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Abstract

This paper addresses the pursuit-evasion problem of maintaining surveillance by a pursuer of an
evader in a world populated by polygonal obstacles. This requires the pursuer to plan collision-free
motions that honor distance constraints imposed by sensor capabilities, while avoiding occlusion of
the evader by any obstacle. We extend the three-dimensional cellular decomposition of Schwartz
and Sharir to represent the four-dimensional configuration space of the pursuer-evader system, and
derive necessary conditions for surveillance (equivalently, sufficient conditions for escape) in terms
of this new representation. We then give a game theoretic formulation of the problem, and use
this formulation to characterize optimal escape trajectories for the evader. We propose a shooting
algorithm that finds these trajectories using the minimum principle. Finally, noting the similarities
between this surveillance problem and the problem of cooperative manipulation by two robots, we
present several cooperation strategies that maximize system performance for cooperative motions.

Keywords: surveillance strategies, motion planning, pursuit-evasion

1 Introduction

In this paper, we consider the basic surveillance problem of planning motions for a pursuer such that
it maintains visibility of a moving evader in a known workspace containing obstacles. This is a variant
of the traditional pursuit-evasion problem (discussed in Section 2) in which the pursuer has the goal
of either catching or finding the evader. Our problem has application in several domains. In security
applications, it may be desirable for a robot sentry to surveil a moving evader (either another robot
or a human) as the evader moves through some sensitive area. In non-security applications, it may
be desirable for a robot to monitor the performance of another robot or of a human worker (e.g., a
mobile robot might follow a highway crew as it makes road repairs, monitoring the quality of the repair
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work). Furthermore, as we will discuss below, our methods for planning surveillance strategies are also
applicable to situations in which robots cooperate, such as shared manipulation or maintaining robot
formations.

For our problem, we assume that the evader is initially positioned within the pursuer’s field of
view, at a distance Liui; from the pursuer. The pursuer’s goal is to maintain visibility of the evader
while maintaining a surveillance distance Ly, < L < Lpyax, in which Ly, and Ly.x are parameters
determined by the capabilities of the sensor and by any pursuer safety concerns. This requires the
pursuer to plan collision-free motions that prevent occlusion of the evader by obstacles in the workspace,
while maintaining the surveillance distance in the interval [Lpin, Limax]. We assume that the pursuer is
provided with a map of the workspace, and that the workspace is populated with polygonal obstacles.

In the case of a visibility based pursuit-evasion problem, it is pertinent to analyze the case of
bounded surveillance distance for the following reasons. First, commercially available sensors (laser
and cameras) have upper and lower range limits. In particular, if the evader is farther from the pursuer
than a maximal sensor range then its location is unknown, and the surveillance is broken. The lower
bound on the surveillance distance may be due to sensor capabilities, but more likely it will derive
either from safety concerns (e.g., if the evader has the ability to harm the pursuer) or from a desire
for the pursuer to remain undetected throughout the surveillance. Hence, if the evader is within this
minimal range, even if the pursuer can partially infer the location of the evader, the evader has already
a great advantage: the pursuer may not be able to detect the evader, and furthermore, the evader has
the ability to harm the pursuer.

A great deal of related research exists in the area of pursuit and evasion, much of it from the
dynamics and control communities, and we review the most relevant of this in Section 2. This past
work typically does not take into account constraints imposed on pursuer motion due to the existence
of obstacles in the workspace, or visibility constraints that arise due to occlusion. In this paper, we
focus on these often neglected geometric aspects of the problem.

In Section 3 we define the configuration space for our pursuer-evader system and derive an efficient
combinatoric representation for this configuration space. If the pursuer and evader are constrained
to remain separated by a fixed distance, the motion planning problem for the pursuer-evader system
is analogous to the problem of moving a rod in the plane. The basic problem of moving a rod in
the plane was solved by Schwartz and Sharir [31] using an elegant combinatoric representation of
the set of free configurations. This representation can be extended to the case when the surveillance
distance is allowed to vary by noting that the qualitative structure of this representation changes
only at a finite set of critical values of the surveillance distance. Thus, we can represent the full
four-dimensional configuration space of our pursuer-evader system by using a finite set of Schwartz
and Sharir decompositions, provided we connect them appropriately. The description of this process
concludes Section 3.

The representation developed in Section 3 leads to a necessary condition for surveillance (symmetri-
cally, a sufficient condition for the evader to escape), expressed in terms of the qualitative decomposition
of the configuration space. In particular, in Section 4 we derive conditions for the existence of a surveil-
lance strategy for the case of a pursuer with unbounded velocity. If no such strategy exists, then there
is no strategy for a pursuer with bounded velocity.

In Section 5, we formulate the surveillance problem using the language of noncooperative, dynamic
game theory. Here, we assume that the pursuer and evader have bounded velocities.

Conditions for escape are then formulated in terms of the time required by the evader to reach a
particular configuration, and the corresponding time required by the pursuer to reach a position from
which it can maintain surveillance.

For the case of bounded velocities, we solve the case corresponding to the following assumptions:
The pursuer-evader system’s motion takes place in the free space up to the moment that the system



reaches a set of escapable configurations and the pursuer maintains a minimal surveillance distance.

The formulation in Section 5 relies on the ability of the evader to plan optimal escape trajectories.
Therefore, in Section 6 we derive the optimal escape trajectories for the evader using Pontryagin’s
minimum principle. In this section we propose a shooting algorithm to compute optimal escape tra-
jectories, and show several results. For any such trajectory, it is straightforward for the pursuer to
determine the required motion to maintain surveillance. If the duration of this motion exceeds the
duration of the optimal escape trajectory, the surveillance is broken.

The two robot pursuer-evader system becomes a team of two cooperating robots if the evader acts
in concert with the pursuer. Therefore, in Section 7 we describe several cooperative motion strategies.
These strategies could be used, for example, by two robots manipulating a rigid object. In this section,
we consider leader-follower motions, in which the evader assumes the role of leader and the pursuer
assumes the role of follower.

Finally, Section 8 provides conclusions and discusses future work.

2 Previous Work

Our surveillance problem is related to pursuit-evasion games. A great deal of research exists in the
area of pursuit and evasion, particularly in the area of dynamics and control in the free space (without
obstacles) [9, 13, 3]. This work typically does not take into account constraints imposed on pursuer
motion due to the existence of obstacles in the workspace, nor visibility constraints that arise due to
occlusion.

Within the robotic planning community, several versions of the pursuit-evasion problem have been
considered. One such problem is that of finding an evader with one or more mobile pursuers that
sweep the environment so that the evader does not eventually sneak into an area that has been already
explored. Exact [28, 32, 8, 18, 30] and probabilistic algorithms [33, 10, 15] have been proposed to
solve this problem. Another problem is to actually “catch” the evader, that is, to move to a contact
configuration or closer than a given distance [13, 14].

These problems are related to, but not the same as ours. We assume that initially the pursuer can
establish visibility with the evader. Our problem consists of determining a pursuer motion strategy
to always maintain that visibility. The problem of maintaining visibility of a moving evader has been
traditionally addressed with a combination of vision and control techniques [6, 12]. Pure control
approaches, however, are local by nature, and do not take into account the global structure of the
environment. QOur interest is in deriving pursuer strategies that guarantee successful surveillance,
taking into account both constraints on motion due to obstacles, and constraints on visibility due to
occlusion.

Some previous work has addressed the motion planning problem for maintaining visibility of a
moving evader. Game theory is proposed in [17] as a framework to formulate the tracking problem
and an online algorithm is presented. In [4], an algorithm is presented that operates by maximizing
the probability of future visibility of the evader. This algorithm is also studied with more formalism
in [17]. This technique was tested in a Nomad 200 mobile robot with good results.

The work in [7] presents an approach that takes into account the positioning uncertainty of the
robot pursuer. Game theory is again proposed as a framework to formulate the tracking problem,
and an approach is proposed that periodically commands the pursuer to move into a region that has
no localization uncertainty (a landmark region) in order to re-localize and better track the evader
afterward.

In [11], a technique is proposed to track an evader without the need of a global map. Instead, a
range sensor is used to construct a local map of the environment, and a combinatoric algorithm is used



to compute a differential motion for the pursuer at each iteration.

The approach presented in [22] computes a motion strategy by maximizing the shortest distance
to escape — the shortest distance the evader needs to move in order to escape the pursuer’s visibility
region. In this work the evaders were assumed to move unpredictably, and the distribution of obstacles
in the workspace is assumed to be known in advance. This planner has been integrated and tested in a
robot system that includes perceptual and control capabilities. The approach has also been extended
to maintain visibility of two evaders using two mobile pursuers.

Recently, some research has considered the problem of maintaining visibility of several evaders with
multiple robots. In [27] a method is proposed to accomplish this task in uncluttered environments.
The objective is to minimize the total time in that evaders escape observation by some robot team
member. In [16] an approach is proposed to maintain visibility of several evaders using mobile and
static sensors. A metric for measuring the degree of occlusion, based on the average mean free path of
a random line segment is used.

3 The Configuration Space for the Surveillance Problem

If we model the pursuer and evader as points in the plane, then our surveillance problem is very similar
to the problem of planning the motion of a variable-length rod in the plane. The instantaneous distance
between the pursuer and evader corresponds to the length of the rod, and occlusion of the evader by an
obstacle corresponds to collision of the rod with an obstacle. To maintain surveillance, it is necessary
and sufficient that the line segment connecting the pursuer and evader does not intersect any obstacle
in the environment. In addition to this occlusion constraint, a particular surveillance problem may
impose bounds on the surveillance distance. For example, we may require that L < L.y if the sensor
range is bounded by L. Further, there may be some minimum allowable surveillance distance
Liyin. This minimum distance could be due to sensor capabilities, but it is more likely to derive from
safety concerns (e.g., if the evader has the ability to harm the pursuer) or from the pursuer’s desire to
remain undetected by the evader. We express this constraint by bounding the surveillance distance,
Lmin < L < Lmax-

The problem of planning the motion of a fixed-length rod in the plane has been addressed in [31, 2].
While this solution is not directly applicable to our surveillance problem, the representation introduced
there can be extended to the case of a rod with variable length, and this extended representation
provides the basis for the sufficient conditions for escape given in Section 4. In the remainder of this
section, we define the configuration space for our problem, briefly review the method of [31, 2], and
show how this representation can be extended to our surveillance problem.

The position of the evader is given by (x,y), its coordinates in the plane, and the instantaneous
distance between the pursuer and evader is given by L. We specify the position of the pursuer implicitly
by giving the orientation 6 of the line of sight from the evader to pursuer. For a given 6, the position

of the pursuer is given by
Tp | | cos 6

Figure 1 illustrates these definitions. Note that the figure also illustrates the evader velocity, parame-
terized by v, and «; these will be used in Section 6.

With these definitions, a configuration of the pursuer-evader system is given by (z,y,0, L), and
the configuration space is @ = SFE(2) X [Lmin, Lmax), which corresponds exactly to the case of of a
variable-length rod moving in the plane. Under this formulation, the evader controls (z,y) and the
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a) Basic Pursuer—Evader configuration

b) Occlusion

Figure 1: The configuration variables for the pursuer-evader system

pursuer controls § and L!. Thus, the task of the pursuer is to choose a trajectory 6(t), L(t) such that
there is never a collision of the rod with an obstacle, and such that Ly, < L(t) < Ly for all ¢.

This problems lends itself to an elegant combinatoric representation. To explain this representation,
we first describe the cylindrical decomposition given in [31] for the case when L is fixed. Following
this, we describe how the cylindrical decomposition can be extended to the case of variable L.

For a fixed surveillance distance L, we denote the corresponding three-dimensional slice of Q by
Q1 When building a representation of Q, the key observation is that for a particular (z,y), as ¢
varies, the rod will make contact with some fixed set of obstacle features (edges or vertices for the
case of polygonal obstacles). If we vary (z,y), this set of contact features will change only when (z,y)
crosses a critical curve. Thus, the critical curves delineate noncritical regions in the plane such that,
for a noncritical region R, the set of contact features remains constant for all (z,y) € R. The set of
critical curves is defined in terms of obstacle features (edges and vertices) and the length of the rod L.
The catalog of critical curves is illustrated in Figure 2. More detailed explanations concerning their
construction can be found in [31, 20].

This partition of the plane into noncritical regions induces a cylindrical decomposition on Q. For
a noncritical region R we define the cylinder above R as the set of configurations {(z,y,0) € Qp |
(z,y) € R}. In the cylinder above any noncritical region in the plane, there will be a set of simply
connected cells, each of which lies either entirely in the free configuration space or entirely within the
configuration space obstacle region.

For any collision free configuration (z,y,6) in the cylinder above R, as the rod rotates it will make
contact with two obstacle features (called stops), one, say s; when 6 increases, and the other, s_, when
0 decreases. The region R and these two features implicitly define a free cell x in the cylinder above R:
k includes the set of configurations for which (x,y) € R such that increasing 6 causes first contact with
s and decreasing ¢ causes first contact with s_. For a fixed L, we denote by K the decomposition
{HZ‘}.

Figure 3 shows the critical curves for a simple workspace consisting of a large free space and a long
corridor. The noncritical regions are numbered 1-19. As an example, the cylinder above R5 contains

"When the velocity of the pursuer is bounded, control of the parameter L is shared by the pursuer and evader, since
in this case, the pursuer cannot arbitrarily effect changes in the surveillance distance.
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Figure 2: The critical curves of Schwartz and Sharir [31].

two free cells. We will adopt a simple naming scheme for the cells in this example: x;;, denotes the free
cell above region R; for which the pursuer is in the corridor (generally to the left of the evader) and
kir denotes the free cell above region R; for which the pursuer is not in the corridor (generally, but
not always, to the right of the evader). In this simple example, there are at most two cells above any
region. Thus, for region Rs, the cell k57, includes all configurations (x,y, 6) such that (x,y) € R5 and
increasing or decreasing 6 causes collision with the walls in the corridor, while the cell k5r includes
all configurations (x,y,#) such that (z,y) € Rs and increasing or decreasing 6 causes collision with
the vertical walls bounding the free space. One configuration from each of these cells is illustrated in
Figure 4. We can now represent the set of collision free configurations in Q by a graph.

Definition: For a specific L, the connectivity graph Gy = (Vf,E[) has vertices that correspond
to the cells Kk € K I, in the decomposition of O I An edge exists between vertices v and v’ iff their
corresponding cells x and s’ are adjacent.

Suppose two cells k and k' exist in the cylinders above regions R and R’, respectively, and that
the regions R and R’ are separated by the critical curve 3. If x and " are adjacent, any configuration
in k can be connected to any configuration in s’ by a free path whose projection onto the z-y plane
crosses (3 transversally, with constant orientation in some neighborhood of the crossing point. The test
for adjacency is a bit complicated, but it is formulated entirely in terms of the qualitative description
of the cells [31, 20]. The complete graph for our example is illustrated in Figure 5. As an example, it
is possible for the rod to move from k57, to K4z, but it is not possible to move from ks5g to K4y,

To extend the representation of Schwartz and Sharir to the case of variable L, the following propo-
sition is key.

Proposition 1: For L € [Luyin, Limax], the structure of G 7, changes only at a finite set of critical
values {L1,... Ly}. If we order these values such that Ly < La... < Ly, then G, is constant for all
Le (LiaLi-i-l) fori=1,2...n—1.

Proof: As L ranges from Ly, to Lpax, the critical curves move in the plane. The structure of G,
changes only when (a) a new critical curve appears, or (b) the qualitative structure of the intersection
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Figure 3: A simple workspace and its critical curve decomposition.
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Figure 4: In the figure on the left, the rod’s configuration is in cell k5. In the figure on the right, the

rod’s configuration is in cell K5g.



of two critical curves changes. In all other cases, the geometry of the noncritical regions and of the
free cells may change, but the connectivity graph (which is derived from the qualitative structure of
the decomposition) will not change.

For case (a), as L increases, new critical curves of type 3 and 5 will appear (the critical curves of
type 1, 2 and 4 exist for all values of L). By examining the catalog of critical curves shown in Figure
2, it can be seen that this will occur exactly when L = d, where d is the distance between to vertices
for type 3 critical curves or the distance between a vertex and an edge for type 5 critical curves.

For case (b), as L increases, the critical curves move “away from” their corresponding obstacle
features. In general, two critical curves will intersect for the first time when L = d/2, in which d is the
distance between two obstacle features. For example, two critical curves of type 2 will intersect for the
first time when L = d/2, where d is the distance between the two vertices. Likewise, a critical curve
of type 1 will intersect a critical curve of type 2 for the first time when L = d/2, and d is the distance
between the corresponding edge and vertex. The other combinations are similar, in that the critical
value of L is uniquely determined for any two critical curves.
|

The main consequence of this proposition is that the entire four-dimensional configuration space of
the pursuer-evader system can be represented using a finite collection of connectivity graphs G1...G,.
In particular, let Ly < Lo... < L, be the sorted list of critical values of L, with L1 = Ly, and
L, = Lnax. Then G; =G L7 where LY is an arbitrarily chosen sample value such that L; < LY < L;y;.
All that remains is to add connections between the G; to form the full connectivity graph for Q.

Definition: The connectivity graph G = (V, E) includes all vertices V = |JV; and all edges £ = |J E;.
In addition, for vertices v € G; and v' € G;;1 with corresponding noncritical regions R and R’ and
corresponding cells x and ', an edge exists between v and v" iff ' N R # () and the cell £’ is a free
cell, i.e., if increasing the length of the rod without changing its position does not cause a collision.

In terms of this combinatoric representation of the surveillance problem, the evader controls the
choice of x,y, and the pursuer controls the choice of # and L (again, assuming for the moment that
the pursuer velocity is unconstrained). With regard to the cylindrical decomposition of Q and the
stratification induced by the G, the evader controls which cylinder in @ contains the system config-
uration, while the pursuer controls the choice of stratification G; and the choice of which cell in the
cylinder contains the system configuration.

Given this combinatoric representation for the surveillance problem, we will now establish sufficient
conditions for escape.

4 Sufficient Conditions for Escape

In this section, we give a necessary and sufficient condition to escape based on the analysis of the four
dimensional configuration space of the system. Later, we impose a bounded speed constraint to both
players. With the bounded speed constraint our necessary and sufficient condition to escape become
only a sufficient condition, meaning that if this condition holds then the evader will escape. However,
if this condition does not hold then the bounded speed constraint must be taken into consideration to
know whether or not the pursuer is able to maintain surveillance of the evader.

It is possible to express a set of sufficient conditions for escape directly in terms of the connectivity
graph G and the cylindrical decompositions computed for the LY. To derive these conditions, we
first derive a sufficient condition for escape for a particular LY in terms of the graph G; and the
decomposition of Qro. We then show that if an escape path exists for a particular value L7, then an

(3
escape path exists for all L > L7.



Figure 5: The complete connectivity graph for the simple corridor example.

We begin by considering the case when L is fixed. Consider the example shown in Figures 3 and 5.
Suppose the evader is in region Rg. There are two cells in the cylinder above Rg, cell kgr, for which the
pursuer is in the corridor, and cell kgr for which the pursuer is in a large empty space. If the current
configuration is in cell kgp, then by moving to region R7 the evader can break the surveillance (i.e.,
escape). There is no motion for the pursuer that prevents collision (the pursuer’s line of sight to the
evader is broken by a vertex). This can be seen from the connectivity graph in Figure 5. In the graph,
there is no cell adjacent to kg, in the cylinder above R7. Thus, there is no free continuation into which
the system can move if the evader chooses to move into region Ry.

Suppose instead that the evader is in region Rs5 and the system configuration is in cell k51, (i.e., the
pursuer is in the corridor). It is not possible for the evader to break the surveillance by moving to an
adjacent region?. For every region R’ adjacent to Rs, there is a cell in the cylinder above R’ adjacent
to k5r,. The pursuer merely changes the orientation # so that the system configuration moves into that
free cell when the pursuer moves to region R’. However, the evader can move to region Rg, forcing the
system configuration into cell xgz,, from which the evader can escape by moving to region R7. Thus,
even though the evader cannot escape immediately, there is an escape path that the pursuer cannot
prevent. This leads to the following recursive definition of an escapable cell.

Definition: For the decomposition of Q corresponding to a particular sample value L = L7, a cell

x € K, in the cylinder above a region R is an escapable cell if for some R’ adjacent to R, in the cylinder
above R’

(a) there is no cell &' € K adjacent to &, or

(b) every cell k' € K 1, that is adjacent to  is an escapable cell.

If a cell satisfies condition (a) of the definition, the evader can escape immediately by moving to
the adjacent region R’. This is the case for cells kg, and kg, of the example of Figures 3 and 5. If the
current configuration lies in either of these cells, the evader can move into region Rg or Rz, respectively,
to escape.

2The regions adjacent to Rs are R4, R, Rs, Ri2 and Ri3. Note that regions Ry and Ry are not adjacent to Rs, since
the boundaries of Rs and R7 (resp. Rs and Rg) share only a single point, an obstacle vertex v2 (resp. v1).



If condition (b) of the definition is satisfied, the evader can escape by moving through a sequence
of adjacent regions, forcing the system configuration to move through a sequence of escapable cells,
eventually reaching a cell that satisfies condition (a) of the definition. For the example of Figures 3
and 5, if the system is in configuration x1y, the evader can escape by following a path through regions
R3, R4, R5, Rg and R7. The pursuer has no choice but to follow, as the system configuration moves
through cells k31, ka1, K51, k6L, and finally into collision when the evader moves into region R7. Thus,
this sequence provides one guaranteed escape path for the evader.

By the definition above, the cell k177, is an escapable cell that satisfies both conditions (a) and (b) of
the definition. If the evader is in region R17 and moves into region Rig, there is no motion possible for
the pursuer that maintains the surveillance distance L. This illustrates a second way for the evader to
“escape” — it can force the pursuer into a position from which it cannot maintain surveillance distance,
or, the evader can “force the pursuer into a corner.” Both of these cases are taken into account by our
definition of escapable cell.

As the above examples illustrate, for a fixed surveillance distance L, the evader can escape if at any
time the system configuration enters an escapable cell. Thus, the pursuer must ensure that this does
not occur. For the example of Figure 3, the pursuer strategy is simple: never enter the corridor, since
doing so causes the system to enter some cell x;7,, and no such cell exists in the reduced connectivity
graph. This leads to the following sufficient condition for escape.

Proposition 2: For a fixed surveillance distance LY, if there exists a region R such the cylinder above
R contains only escapable cells, the evader can force the system into an escapable cell by moving to
region R, from which there is a guaranteed escape path.

Proof: The proof is immediate from the recursive definition of escapable cells.
|

Comparing Figures 3 and 5, it can be seen that there is no such region for the simple corridor
example. For every region R, there is some cell in the cylinder above R that is not an escapable cell.
Thus, the pursuer can prevent escape. Suppose however that the simple corridor example is changed
slightly, as shown in Figure 6. The connectivity graph is shown in Figure 7. Cells kg1, Ksr, k21r and
kosr satisfy condition (a) of the definition for escapable cells. By recursively applying the definition,
it can be seen that every other cell in the connectivity graph satisfies condition (b) of the definition,
i.e., the evader can escape regardless of which cell contains the initial configuration. The evader merely
enters the corridor, and makes a sharp turn when exiting the other end of the corridor. For this
example, there is no pursuer strategy that will maintain the surveillance.

Intuitively, planning collision-free paths for a variable length rod becomes more difficult as the
length of the rod increases. Indeed, for a bounded workspace, there exists some length L’ such that
no free configuration exists for any L > L’. Likewise, for our surveillance problem the difficulty of
maintaining surveillance increases as the surveillance distance increases. There are two reasons for
this. First, as L increases the set of occlusion-free configurations becomes smaller (analogous to the set
of free configurations for the rod becoming smaller as the length of the rod increases). Secondly, as L
increases, the pursuer speed required to change 0 increases. With respect to the sufficient conditions for
escape, only the former is relevant, but as we will see later, for the task of planning optimal surveillance
strategies for a pursuer with bounded velocity, the latter concern is preeminent.

Proposition 3: For a point (z,y) in the plane, if there exists an L such that in the decomposition
K7 every cell in the cylinder above (x,y) is an escapable cell, then for every L > L, every cell in the
cylinder above (z,y) in Ko is an escapable cell.

1

Proof: If the two cells k1 and k2 are contained in adjacent cylinders in K, then k1 and k2 are adjacent
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Figure 6: A simple workspace in which a corridor connects two large empty spaces.

if and only if their ranges of free orientations overlap®. The cell s is an escapable cell if no such
ko exists. For a particular (z,y), the range of free orientations is nonincreasing with increasing L.
Therefore, if the projection onto the plane of x; € K contains (z,y), increasing the value of L will
have the effect of deforming k1, and the resulting cell will also be an escapable cell, since the range
of free orientations for the deformed cell can be no greater than for the original cell, and thus no new
adjacencies can arise. Note that for some values of L7, the cell x may actually split into multiple
disconnected cells (each of which will have a range of free orientations that is no greater than the range
for the original cell), and in this case, each of the resulting cells will be escapable cells.
|

Figure 8 illustrates three cases. In the top left example, an escapable cell exists in the cylinders
over regions R; and Re. For example, if the evader is in region R; and the pursuer is in region Ro,
surveillance will be broken if the evader moves into the region directly above Rq. This situation exists
anytime there is a type 3 critical curve. It is easy to see that if a type 3 critical curve exists for some
L', then a type 3 critical curve will exist for all L > L’. In the example shown in the top right of the
figure, it can be seen that when L is increased, escapable cells exist in the cylinders above regions Ry
and Ry. The middle example in Figure 8 shows the similar case for a critical curve of type 5. The
bottom example in Figure 8 illustrates the case for a type 2 critical curve. In this case, the escapable
cell corresponds to forcing the pursuer into a corner.

The importance of Proposition 3 is that it allows us to express a sufficient condition for escape in
terms of the combinatoric representation of Q.

Proposition 4: For the decomposition Ko if there exists a region R such the cylinder above R
contains only escapable cells, then there is no guaranteed surveillance strategy for the pursuer.

Proof: The proof follows immediately from the definition of escapable cells, proposition 2 and propo-

3 Although the combinatoric representation described in [31] is defined in terms of stops, the geometric condition for
adjacency can be expressed in terms of overlapping ranges of free orientations.
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Figure 7: Connectivity graph for the example of Figure 6.

sition 3, since K L9 is decomposition corresponding to the minimum surveillance distance.
|

If this sufficient condition is satisfied, then the evader can escape the surveillance regardless of the
pursuer’s capabilities. If the condition is not satisfied, it may still be possible for the evader to escape,
depending on the constraints on the pursuer’s velocity.

5 Escaping a Pursuer with Bounded Velocity

In this section, we consider the case of a pursuer with bounded velocity. The discussion above has
assumed that the pursuer can move with unbounded velocity, but the sufficient condition for escape
given above continues to hold when the pursuer velocity is bounded: if the evader can escape an
infinitely fast pursuer, then of course it can escape a pursuer with finite speed. The concept of escapable
cell remains key in our development, but when the pursuer’s velocity is bounded, the pursuer must
take more care in avoiding escapable cells; it must also take care to avoid collisions of the rod with
obstacles in the workspace, even if the system configuration does not lie in an escapable cell.

Consider the example shown in Figure 9(a), for which # = 7. If the evader moves directly toward
the pursuer, the pursuer must change the orientation of the rod before the pursuer is forced into the
corridor. If the pursuer cannot move fast enough to do so, the evader will have forced the system into
an escapable cell, from which it has a guaranteed escape path.

In addition to avoiding escapable cells, when the velocity of the pursuer is bounded, it must also
take care to avoid configurations from which the evader can force a collision of the rod with an obstacle.
Consider the case illustrated in Figure 9(b). If the pursuer cannot move quickly enough, the evader
can break the line of sight by forcing a collision of the rod with the corner.

We can formulate this problem as a noncooperative dynamic game. Essentially, for a given con-
figuration ¢ = (x,y,0, L), the evader’s task is to find some location (z’,y’) in the plane, such that if
the evader moves to (z’,3’) along an optimal trajectory (we define conditions for optimality in Section
6), the pursuer will not have sufficient time to change the orientation of the rod to avoid entering an
escapable cell or to avoid a collision configuration.

12



Vertex—Vertex Case

Curvé5 Curve 5

|[Sa=t
BT

e e s e e e s e |
T T T T T T T T TTTTTT
[T T T T T T T TTTTLTT]

Segment—Segment Case

R1

7

Curve 2

R1

Curve 2

e e

e e e B e S S|
e e e S B B B i e S B

Regions associated to escapable cells are labeled

Figure 8: Bounded surveillance distance.

In the previous section, it was seen that difficulty of the surveillance problem increases as L increases.
Above, we were concerned only with establishing necessary conditions for surveillance, but this same
principle applies when planning surveillance strategies for a pursuer with bounded velocity. Assuming
that the maximum evader speed is not greater than the maximum pursuer speed,? the only escape
strategy for the evader is to move in such a way as to occlude the pursuer’s view. To prevent this
occlusion the pursuer must change the orientation of the rod so that it does not contact an obstacle.
Thus, the pursuer’s effectiveness depends on the possible maximum value of §. Using simple geometry,
we have L = HV;,H], in which Vpl is the component of the pursuer velocity that is perpendicular
to the rod. Thus, we again see that as L increases, the surveillance task becomes more difficult, or
alternatively, surveillance is the easiest when L = L,;,. For this reason, in the sequel we will specifically
consider the case of L = Ly, and we will derive pursuer strategies that attempt to maintain this
minimum surveillance distance. In some cases, the pursuer may not be able to move fast enough to
maintain this surveillance distance. In this case, if L exceeds Lyax, the evader escapes. Furthermore,
since the pursuer’s performance is maximized for L = L,;n, when we derive the optimal evader motion
we will assume that L = Ly, (a minimax type approach — the evader wishes to escape even when

41f this assumption does not hold, the evader has the trivial escape strategy of merely moving at its maximum speed
away from the pursuer
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forced into adead end rounding a corner
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Figure 9: If the pursuer is not able to change 6 fast enough, motion of the evader directly toward the
pursuer will force the system into an escapable cell (a). If the pursuer cannot move quickly enough,
the evader can break the line of sight by forcing a collision of the rod with the corner (b)

the pursuer’s performance is maximal).

To formalize the problem, we define the following terminology. Let R be the set of admissible
positions in the plane for the evader (i.e., the collision-free points in the plane). Let ¢ = (z,y,6, L) be
the current configuration, and ¢’ = (2/,3/,0’, L’) be a destination configuration. In this formulation,
the evader will choose (z’,y') and the pursuer will choose 6’ and L'.

We define t%(q,q’) to be the time required by the evader to follow its optimal path (as defined in
Section 6) from (z,y) to (z,y), and ty(q, q’) to be the minimum time required by the pursuer to change
the system orientation to 6’ such that ¢’ € Qpee, given that the evader follows its optimal path from
(x,y) to (2/,y). If we define the set of free orientations for a given (z,y) € R to be

@f(xay) = {9 ‘ (x7y707Lmin) S eree}

then the best choice for the pursuer is the free orientation that maximizes the difference between
t5(q,q') and t3(q,q'), and we define the corresponding evader loss (equivalently the pursuer gain) by

L(q,(«",y)) = sup  t(q,q) —ty(q,q") (2)
0'€O¢ (2’ ,y’)

The evader’s task is to select the point (z’,%’) that minimizes the pursuer’s gain,

L(q)= inf  L(q, (') 3
(q) i (¢ (=", y")) (3)

Note that in this formulation we have explicitly set L = L. It is possible to derive analogous
equations for the general case, but here we consider only the optimal pursuer strategy of maintaining
the minimum surveillance distance.

14



With this formulation, the evader escapes when £*(g¢) < 0. This leads to the bounded-velocity
analog of an escapable cell.

Definition: A configuration ¢ is an escapable configuration if L*(q) < 0.

There are several limiting cases. If both (x,y) and (z’,7’) lie in the same region R, and R is a
region with no stops (i.e., the rod can rotate freely), then t7(q,q’) = 0; the pursuer need make no
effort to change the system orientation. If there is no collision free path for (x’,y’), then we define
t5(q,q") = oo. For the case of a pursuer with unbounded velocity, we have ¢7(q,q’) = 0 when ¢ does
not lie in an escapable cell, and t;‘;(q, q') = oo when ¢ lies in an escapable cell and the evader follows
a guaranteed escape path. In this case a configuration that lies in an escapable cell is trivially an
escapable configuration.

For a given evader position (z,y), £*(q) depends not only on z and y, but also on the value of 6.
This leads to the following definitions.

Definition: For a given evader position in the plane, the set of admissible orientations for the rod is
given by

@adm(ﬂj?y) = {9 | q= ($7y70aLmin)7 E*(Q) > 0}
and a configuration ¢ = (x,y, 6, Lyin) is said to be an admissible configuration if 0 € © 4qm(z,y). We
will denote by Q.qm the set of admissible configurations. This leads to our sufficient condition for
escape when the pursuer has bounded velocity.

Proposition 5: If there exists a point (z,y) € R such that ©.qn(z,y) = (), then there is an escape
path for the evader originating at (x,y).

If the condition of the proposition is not satisfied, then it is the task of the pursuer to keep the
configuration of the rod in Q,4m, by choosing 6 € O g (z,y) as the evader traces a path in the plane.
In the next section, we describe the pursuer policy to keep 6 € © oqm(z,y).

We solve the specific portion of the pursuit evasion game corresponding to the following assumptions:
The rod’s motion takes place in the free space up to the moment that the system reaches an escapable
configuration, which corresponds to a contact with either an obstacle or an escapable cell. The pursuer
maintains a minimal surveillance distance, and the set of escapable configurations is bounded by critical
curves.

It is possible to formulate and solve this part of the whole game, even if the global trajectories of
both evader and pursuer are unknown in advance. In other words, it is possible to deduce the local
motion policies of both pursuer and evader and the required final rod orientation.

When the pursuer maintains the minimum surveillance distance, its trajectory can be decomposed
into two components: one that is equal to the evader velocity and one that is perpendicular to the rod.
This is true regardless of the evader’s trajectory, and it does not require any cooperation on the part
of the evader (i.e., it applies to the case of an antagonistic evader). In this case, the evader trajectory
can influence the rate of change in 6, but not the initial and final orientations. Thus, the policy for the
pursuer to change the rod from an initial orientation to a final one (avoiding an escapable configuration)
will be the same regardless of the actual evader trajectory.

Since we know in advance both the map and the maximum velocities of the evader and the pursuer,
then the escapable configurations are also known. If there is more than one set of escapable config-
urations then the evader can choose the optimal one with respect to a given criterion related to the
capabilities of the pursuer. Thus, knowledge of the optimal final rod orientation can be deduced from
the map.

The task of the evader is to find the optimal motion strategy to escape. In the section 6, we describe
the proposed optimality criterion. We also explain the validity of this optimization criterion.

15



6 Optimal Escape Trajectories for the Evader

In the optimization of Equation (3), for a given initial configuration ¢ = (x,y, 6, L) and for a specified
point (z/,%') in the plane, the evader should take the path from (z,y) to (z’,y’) that minimizes amount
by which the pursuer can change the orientation of the rod in the time required for the evader to reach
the escapable configuration.

If the evader’s goal were to minimizes the maximum angular speed of the rod (maximizing the time
taken for the pursuer to change the rod orientation) then the evader should move directly toward or
directly away from the pursuer. This evader policy is described in detail in the next section (6.1).
However, this evader motion may not reach an escapable configuration. On the other hand, a straight
line evader path minimizes the time to reach an escapable system configuration. This path is studied in
section 7.2. But the straight-line evader path is not optimal with respect to the criterion of minimizing
the change in 6 that can be effected by the pursuer.

Because of the kinematic constraints (bounded speeds and surveillance distance), there is a trade-off
between minimizing the time taken for the evader to reach the escapable configuration and maximizing
the time taken for the pursuer to change the rod orientation. The solution of the game can be established
as a function of the rod orientation. If the pursuer can change the rod angle to one corresponding to
an admissible orientation then the pursuer wins. Thus, the key concern for the evader is to minimize
this change of angle. We now formulate and solve this optimization problem.

Without loss of generality, suppose that the evader is located at the origin, and (z,y’) = (x.,0),
i.e., the evader is moving to a point on the z-axis. In the development that follows, we first derive an
expression for the rate at which the pursuer can change the orientation of the rod. Following this, we
formulate the optimization problem using Pontryagin’s minimum principle.

6.1 Maximum rate of orientation change

We assume that both the pursuer and evader move at their maximum velocities. In this case, we can
parameterize the evader’s velocity by «, the angle from the z-axis to the evader velocity vector. This
is illustrated in Figure 1. We denote by V), and V. the upper bounds on the norm of the pursuer and
evader velocities, respectively. Using these conventions we have

[y]zv‘elsina] 4)

and the derivative of Equation (1) is therefore given by

lx’lp]:ve[c.osa]_i_ljél—sinel (5)
Up sin « cos 0

Since the optimal strategy for the pursuer is to choose L = L,, we derive here the evader strategy
corresponding to this choice. Thus, in the derivations that follow, we assume that L = L, is a

constant. If the escape strategy succeeds for L = Ly, then it succeeds for any L > Ly,i,. Computing
the squared norm of each side of Equation (5) gives

Vf = L%0? +2V.L(sinacos § — cos asin 0)0 + V2
0 = L?*+2V.Lsin(a—0)0+ V72—V
and solving for 0 using the quadratic formula we obtain

0 = % (—psin(a —0)+ \/1 — p?cos?(a — 9)) (6)
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in which 0 < p <1 is the ratio of V, to Vj,. Note, if p > 1, it is trivial for the evader to escape.
To simplify notation, define

or = % (—psin(a —-0)+ \/1 — p?cos?(a — 9))
- = % (—psin(a —0) — \/1 — p?cos?(a — 6))

The decision of whether to use §% or 6~ is made by the pursuer, based on whether the pursuer
wishes to maximize | € |, to have 6 < 0, or to have § > 0. Since 0 < p < 1,

| psing |< /1 — p2cos? ¢
and therefore 6+ > 0 and §~ < 0.

The magnitude of the angular change | 0 | is maximized by choosing §% when sin(a — 0) < 0, and
choosing 6~ when sin(a — #) > 0. When sin(a — 0) = 0, either choice will yield

|6 |= —I—%\/l — p?cos?(a —0)

The maximum angular speed is then given by

max | 6 = 16— | 0<a—-60<m
] et r<a—0<2rm

In the interval 0 < a—@ < m, the function | 8~ | is concave. Likewise, in the interval 7 < a—6 < 2,
the function 67 is concave. Thus, the minimum is achieved at the transition point, where | 0~ |= 9+,
and where the derivative of max | | is discontinuous, i.e., for (o — ) = km. Therefore, if the evader
wishes to choose a velocity that minimizes the maximum angular speed of the rod, the evader should
move directly toward or directly away from the pursuer.

6.2 Formulating the optimal control problem

In formulating the optimal control problem, it is convenient to let  be the independent variable
(instead of time t) and to parameterize the control a by x, since the evader will move from the point
x = 0 to the point 2’ = x.. It is clear that the projection of the evader position onto the z-axis will
be monotonically increasing, so this is a reasonable choice for a parameterization of the problem. This
leads to a modified system description in which the state of the rod is given by ( = (y,6), and the
system equation is given by

d
%C - f(Cv Oé)
The time derivatives for z and y are given by
d
d—f = V.cosa
% = V.sina

With respect to the independent variable z, the state equations are then given by

dy  dy (dzx _1_ B
i E(E) =tana = fi1(¢, )
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do do (da\~
_ —psin(a — 0) £ /1 — p%cos?(a — 0) — h(C.a)

Lpcos a

In the remainder of this section, to simplify notation, we will use 9, )\, and C , to denote the derivatives
of #, A and ¢ with respect to = rather than with respect to time. Further, in this section we will only
solve the problem for the case of § = §+. The case for § = 6~ is analogous.

To minimize the angle by which the pursuer can change the orientation of the rod, we use the cost

function
Te 0

= —d
J A da:x

_ /%b@@Mx
0

Thus, we seek the control input « that minimizes J, subject to the system equation C = f(¢, ),
and subject to the boundary conditions

0(0) =0, y(0) =y(z.)=0

To solve this optimization problem, we use the minimum principle and solve the resulting equations
numerically using a shooting method.
The system Hamiltonian is given by

do

H( o z) = @+>\1($)f1(§704)+)\2($)f2(§704)
= Mf1((,a) + (1 + A2) f2(¢, @)
= Mtana+
(14 M) —psin(a — 0) + /1 — p%cos?(a — 6)

Lpcosa

in which \;(z) are the Lagrange multipliers, which are a function of the independent variable .
The adjoint equation for A; is given by

: 9
Mi=—g H=0

which implies that \; is a constant. This allows us to write the Hamiltonian as

H(,a,x) = Ktana

—psin(a — 0) + /1 — p2 cos?(a — 0)
Lpcosa

+(1 4 A2)

The adjoint equation for Ao is given by

: 0
)\2 = —%H
cos(a — 0) psin(a —0)
= —(14+A 1-
(1+22) Lcosa ( V1 —p?cos?(a —0)
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Algorithm OptimalEvasion (0, x.)

1. Choose initial values for the Lagrange multipliers.
2. Let j <+ 0, 6(0) < 6, y(0) < 0, 2(0) « 0.

3. Choose a(j) that minimizes the Hamiltonian,
a(j) = argmin H(¢(7), @, 2(j))
4. Integrate the state equations to determine ((j + 1)

y(+1) — y(U)+ f[1(CU), a())Ax
0G+1) «— 00()+ f2(C(H), ali) Az
5. Integrate the adjoint equation for Ay to to determine Ao(j + 1).
6. z(j +1) — z(j) + Ax.

7. If y(j) and y(j + 1) have different sign, then the system has crossed the x axis.
If | x(j + 1) — . |< €, then the optimal trajectory is given by «/(0),... a(j).

8. If y(j) and y(j + 1) have different sign but | (j+1) —x. |> €, then we have missed the boundary
condition. In this case, adjust the initial values for A and go to step 2.

9. If y(5) and y(j + 1) have the same sign, then we have not crossed the x-axis, and we continue to

iterate forward: j < j+ 1, go to step 3.

Figure 10: Algorithm to find the optimal evader trajectory.
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Figure 11: (a) The goal is given by x. = 1 and the initial values are given by 6y = m, Ay = —1, and
A2 = 0.41. (b) The goal is given by x. = 0.5 and the initial values are given by 6y = 7/6, A\ = 1, and
A2 = 0.608.

We find the optimal evader trajectory a* iteratively using the algorithm shown in Figure 10. Figures
11 and 12 show examples of optimal evader trajectories and the resulting pursuer trajectories. Values
for the Lagrange multipliers and x. are also shown in each figure. In each of these examples, the angle 0
is increasing (the rod rotates in a counterclockwise direction), and thus the evader trajectory minimizes
0=06t.

Figure 11(a) shows an example for which the pursuer and the evader are moving in the same
direction, and therefore the pursuer must “catch up” to the evader. Figure 11(b) shows an example for
which the pursuer and the evader are moving in opposite directions. This could result, for example,
from the evader tying to force the pursuer into a corner. For the example of Figure 12 there is no fixed
escape point (reflex vertex, those with internal angle bigger than 7). In this case, the final value of y is
unconstrained and the evader merely chooses its instantaneous velocity to minimize the instantaneous
value of 0.

The choice of the endpoint for the evader trajectory is a function of the nearest escape point. We
consider two cases: the escape point is a reflex vertex of an obstacle in the workspace, or the escape
point lies on a critical curve that bounds a region whose cylinder contains an escapable cell.

Reflex vertex: Two critical curves of type 4 (line segments) emerge from a reflex vertex. Let us call
0; the angle of the line segment (critical curve) having the smallest angle of the two segments,
and ¢ the angle of the other line segment. If the evader is at the reflex vertex and the rod is
not at an orientation bounded by ¢; and 6; then the pursuer would need unbounded speed to
prevent the evader from escaping. Thus, the admissible rod orientations are bounded by these
two orientations. The smallest change in the rod orientation in order to bring the rod to an
admissible orientation corresponds to either ; or ;. The reflex vertex location defines the final
boundary condition of the differential equations modeling the rod motion. This case is illustrated
in left of Figure 13. The evader is denoted with an E and the pursuer with a P. The critical
curves are shown in dashed lines. Note that some critical curves are omitted for clarity.

A critical curve bounding an escapable cell: Analogous to the reflex vertex case, the orientations
associated to an escapable cell are bounded by two angles 6; and 0. If the evader location is in
the region associated to the escapable cell and the rod is at an orientation within 6; and 6 then
the evader escapes. In this case, the evader optimal trajectory is generated having the origin at
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Figure 12: In this case, the goal configuration is unspecified, and the evader chooses its instantaneous

velocity to minimize the instantaneous rate of change in 6.

the evader initial position and defining the z-axis perpendicular to the critical curve bounding the
escapable cell. This z-axis orientation corresponds to the smallest distance trajectory between the
evader and the critical curve, thus geometrically satisfying optimal time to reach the escapable
cell. The initial conditions are the rod initial angle and the evader location. The point where
the trajectory hits the critical curve is the endpoint of an optimal escape trajectory. This case is

illustrated in right of Figure 13.

End point End point

X—axis

Figure 13: The endpoints of optimal escape trajectories

Under the assumptions that we have presented Section 5, the pursuer motion strategy is the same
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regardless of the evader trajectory. Note that, if the evader changes its mind and it takes other
trajectory then it does not affect the pursuer’s policy. If initially, the evader cannot escape taking its
optimal trajectory then it cannot escape with any other trajectory. The pursuer shall still apply the
same motion strategy. Note that given the invariance of this strategy it captures a large number of
situations to avoid evader escaping.

With the bounded speed constraint imposed over the evader and the pursuer, there are cases where
the evader can escape pursuer surveillance if the rod moves in contact with the obstacles. We give in
sections 7.3 and 7.4 the general modeling of these motions. However, since we consider that in these
cases, the evader and pursuer become a cooperative team, we have not analyzed the evader motion
strategy to escape.

7 Leader-follower Cooperative Motion Plans

Although the development above has dealt with the case of an antagonistic evader that tries to escape
surveillance, much of the analysis applies for cooperative motion. Examples of such motions include
cooperative manipulation of a rigid object or performing coverage tasks for which the distance between
robots must be held at a constant value as the robots cover terrain, maintaining robot formations (our
result applies to the special case of two-robot formations), and even planning motions of transportation
system such as trailers (although these systems include nonholonomic constraints in addition to the
constraints that we consider, our work provides performance bounds on these systems). In such cases,
it is more intuitive to refer to the evader as the leader and to the pursuer as the follower. In this
section we describe four such cooperative motions: motions that minimize the follower’s effort, motions
in which the leader follows a straight-line path to the goal, motions for which the follower follows a
straight line, and motions for which the follower and leader round a corner in a cooperative fashion.

7.1 Passive pursuer trajectories

If the leader is moving in straight line, the follower can minimize its expended energy by following the
path that it would take if it were “dragged by a string” held attached to the leader. This problem was
first solved Liebniz, and the resulting trajectory for the evader is known as the Tractrix curve [21, 19]
(also called hound curve). See Figure 14. The parametric equations that determine the follower position
are

1
xp(t) =t —tanht; yp(t) = p——
@ Evader
O Pursuer
Rod

Hound curve

Figure 14: The Tractrix curve

7.2 Straight-line path for the leader

Suppose that the leader takes a straight line path to its goal position. What is the minimum time
required by the follower to reach its goal position while maintaining the distance constraint? To
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formalize this question, we consider the case in which the leader moves in a straight line (i.e., a is a
constant), and the follower must change the orientation of the system from 6y to ;. We then solve for
the minimum time required by the follower to achieve this change.

The time derivative of 6 is given by Equation (6). To compute the time T' required to change the
system orientation by A#, we integrate dt over the required motion

a1 1
dd — V,—psin(a —0) + /T — pcos?(a — 0)
0
- [a - LAY la— a0
Vp Jo, —psin(a—0) £ /1 — p? cos?(a — 0)

After a bit of algebra, we obtain

0
T L_» / 1 sin(a — 6)df

7pl_p2 0o

L 1 01
i——/ 1 — p2 cos?(a — 0)db
V=2 o, \/ p? cos? (o — 0)

Under the change of variables ¢ = 5 — (a — ) the second integral can be written as

/¢ ¢ 1 = p2sin?(¢)do (7)

This integral is similar to the incomplete elliptic integral of second kind [1], which is defined as

o1
Elg1|p?] = /0 1 — p2sin®(¢)do

This integral corresponds to the arc length of a sector of an ellipse from 0 to ¢ (the amplitude), and
in which p? is called the elliptic module. Many modern mathematical programming languages (e.g.,
Mathematica [21]) provide a built-in function to solve this integral. The integral in Equation (7) can
now be expressed as the difference

®1
T = , /1 = p2sin®(¢)do = E[¢1]p*] — E[do|p’]

As always, the choice of positive or negative sign for the second integral gives rise to two possible
solutions, depending on whether the rod rotates in the counterclockwise or clockwise direction.

7.3 Wall following

For this motion, the follower obeys a wall following strategy as the leader moves, possibly toward the
wall, possibly parallel to the wall. Without loss of generality, assume that the wall lies along the x-axis
so that wall following is achieved by the follower velocity (&,,0). As above, assume the leader moves
with maximum velocity in direction . In this case, Equation (5) can be written as the two equations

Ty, = Vecosa—éLsine
0 = V,sina+ 0Lcosf
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Obstacle

Figure 15: In this figure, the pursuer attempts to follow the wall. Depending on the values of p and 0,
it may or may not be possible for the follower to effect this strategy.

Solving the second equation for 9 yields

Ve sin «
Lcosf
and substituting this into the above equation for z, gives

0 =

Tp = Vecosa + Vesinatan 6

To find the leader trajectory that maximizes the required follower speed, we compute and set to zero
the derivative of this equation with respect to a and obtain

0 = —V.sina+ V,cosatanf

tana = tan#6

a = O0+kr, k=1,2---
i.e., if the leader moves directly along the follower’s line of sight the result is to maximize the required
follower velocity.

For the case of a = @, we obtain the maximum velocity by back substitution,
tp, = Vgcosf+ V.sinftand

in
= Vecosﬁ—i-Vesinﬁsm

cos 0

= C(‘)/SY.BH (cos2 0 + sin? 9)
Ve

cos 6

The follower can effect this velocity provided

v
= COSeQ —cosf2p

Since sin@ + 1 = —sinf and cos 8 + 1 = — cos 0, the same bound applies for motion directly away from
the follower.
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7.4 Rounding a corner

Suppose the rod is in contact with a vertex whose coordinates are given by (z,,¥,) as shown in Figure
16. If the leader moves with velocity (&, %), what must be the pursuer’s velocity to maintain the vertex
contact?

Obstacle

Figure 16: Illustration of the required follower velocity when the leader rounds a corner

The constraint that the rod is in contact with the vertex can be specified in terms of the angle 0

cosf = Lo — 4
V(@ — )2+ (yo — y)?
. o Y —Y
sinf =

Vi(@y —2)° + (yo — y)?

To simplify notation, let [ = \/(z, — 2)? + (y, — y)? be the distance from the leader to the vertex.
If we combine the above equations with Equation (1) we obtain

HEHEIE

The pursuer velocity is obtained by differentiating the above

Y 1| cosfsinfi — cos? 0y

[j:pl _ la: ] +L [ —sinzﬁjz—l—cosﬁsinﬁyl

8 Conclusion

This work proposes an approach to maintain visibility of a moving evader with a mobile robot in
a polygonal environment. The evader moves continuously; its global trajectory is unknown but the
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distribution of obstacles in the workspace is known in advance. We give necessary conditions for the
existence of a surveillance strategy.

The work presented in [5] gives an efficient algorithm to compute an optimal motion strategy to
track an evader. The method of [5] assumes a predictable evader. Our work relaxes this constraint.
Our approach is able to track the evader even if the global trajectories of both evader and pursuer are
unknown in advance, since it is possible to deduce the optimal motion policies of both pursuer and
evader. In [5], the authors proposed as an improvement to their work to include a range constraint.
Our paper presents that extension.

In game theoretic terms, we have solved the game of degree [13, 3] of maintaining visibility at a
fixed distance of a moving evader with a mobile robot in the presence of obstacles, for a single set of
escapable configurations.

The decision problem, which equivalent to answering the question Can the evader escape? depends
on the optimal evader and pursuer motion policies. If the pursuer is able to track an evader that travels
the optimal path then it will be able to track an evader that travels any other path.

Our analysis including bounded speeds holds for a single set of escapable configurations. If more
than one set is considered then a combinatorial problem arises. This combinatorial problem corresponds
to define the optimal ordering to visit the escapable configurations. In this paper, we did not deal with
this combinatorial problem. We leave this latter problem for future work. However, note that our
sufficiency condition for escaping without the bounded speed constraint includes any ordering to visit
escapable configuration sets.

In [24], we have proposed a method able to determine the existence a solution, if there is delay
between the evader and pursuer motion. In that work, we have assumed that the pursuer speed is
unbounded. As future work, we would like to find a solution for the case of both delay and bounded
pursuer speed. Finally, we want to consider dynamic and nonholonomic constraints.
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