)$ and reaching *D*, one looks for the one that maximizes the first coordinate x^0 of the intersection point $x = (x^0, x_f)$ with *D*.
- For the optimality principle, if u^{*}(t) is the optimal control then for all moment t, the trajectory associate to u^{*}(t) is at ∂R(x̂_s, t), the frontier of R(x̂_s, t), the reachable region of x̂_s at time t.
- Consider all other trajectories of control
 û(*t*), such that those trajectories are different from
 the one generated by the optimal control *u*^{*}(*t*) by small time intervals and which are
 infinitesimal close to *u*^{*}(*t*).
- The set of states reached by those *perturbed* trajectories constitute a convex cone *C* with vertex $x(t, u^*(t))$ and within $\mathcal{R}(x_s, t)$.

(日)

Geometric interpretation PMP

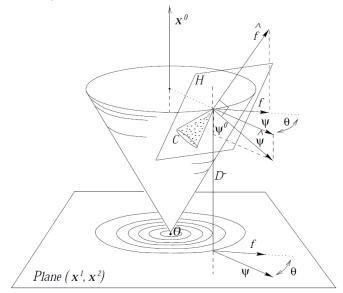


Figure: x^0 , f(x, u) and Ψ .

Rafael Murrieta Cid (CIMAT)

Optimal Control-PMP- and Games

Geometric interpretation of the PMP

- This cone *C* can be locally approximated to the set $\mathcal{R}(x_s, t)$.
- It does not intersect la half line D⁻ on the vector f(x(t), u*(t)) tangent to trajectory x̂(t) for all t, otherwise it contradicts the optimality of u*(t).
- It is possible to find a hyperplane H tangent to C at point x(t, u*(t)), dividing C and the half line D⁻, containing vector f(x(t), u*(t)).
- Since the adjoint vector, $\hat{\psi} = (\psi_0, \psi^*)$, is the one that optimizes and makes constant the Hamiltonian, then $\hat{\psi}$ is ortogonal to al hyperplane *H* at all time.
- Following the principle of optimal evolution, the projection of vector $\hat{f}(x(t), u^*(t))$ on the line parallel to $\hat{\psi}(t)$, passing through x(t, u(t)), should be maximal for control u(t).
- This previous point is equivalent to have a maximal projection of $f(x(t), u^*(t))$ on $\psi(t)$.

Games Concepts

Ratael Murrieta Cid (CIMAT)

Optimal Control-PMP- and Games

October 2019 11 / 21

• • • • • • • • • • • •

Definitions

Payoff

A standard representation [Isaacs65, Basar95] of the payoff is

$$J(\mathbf{x}(t_s), u, v) = \int_{t_s}^{t_f} \underbrace{L(\mathbf{x}(\bar{t}), u(\bar{t}), v(\bar{t}))}_{\text{running cost}} d\bar{t} + \underbrace{G(\mathbf{x}(t_f))}_{\text{terminal cost}}$$

For problems of *minimum time* [Isaacs65, Basar95], as in this game, $L(\mathbf{x}(t), u(t), v(t)) = 1$ and $G(t_f, \mathbf{x}(t_f)) = 0$. Therefore in our game, the payoff is represented as

$$J(\mathbf{x}(t_{\mathcal{S}}), u, v) = \int_{t_{\mathcal{S}}}^{t_{f}(\mathbf{x}(t_{\mathcal{S}}), u, v)} d\bar{t} = t_{f}(\mathbf{x}(t_{\mathcal{S}}), u, v) - t_{\mathcal{S}}$$
(4)

Note that $t_f(\mathbf{x}(t_s), u, v)$ depends on the sequence of controls u and v applied to reach the point $\mathbf{x}(t_f)$ from the point $\mathbf{x}(t_s)$.

Ratael Murrieta Cid (CIMAT)

(日)

Definitions

Value of the game

For a given state of the system $\mathbf{x}(t_s)$, $V(\mathbf{x}(t_s))$ represents the outcome if the players implement their optimal strategies starting at the point $\mathbf{x}(t_s)$, and it is called the *value of the game* or the *value function* at $\mathbf{x}(t_s)$ [Isaacs65, Basar95]

$$V(\mathbf{x}(t_s)) = \min_{u(t)\in\widehat{U}} \max_{v(t)\in\widehat{V}} J(\mathbf{x}(t_s), u, v)$$
(5)

where \hat{U} and \hat{V} are the set of valid values for the controls at all time *t*. $V(\mathbf{x}(t))$ is defined over the entire state space.

< □ > < □ > < □ > < □ > < □ >

Definitions

Open and closed-loop strategies

Let $\gamma_{\rho}(\mathbf{x}(t))$ and $\gamma_{e}(\mathbf{x}(t))$ denote the closed-loop strategies of the DDR and the evader, respectively, therefore $u(t) = \gamma_{\rho}(\mathbf{x}(t))$ and $v(t) = \gamma_{e}(\mathbf{x}(t))$. A strategy pair $(\gamma_{\rho}^{*}(\mathbf{x}(t)), \gamma_{e}^{*}(\mathbf{x}(t)))$ is in closed-loop (saddle-point) equilibrium [Basar95] if

$$J(\gamma_{\rho}^{*}(\mathbf{x}(t)), \gamma_{\theta}(\mathbf{x}(t))) \leq J(\gamma_{\rho}^{*}(\mathbf{x}(t)), \gamma_{\theta}^{*}(\mathbf{x}(t))) \\ \leq J(\gamma_{\rho}(\mathbf{x}(t)), \gamma_{\theta}^{*}(\mathbf{x}(t))) \forall \gamma_{\rho}(\mathbf{x}(t)), \gamma_{\theta}(\mathbf{x}(t))$$
(6)

where J is the payoff of the game in terms of the strategies. An analogous relation exists for open-loop strategies.

Necessary Conditions for Saddle-Point Equilibrium Strategies

Theorem (Pontryagin's Maximum Principle - PMP)

Suppose that the pair $\{\gamma_p^e, \gamma_e^*\}$ provides a saddle-point solution in closed-loop strategies, with $\mathbf{x}^*(t)$ denoting the corresponding state trajectory. Furthermore, let its open-loop representation $\{u^*(t) = \gamma_p(\mathbf{x}^*(t)), v^*(t) = \gamma_e(\mathbf{x}^*(t))\}$ also provide a saddle-point solution (in open-loop polices). Then there exists a costate function $p(\cdot) : [0, t_f] \to \mathbb{R}^n$ such that the following relations are satisfied:

$$\dot{\mathbf{x}}^{*}(t) = f(\mathbf{x}^{*}(t), u^{*}(t), v^{*}(t)), \ \mathbf{x}^{*}(0) = \mathbf{x}(t_{s})$$
(7)

$$H(p(t), \mathbf{x}^{*}(t), u^{*}(t), v(t)) \le H(p(t), \mathbf{x}^{*}(t), u^{*}(t), v^{*}(t)) \le H(p(t), \mathbf{x}^{*}(t), u(t), v^{*}(t))$$
(8)

$$\boldsymbol{p}(t) = \nabla V(\mathbf{x}(t)) \tag{9}$$

$$\dot{\boldsymbol{p}}^{T}(t) = -\frac{\partial}{\partial \boldsymbol{x}} \boldsymbol{H}(\boldsymbol{p}(t), \boldsymbol{x}^{*}(t), \boldsymbol{u}^{*}(t), \boldsymbol{v}^{*}(t))$$
 (Adjoint Equation) (10)

$$\boldsymbol{p}^{\mathsf{T}}(t_f) = \frac{\partial}{\partial x} \boldsymbol{G}(t_f, \mathbf{x}^*(t_f)) \text{ along } \zeta(\mathbf{x}^*(t)) = 0$$
(11)

where

$$H(p(t), \mathbf{x}(t), u(t), v(t)) = p^{T}(t) \cdot f(\mathbf{x}(t), u(t), v(t)) + L(\mathbf{x}(t), u(t), v(t))$$
(Hamiltonian) (12)

and T denotes the transpose operator.

Pursuit-Evasion Games

Ratael Murrieta Cid (CIMAT)

Optimal Control-PMP- and Games

October 2019 16 / 21

• • • • • • • • • • • • •

Variants

Target capturing in an environment without obstacles

- R. Isaacs. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. John Wiley and Sons. Inc., 1965.
- Y.C. Ho et. al., Differential Games and Optimal Pursuit-Evasion Strategies, IEEE Transactions on Automatic Control, 1965.

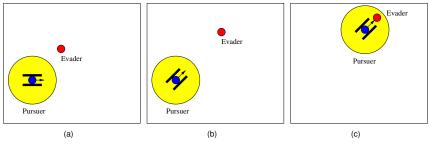


Figure: Target capturing.

Rafael Murrieta Cid (CIMAT)

< □ > < □ > < □ > < □ > < □ >

Variants

Target tracking in an environment with obstacles

- S. M. LaValle et. al., "Motion strategies for maintaining visibility of a moving target", in Proc. IEEE Int. Conf. on Robotics and Automation, 1997.
- H.H. González-Baños et. al., Motion Strategies for Maintaining Visibility of a Moving Target In Proc IEEE Int. Conf. on Robotics and Automation, 2002.
- R. Murrieta-Cid et. al., Surveillance Strategies for a Pursuer with Finite Sensor Range, International Journal on Robotics Research, Vol. 26, No 3, pages 233-253, March 2007.
- S. Bhattacharya and S. Hutchinson , On the Existence of Nash Equilibrium for a Two Player Pursuit-Evasion Game with Visibility Constraints, The International Journal of Robotics Research, December, 2009.

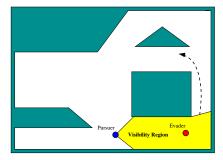


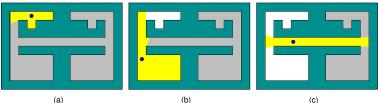
Figure: Target tracking.

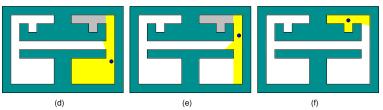
∃ >

Variants

Target finding in an environment with obstacles

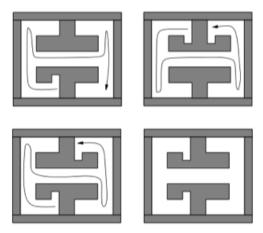
- V. Isler et. al., "Randomized pursuit-evasion in a polygonal enviroment", IEEE Transactions on Robotics, vol. 5, no. 21, pp. 864-875, 2005.
- R. Vidal et. al., "Probabilistic pursuit-evasion games: Theory, implementation, and experimental evaluation", IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp. 662-669, 2002.





Target finding in an environment with obstacles

 L. Guibas, J.-C. Latombe, S. LaValle, D. Lin and R. Motwani, "Visibility-based pursuit-evasion in a polygonal environment", International Journal of Computational Geometry and Applications, vol. 9, no. 4/5, pp. 471-494, 1999.



Ratael Murrieta Cid (CIMAT)

Thanks... Questions?

murrieta@cimat.mx

Ratael Murrieta Cid (CIMAT)

Optimal Control-PMP- and Games

Image: A matrix

October 2019 21 / 21

- T. Başar and G. Olsder, *Dynamic Noncooperative Game Theory, 2nd Ed.* SIAM Series in Classics in Applied Mathematics, Philadelphia, 1995.
- R. Isaacs. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization. Wiley, New York, 1965.
- L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. *The Mathematical Theory of Optimal Processes*. JohnWiley, 1962.
- P. Souères and J. D. Boissonnat, Optimal Trajectories for Nonholonimic Mobile Robots. J.P. Laumond, Editor, Springer, 1990.