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Introduction

e Our ideas are centered on the development of mobile robotic systems

that perform sensor-based tasks.

Environment Representation ~ Optimal Navigation Target Finding and Tracking
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Computer Vision for SLAM
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Outdoor Landmark based Navigation and SLAM
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Outdoor Landmark based Navigation and SLAM

e Visual Navigation in Natural Environments: From Range and
Color Data to a Landmark-based Model, R. Murrieta-Cid, C.
Parra and M. Devy, Journal Autonomous Robots, Vol.
13, No. 2, pages 143-168, September 2002.

e Building Multi-level Models: From Landscapes to Landmarks,
R. Murrieta-Cid, C. Parra, M. Devy, B. Tovar, C. Esteves,
In Proc IEEE International Conference on Robotics and
Automation, pages 4346-4353, Washington D.C., USA,
ICRA 2002.




Planning EXxploration Strategies for SLAM

e A mobile sensor (the observer) must define a motion strategy
to efficiently build a map of an indoor environment.

e \We have developed a randomized motion planner that selects
the next best view from a set based on maximizing a utility
function.

e [ he final result of the exploration is a multi-representational
map consisting of polygons, landmarks and a road map.




Planning EXxploration Strategies for SLAM

A multi-objective optimization problem:

T = elv_(3+5v) e_|0|

45+ 1 gj;lpj‘l'Ne fmin(dyp).

Length of the closest free edge

Distance from the robot to the next possible position

Distance from the next possible position to the closest free edge
Orientation change to reach the next robot’s configuration
Cumulative uncertainty

Object identification probability

Number of landmarks inside a visibility region

Number of corners inside a visibility region

A function that penalizes configurations that like near an obstacle.
Minimum distance from a full edge

Definitions of variables used in the utility function.




Planning EXxploration Strategies for SLAM
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Planning EXxploration Strategies for SLAM

e Given two sets of points P and @, the Hausdorff distance is
used to find the matching and update robot localization

H(P,Q) = max(h(P,Q),h(Q, P))

har( P, =M min ||p —
(P, Q) pepqullp qll




Planning EXxploration Strategies for SLAM
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Planning EXxploration Strategies for SLAM
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Exploration with Multiple Heterogeneous Robots

Observation model

z = h(x)

Our observation model is a classifier.

h:x=qgx (T:5(q) = eP) = z ~ tp

T estimates a type (class) of local map e'? by virtue of the
nearest neighbor method using the partial Hausdorff distance
as metric.

h estimates the type (class) of observation tp using the Bayes
rule.
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Exploration with Multiple Heterogeneous Robots

R1 . R2
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Exploration with Multiple Heterogeneous Robots

Observation model

Xk h Zy~ tp class
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Exploration with Multiple Heterogeneous Robots

e The Bayes rule is used to estimate p(zp41|rr41)

P(Tp41]2k4+1)P(2k41)
2t P(Tp41]2k4+1)P(2k41)

P(zp41lTp41) = 5

e MAP

p(zg+41|TK41) = max{P(zg+1|rK+1)}
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Exploration with Multiple Heterogeneous Robots
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The training data considers some variants of each one of the
five main patterns
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Exploration with Multiple Heterogeneous Robots

e Dynamic programming in states with imperfect information
is used to select the system action wu; [Bertsekas 00].

Ji (L) = maxy, [g(1k, ug) + Bz 1 {Jk41 Uk, 26415 i) [, g }]

o g(Ig,up) = Xy, P(@p|Ip) g (g, ug)

Pzt 1lueet1) 2o, Pk l)P(@pp1]r,up)
o p(Tpy1llp41) = 7
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Exploration with Multiple Heterogeneous Robot

o i
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15 over 20 times robot R1 (the one with better sensing capabilities) has
explored the left part of the environment and robot R2 (having better control
capabilities) the right part.
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Planning EXxploration Strategies for SLAM

e [ he crux of our method is a sampling-based motion plan-
ner algorithm that, given a partial map of the environment,
selects where to move the robot next.

e \We balance the desire to see as much of the as-yet-unseen en-
vironment as possible, while at the same time having enough
overlap and landmark information with the scanned part of
the building to guarantee good registration and robot local-
ization.

e Visibility is used to bias the sampling generation.

e \With heterogeneous robots, the ones with good sensing ca-
pabilities are selected to explore visually rich local maps, and
robots with good control capabilities are used to explore |local
maps, which are hard to be matched with the global map.
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Planning EXxploration Strategies for SLAM

e EXxploration and Map-Building under Uncertainty with Mul-
tiple Heterogeneous Robots, L. Munoz, M. Alencastre, R.
Lopez and R. Murrieta-Cid, Proc IEEE International Con-
ference on Robotics and Automation, pages 2295-2301,
Shanghai China, ICRA 2011.

e Planning Exploration Strategies for Simultaneous Localiza-
tion and Mapping, B. Tovar, L. Muhoz-Gomez, R. Murrieta-
Cid, M. Alencastre, R. Monroy and S. Hutchinson, Journal
on Robotics and Autonomous Systems, Vol. 54, No 4,
pages 314-331, April, 2006.

e Robot Motion Planning for Map Building, B. Tovar, R. Murrieta
Cid and C. Esteves, Proc IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 673-
680, Lausanne Switzerland, IROS 2002.
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Optimal Navigation

What is the minimal information required to navigate in an en-
vironment with obstacles?

e \We propose a sensor feedback motion strategy for robot na-
vigation.

e \We developed a data structure and algorithm that captures
the topology of the environment and enables a robot to na-
vigate optimally.

e [ his data structure is a dynamic tree that encodes enough
information to generate optimal paths, although only infor-
mation of gap critical events is used.
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Optimal Navigation

Therobot view of the environment
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Optimal Navigation
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Optimal Navigation




Optimal Navigation
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Optimal Navigation

Experimentswith real robots

Simulations and Experiments
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Optimal Navigation

Main results

e [heorem 1: If R is simply connected and the robot is at a
point in S , then the path encoded in the GNT between the
root and any point is globally optimal in Euclidean distance.

e [ heorem 2: The extended GNT encodes a path to any object

or landmark in the environment from the current position of
the robot.
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Optimal Navigation

e Distance-Optimal Navigation in an Unknown Environment

without Sensing Distances, B. Tovar, R. Murrieta-Cid and
S. M. LaValle, IEEE Transactions on Robotics, VVol. 23,
No. 3, pages 506-518, June 2007.

Optimal Navigation and Object Finding without Geomet-
ric Maps or Localization, B. Tovar, S. M. LaValle, and R.
Murrieta-Cid, IEEE International Conference on Robotics
and Automation, pages 464-470, Taipei Taiwan, ICRA
2003.

Locally-Optimal Navigation in Multiply-Connected Environ-
ments without Geometric Maps, B. Tovar, S. M. LaValle, and
R. Murrieta-Cid, IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3491-3497, Las
Vegas USA, IROS 2003.
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Optimal Navigation II

Problem Definition: Path Planning for a Differential Robot
—Minimal Length Paths-.

A mobile robot navigates while maintaining view of a fixed
landmark.

The robot has sensing constraints namely, limited angle of
view.

The robot is a nonholonomic system, differential drive robot.

Our goal is to find the path that is optimal in sense of dis-
tance between a given start and a goal position.
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Optimal Navigation II

30



Controllability and Optimality

e Controllability
Theorem 1: Between any two admissible configurations, there

exists a path that satisfies sensor constraints.

e Optimality
Theorem 2: Optimal paths between admissible configura-
tions consist of path segments for which viewing angle ¢ is
saturated (logarithmic spiral) and straight line segments.
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Controllability

e Constructive proof of controllability
Build a path by following appropriate set of S-curves.
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Maintaining Visibility of a Landmark with Obstacles

] 7
7

]
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(Left) Examples of a path computed by the recursive algorithm.
(Center) and (Right) Behavior of the planner in narrow passages: as expected, a solution
may imply a quantity of maneuvers to finally reach the goal.

(Right) is a zoomed view of (Center).
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Optimal Navigation II

Formulation of the problem of tracking a static target with
sensing constraints

Proposed a constructive proof for the controllability of the
system

Proposed the nature of optimal paths.

This work has been extended to the presence on obstacles,
which generate both motion and visibility obstructions.

In the case of obstacles the optimality is lost but the com-
pleteness is guarantied.
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Optimal Navigation II

e A Motion Planner for Maintaining Landmark Visibility with a Differential

Drive Robot, J.-B. Hayet, C. Esteves and R. Murrieta-Cid, Proc Work-
shop on the Algorithmic Foundations of Robotics, WAFR 2008,
Guanajuato, México, G.S. Chirikjian et al Eds., STAR 57, pages
333-347, 20009.

Optimal Paths for Landmark-based Navigation by Nonholonomic Vehicles
with Field-of-View Constraints, Sourabh Bhattacharya, Rafael Murrieta-
Cid and Seth Hutchinson, IEEE Transactions on Robotics, Vol 26,
No.3, pages 47-59, February 2007.

Path Planning for a Differential Drive Robot: Minimal Length Paths - a
Geometric Approach, S. Bhattacharya, R. Murrieta-Cid and S. Hutchin-
son, IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2793-2798, Sendai Japan, IROS 2004.
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Object Finding

Problem Definition:

e Use one or more mobile robots to find an object as quickly
as possible on average.

e robots move in a known environment.
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Object Finding

Expected Value vs. Worst Case:

S5 Units 1 Unit

Object
Probabilities

()
- 1 P(Ly) =00
P(L;) = 0.1

P(L,) = 0.9

e Route 1: Lo — L1 — Lo
— E[T|Route1] = (0.1)(1) + (0.9)(7) = 6.4

— Worst case time =7

e Route 2: Lo — Lo — L1
— FE[T|Routez] = (0.9)(5) 4+ (0.1)(11) =5.6

— Worst case time =11
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Object Finding

Different Versions of the Problem:

e Sensing at specific locations.

e Polygonal environment.

Result:

Theorem: Finding the route that minimizes the expected value
of the time for finding the object is a NP-hard problem even for
a point robot moving in a 2-D polygonal environment.
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Object Finding

;‘
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n nodes
in tree
-

e Use a utility function to drive a greedy algorithm

P (L)
Time (Lj, L)

e Locations with a high probability or that are close will be preferred.
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Object Finding

Results

Optimal (Expect. Time) Heuristic Algorithm Shortest Distance
Expected time: 943.21 Expected time: 982.21 Expected time: 994.79

Distance: 2783.20 Distance: 2970.43 Distance: 2273.09
Processing: 892.82 sec Processing: 0.44 sec Processing: 488.87 sec

(2000-fold improvement!)




Object Finding

Different Versions of the Problem: Continuous sensing

V(S,1)

e Polygonal environment

e Robot senses the environment as it moves

S* = arginf{E[T|S]} = inf {/ t- fris(tlS) dt} :
S S 0

41



Object Finding

Two-Layered Approach:

e Partition the environment into regions bounded by critical curves.

e Find an ordering of visiting these regions.

e Solve each region independently and concatenate the resulting sub-paths.
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Calculus of Variations

e Find stationary values of integrals of the form

b
I=/ F(z,y,y) do

e Integral has a stationary value if and only if the Euler-Lagrange equation

is satisfied
oF_ 4 (30 _g
oy dx \oy/)

e Minimize unseen area

(r(1),6(0)

A

o)
a(t)=g—6(t) A

o),
9y
A'®

0.(1)

E,

e Second order non-linear differential equation

272

" __ + + 2 /+£
e r sin(20) " r2




Simulation Results

ILocally Optimal| Straight Line€|
[Expected time: 115.3 IExpected time: 136.9
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Object Finding

3-D environment and a mobile manipulator robot with limited sensing

@M Virtual Environment

World-space view Camera view

'Simulations and Experiments|
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Object Finding

Repairing Plans for Object Finding in 3-D Environments, J. Espinoza
and R. Murrieta-Cid, Proc IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2011, pages 4528-4535,
San Francisco California, USA, Sept 2011.

A Motion Planning Strategy for Finding an Object with a Mobile Manip-
ulator in 3-D Environments, J. Espinoza, A. Sarmiento, R. Murrieta-Cid
and S. Hutchinson, Journal Advanced Robotics, pages 1627-1650,
Vol 25 No 13-14, August 2011.

An Efficient Motion Strategy to Compute Expected-Time Locally Opti-
mal Continuous Search Paths in Known Environments, A. Sarmiento, R.
Murrieta-Cid and S. Hutchinson, Journal of Advanced Robotics, Vol.
23, No 12-13, pages 1533-1560, October 2009.

A Sample-based Convex Cover for Rapidly Finding an Object in a 3-
D environment, A. Sarmiento, R. Murrieta-Cid and S. Hutchinson, Proc
IEEE International Conference on Robotics and Automation, pages
3497-3502, Barcelona Spain, ICRA 2005.
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Pursuit-Evasion

Problem definition:
e A mobile robot must maintain visibility of a moving evader.
e T he geometry of the environment is known a priori.

e We are assuming a feedback control scheme where the instantaneous
target velocity is measured or reported.

e [ he observer speed is bounded.
e Antagonism: Non-cooperative games.
e Decision problem: can the evader escape?

e Planning problem: the motion strategy.
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Pursuit-Evasion

Sampling Based Motion Planning

® T he shortest distance to escape: Our algorithm computes a motion strategy by maxi-
mizing the shortest distance to escape —the shortest distance the target must move
to escape an observer’s visibility region.

Shorthest distance

to escape

Target Observer
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Pursuit-Evasion

Experiments real robot:Controller| Simulation two-pursuers/two-evaders
[Experiments real robot:Planner and Controlleri Tracking [People with mobile robots.
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Pursuer with Finite Sensor Range

Deterministic approach:

e T his problem is analogous to the path planning problem of moving a rod
in the plane (Schwartz and Sharir).

e [ he end points of the rod represent the pursuer and evader.
e [ he rod represents the surveillance constraints.

e The evader controls the rod origin (z,y) and the pursuer controls the rod
orientation 6.

e Violation of the visibility constraint corresponds to collision of the rod
with an obstacle in the environment.

Key Idea: Capture the qualitative structure of the problem using a combi-
natoric representation.
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T he Basic Cases

forced into adead end
@

rounding a corner

(b)
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Cells In C

e The configuration space for the rod, Q@ = SE(2) X [Lmin, Lmax].

e Each non-critical region in the plane defines a cylinder in C.

0 _ Rod
R o A e Observer
; ® Target

|-
/N s
YT e

Obstacle

Concave Corner

Cells

RO={( Q,Q} R3={(E2,E2)}
RI={(ELE1)} R4={(E2,E1)}

R2={(ELE2)|(E2,EL)}

The Graph

(R2,ELE2)

(RLE1,E1l) —— (R0, Q,Q) — (R3E2E2)

(R2,E2,E1)

(R4,E2,E1)
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Cells In C
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In the figure on the left, the rod’s configuration is in cell ks;,. In the figure on the right, the
rod’'s configuration is in cell kgpg.




The Reduced Connectivity Graph

The complete connectivity graph for the simple corridor example.

e (7 is a non-directed graph whose nodes are all the C-space cells. There is an edge
connecting any two nodes only if the corresponding cells are adjacent.

The reduced connectivity graph for the example
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No Solution for the Pursuer
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n which a corridor connects two large empty spaces

A simple workspace

Connectivity graph for the example
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Bounded Speed: An Optimal Control Problem

e We use the Pontryagin’s Maximum Principle [Basar et al. 2004] to solve
the optimization problem and solve the resulting equations numerically
using a shooting method.

u = argmin H(((z), A(z),u(z), )
H=1+X'Ff, A=-VH

Pursuer and evader paths

Sample for Type 2.
; = B

p:1.2;L:1;xe:0.5, GD 16; /,1:1; 302:0.608




Pursuit-Evasion

Tracking an omnidirectional evader with a nonholonomic robot (DDR).

A
w 0
P

Xe Xp
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Pursuit-Evasion

Tracking an omnidirectional evader with a nonholonomic robot (DDR).

Main results

e [ heorem :

] * * 1 max *k
M(V'ema:c, ‘/pma:c79,¢) - ‘¢(u1au2)| o g(‘/;) o "U,3 |)

The manifold M(Vemax,\/;)m“m,e,cb) = 0 partitions the space spanned by
Vvemar ymer 6,¢ into 2 regions, one in which the pursuer can maintain
surveillance indefinitely, and another in which the evader can eventually
escape.

If M(Vmew, Vorer 0, ¢) > 0 at the beginning of the game, then the evader
eventually wins at some time t > to if the strategy (ui,uz) = (uj,ub) is
applied at all times, regardless of the strategy applied by the pursuer.
Otherwise, if at the beginning of the game M (V" V"% 0, ¢) < 0, the
pursuer wins, if the strategy (usz,us) = (u},u}) is applied at all times,
regardless of the strategy applied by the evader.

58



Simulation Results

—e—evader
—=—pursuer

[IPursuer wins
|Optimal trajectories|

—e—evader
—=—pursuer

[Evader wins
|Optimal trajectories|
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Pursuit-Evasion

Tracking an Omnidirectional Evader with a Differential Drive Robot, R.
Murrieta-Cid, U. Ruiz, J. L. Marroquin, J.-P. Laumond, and S. Hutchin-
son, To appear in Journal Autonomous Robots, special issue on
Search and Pursuit/Evasion with Mobile Robots.

Evader Surveillance under Incomplete Information, I. Becerra, R. Murrieta-
Cid and R. Monroy, IEEE International Conference on Robotics and
Automation, pages 5511-5518, Anchorage USA, ICRA 2010.

A Complexity Result for the Pursuit-Evasion Game of Maintaining Vis-
ibility of a Moving Evader, R. Murrieta-Cid, R. Monroy, S. Hutchinson
and J.-P. Laumond, IEEE International Conference on Robotics and
Automation, pages 2657-2664, Pasadena USA, ICRA 2008.

Surveillances Strategies for a Pursuer with Finite Sensor Range, Rafael
Murrieta-Cid, Teja Muppirala, Alejandro Sarmiento, Sourabh Bhattacharya
and Seth Hutchinson, International Journal on Robotics Research,
Vol. 26, No 3, pages 233-253, March 2007.

A Sampling-Based Motion Planning Approach to Maintain Visibility of
Unpredictable Targets, Rafael Murrieta-Cid, Benjamin Tovar and Seth
Hutchinson, Journal Autonomous Robots, Vol. 19. No 3, pages
285-300, December 2005.
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General Conclusion and Future Work

Sensor-based robotics raises various problems combining: com-
puter vision, geometry, planning and control, ranging from
theoretical to applied and experimental.

Relations with art-gallery problems, but with moving guards.

Important theoretical issues: Complexity, optimality, com-
pleteness, incomplete or imperfect information.

Future work: Robustness, reactivity, dynamic constraints,
information spaces.
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