RRT* with Visibility Constraints for Robotic Dynamical Systems and Their Local Planners Properties

Rafael Murrieta Cid

Centro de Investigación en Matemáticas (CIMAT)

This is a joint work with:

Israel Becerra, CIMAT Heikel Yervilla, CIMAT Emmanuel Cuevas, U. de Guanajuato

Escuela de Invierno en Robótica 2019/2020, Saltillo Coahuila

January 2020

Ratael Murrieta Cid (CIMAT)

RRT* with Visibility Constraints

.

Outline

Introduction

Motivation

Asymptotic Convergence

- Current Sufficient Conditions for Kinodynamics Problems
- Research Questions

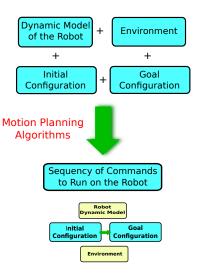
Local Planners

Local Planner for Differential Drive Robot

Experimental Analysis and Theoretical Insight

- Simulations
- Theoretical results

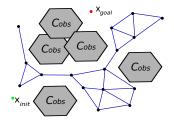
Mixed Cost System

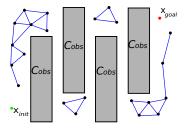

- Problem Statement
- Cost Functional
- Definitions and Propositions
- Simulation, Experiments and Results

Conclusions

Ratael Murrieta Cid (CIMAT)

Motion Planning

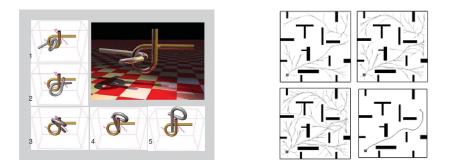




X_{init} Cobs X_{goal}

Rafael Murrieta Cid (CIMAT)

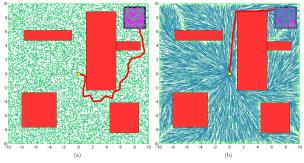
Sampling-Based Motion Planning



- Sampling-based algorithms represent the configuration space with a roadmap of sampled configurations.
- A basic algorithm samples n configurations in C_{space} , and retains those in C_{free} to use as milestones.
- These algorithms work well for high-dimensional configuration spaces, their running time is not (explicitly) exponentially dependent on the dimension of $C_{\rm free}$.

RRT-based Algorithms

Rapidly-Exploring Random Tree (RRT)



The RRT proposes the sampling of the control space U, which allows us naturally address the Kinodynamic Planning Problem.

Rafael Murrieta Cid (CIMAT)

RRT*-based Algorithms

The RRT* algorithm essentially *rewire* the tree as it discovers new lower-cost paths reaching the nodes already present in the tree.

- RRT* allows the addition of asymptotic optimality.
- Procedures such as rewire requires to solve a two-point boundary value problem (BVP).

Related Works

- Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: Lqr-rrt*: Optimal sampling-based motion planning with automatically derived extension heuristics. ICRA 2012.
- Webb, D.J., van den Berg, J.: Kinodynamic rrt*: Asymptotically optimal motion planning for robots with linear dynamics. ICRA 2013.
- Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. CDC 2010.
- Karaman, S., Frazzoli, E.: Sampling-based optimal motion planning for non-holonomic dynamical systems. ICRA 2013.

(日)

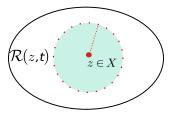
Related Works

- Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: Lqr-rrt*: Optimal sampling-based motion planning with automatically derived extension heuristics. ICRA 2012.
- Webb, D.J., van den Berg, J.: Kinodynamic rrt*: Asymptotically optimal motion planning for robots with linear dynamics. ICRA 2013.
- Karaman, S., Frazzoli, E.: Optimal kinodynamic motion planning using incremental sampling-based methods. CDC 2010.
- Karaman, S., Frazzoli, E.: Sampling-based optimal motion planning for non-holonomic dynamical systems. ICRA 2013.

(日)

Problem Definition

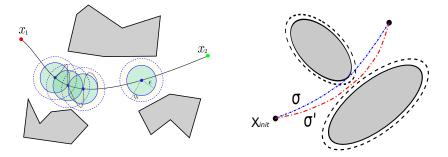
Let $X_{free} \subset X$ be the set of collision free states, $X_{goal} \subset X$ be the goal set, and $c : X \to \mathbb{R}_{\geq 0}$ be the cost function. The *Optimal Kinodynamic Motion Planning Problem* is defined as finding a dynamically-feasible trajectory $x : [0, T] \to X$, with $x(0) = x_0$, so the trajectory


I) is collision-free, i.e. $x(t) \in X_{free}, \forall t$.

II) reaches the goal region, i.e. $x(T) \in X_{goal}$.

III) minimizes the cost functional $J(x) = \int_0^T c(x(t)) dx$.

Local Controllability and Local Planner


I. The considered system is Small Time Locally Controllable (STLC).

II.The local planner used in the RRT* is an optimal local planner.

Topological Property and Obstacle-Free Space

III. The local planner used in the RRT* respects the topological property.

IV.There exist an optimal path which has enough obstacle-free space around it to allow almost-sure convergence.

Rafael Murrieta Cid (CIMAT)

RRT* with Visibility Constraints

January 2020 11 / 41

Research Questions

- What are the necessary and sufficient conditions for the RRT* to converge in the context of kinodynamic planning?
- Since the optimal local planners are hard to obtain, is this condition necessary?
- Is the topological property sufficient or necessary?
- Can we design an experimental setup that can offer insight regarding these questions?

Differential Drive Robot

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix} v + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} w$$

Ratael Murrieta Cid (CIMAT)

January 2020 13 / 41

-

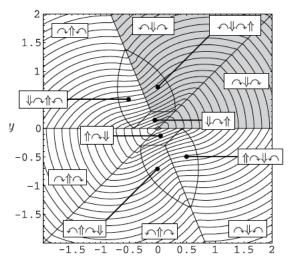
・ロト ・ 日 ・ ・ 回 ・ ・

Case of Study: Time-Optimal Planners for Differential Drive Robot without Obstacles

	Tangent	$\uparrow \uparrow \uparrow$		$\sim \uparrow \sim$	$\sim \downarrow \sim$
Structure of Optimal Words	$Tangent_{\pi}$	$\uparrow \curvearrowright_{\pi} \Downarrow$	$\Downarrow \uparrow \uparrow \uparrow$	$\Uparrow \frown_{\pi} \Downarrow$	$\Downarrow \land \pi \uparrow$
	ZigZag	≙∽∜∿↑	$\mathbb{A}_{\mathbb{A}}$	ACUA	$\mathbb{A}^{\mathbb{A}}$

	Optimal Optimal		T opological
	Letters Words		Property
$L^+W^+T^+$	YES	YES	YES
$L^+W^*T^+$	YES	Not all	YES
$L^+W^-T^+$	YES	NO	YES
$L^+W^-T^-$	YES	NO	NO
L^W^T	NO	NO	NO

Local planner $L^+W^+T^+$ (Balkcom and Mason - 2002)


	Tangent	$\uparrow \uparrow \uparrow$		$\sim \uparrow \sim$	$\sim \downarrow \sim$
Structure of Optimal Words	$Tangent_{\pi}$	$\uparrow \curvearrowright_{\pi} \Downarrow$	$\Downarrow \uparrow \uparrow \uparrow$	$\Uparrow \curvearrowleft_{\pi} \Downarrow$	$\Downarrow \uparrow \uparrow$
	ZigZag	$\uparrow \land \Downarrow \land \uparrow \land \uparrow$	$\mathbb{A}_{\mathbb{A}}$	$\uparrow \land \Downarrow \land \uparrow \land \uparrow$	\mathbb{A}^{A}

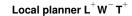
	Optimal Optimal Letters Words		Topological Property
$L^+W^+T^+$	YES	YES	YES
$L^+W^*T^+$	YES	Not all	YES
$L^+W^-T^+$	YES	NO	YES
$L^+W^-T^-$	YES	NO	NO
L^W^T	NO	NO	NO

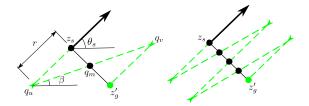
Sintesis

Balkcom and Mason - 2002

x

Ratael Murrieta Cid (CIMAT)


・ロン ・四 と ・ モン ・ モン

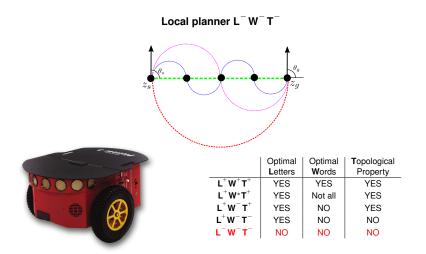

Local planner L⁺W* T⁺ (Subset of Balkcom and Mason)

Subset of Optimal Words	Tangent	$\uparrow \uparrow \uparrow$		$\sim \uparrow \sim$	nth
	Tangent $_{\pi}$	$\uparrow \curvearrowright_{\pi} \Downarrow$	$\Downarrow \land \pi \uparrow$	$\uparrow \uparrow \uparrow \pi \downarrow$	$\Downarrow \cap \pi \uparrow$

	Optimal Optimal Letters Words		Topological Property
$L^+W^+T^+$	YES	YES	YES
$L^+W^*T^+$	YES	Not all	YES
$L^+W^-T^+$	YES	NO	YES
$L^+W^-T^-$	YES	NO	NO
L^W^T	NO	NO	NO

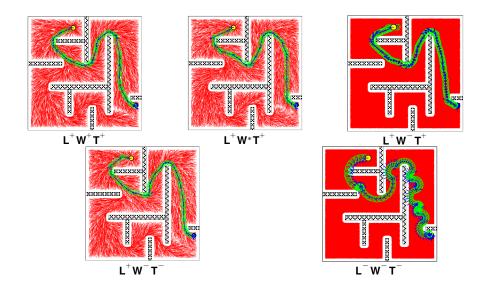
	Optimal Optimal		Topological
	Letters	Words	Property
$L^+W^+T^+$	YES	YES	YES
$L^+W^*T^+$	YES	Not all	YES
$L^+W^-T^+$	YES	NO	YES
$L^+W^-T^-$	YES	NO	NO
$L^-W^-T^-$	NO	NO	NO

Rafael Murrieta Cid (CIMAT)


Local planner $L^+W^-T^-$

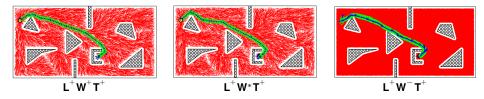
Rotation in site + Straight line + Rotation in site

 $(\frown / \frown) \qquad (\Uparrow / \Downarrow) \qquad (\frown / \frown)$



	Optimal Optimal		T opological
	Letters Words		Property
$L^+W^+T^+$	YES	YES	YES
$L^+W^*T^+$	YES	Not all	YES
$L^+W^-T^+$	YES	NO	YES
$L^+W^-T^-$	YES	NO	NO
L^W^T	NO	NO	NO

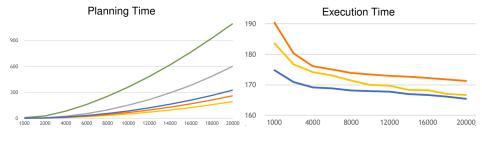
H 14


Experiment Set (Environment 1)

Rafael Murrieta Cid (CIMAT)

・ロト ・ 四ト ・ ヨト ・ ヨト

Experiment Set (Environment 2)


• • • • • • • • • • • • •

Ratael Murrieta Cid (CIMAT)

RRT* with Visibility Constraints

January 2020 22 / 41

Results

$$L^{+}W^{+}T^{+}$$
 —
 $L^{+}W^{*}T^{+}$ —
 $L^{+}W^{-}T^{+}$ —

 $L^+W^-T^-$ — $L^-W^-T^-$ —

イロト イポト イヨト イヨト

Rafael Murrieta Cid (CIMAT)

RRT* with Visibility Constraints

January 2020 23 / 41

Theoretical Insight

	Optimal Letters	Optimal W ords	Local Optimal W ords	Subset Optimal W ords	T opological Property
Necessary	YES*	NO	NO	YES*	NO
Sufficient	YES*	YES	YES	YES*	YES

Ratael Murrieta Cid (CIMAT)

<ロ> <=> <=> <=> <=> <=>

Theoretical Insight

Lemma - The RRT* algorithm with local planner $L^+W^-T^-$ is asymptotically optimal in the context of time-optimal trajectories for a DDR in the presence of obstacles.

Theorem - The Optimal Words Property on a local planner is not a necessary condition.

Theorem - The Local Optimal Words Property on a local planner is not a necessary condition

Theorem - The *Topological Property* on a local planner is not a necessary condition, but it is part of a set of sufficient conditions

(日)

Keeping an Object in View with a Manipulator Arm with a Camera in Hand on the Top of a DDR

Ratael Murrieta Cid (CIMAT)

January 2020 26 / 41

Keeping an Object in View with a Manipulator Arm with a Camera in Hand on the Top of a DDR

Problem Definition

Solve the *Optimal Kinodynamic Motion Planning Problem* with a trajectory x, s.t. $x(t) \in X_{FV}$ $\forall t \in [0, T]$, considering the dynamical system presented in the next equation

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \{ \dot{\alpha}_i \} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \cos \theta & \frac{1}{2} \cos \theta & 0_{1 \times N} \\ \frac{1}{2} \sin \theta & \frac{1}{2} \sin \theta & 0_{1 \times N} \\ \frac{-1}{2b} & \frac{1}{2b} & 0_{1 \times N} \\ 0_{N \times 1} & 0_{N \times 1} & I_{N \times N} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \{ v_i \} \end{pmatrix}$$

and J as the cost functional given in the next equation

$$J(\mathbf{x}) = \int_0^T c_{\mathcal{T}}(\mathbf{x}(t)) dt + \sum_{i=1}^M c_{\gamma}(\mathbf{x}_i) + \sum_{i=1}^M c_c(\mathbf{x}_i).$$

Ratael Murrieta Cid (CIMAT)

Cost Functional for a Manipulator Arm with a Camera in Hand on the Top of a DDR

$$J(\mathbf{x}) = \int_0^T c_{\mathcal{T}}(\mathbf{x}(t)) dt + \sum_{i=1}^M c_{\gamma}(\mathbf{x}_i) + \sum_{i=1}^M c_c(\mathbf{x}_i)$$

- $c_{\mathcal{T}}(\mathbf{x}(t)) \in \mathbb{R}_{\geq 0}$: Time related to the DDR base to traverse a trajectory *x*.

The DDR sets the pace and the manipulator can keep up with it. For a given goal state $[x' \ y' \ \theta' \ \{\alpha'_i\}]^T$, the manipulator will reach its respective state at least as fast as the DDR:

$$[x(t) \quad y(t) \quad \theta(t) \quad \{\alpha_i(\tau)\}]^{\mathsf{T}} = [x' \quad y' \quad \theta' \quad \{\alpha'_i\}]^{\mathsf{T}}, \text{ with } \tau \leq t.$$

This will be referred to as *dominance in time* of the DDR base over the manipulator.

Cost Functional for a Manipulator Arm with a Camera in Hand on the Top of a DDR

$$J(\mathbf{x}) = \int_0^T c_{\mathcal{T}}(\mathbf{x}(t)) dt + \sum_{i=1}^M c_{\gamma}(\mathbf{x}_i) + \sum_{i=1}^M c_c(\mathbf{x}_i)$$

- $c_{\mathcal{T}}(\mathbf{x}(t)) \in \mathbb{R}_{\geq 0}$: Time related to the DDR base.
- $c_{\gamma}(\mathbf{x}(t)) \in [0, \pi]$: Deviation of the Roll of the camera considering the scene vertical.

- $c_c(\mathbf{x}(t)) \in \mathbb{R}_{\geq 0}$: Distance from the projection of the center of mass of a reference object into the image plane to the center of the image.

Ratael Murrieta Cid (CIMAT)

Detachability

Definition Detachability Property:

Consider a cost functional $J(x_{i,i+1}) = \sum_{k=1}^{N} C_k(x_{i,i+1})$. Summands $C_k(x_{i,i+1})$ and $C_{k'}(x_{i,i+1})$ are said to be *detachable*, if $C_k(x_{i,i+1}) = \int_{t_i}^{t_{i+1}} C_k(x_{i,i+1}(t)) dt$ and $C_{k'}(x_{i,i+1}) = C_{k'}(x_{i+1})$.

J is said to **respect** the *detachability property*, if it contains at least a pair of terms $C_k(x_{i,i+1})$ and $C_{k'}(x_{i,i+1})$.

Propositions

Proposition -

Under the consideration of time dominance of the DDR base over the manipulator arm, the cost functional J_r from the equation $J_r(x) = \int_0^T [c_T(x(t)) + c_\gamma(x(t)) + c_c(x(t))] dt$, is approximated up to a resolution by J in the equation $J(x) = \int_0^T c_T(x(t)) dt + \sum_{i=1}^M c_\gamma(x_i) + \sum_{i=1}^M c_c(x_i)$

Remark -

The quality of this approximation depends on step size considered in the RRT* construction, the smaller the step size the better the approximation.

Proposition -

Consider cost functional *J* given by by the equation $J(\mathbf{x}) = \int_0^T c_T(\mathbf{x}(t)) dt + \sum_{i=1}^M c_\gamma(\mathbf{x}_i) + \sum_{i=1}^M c_c(\mathbf{x}_i).$ Such cost functional does respect the detachability property.

Simulations: Comparison of different implementations

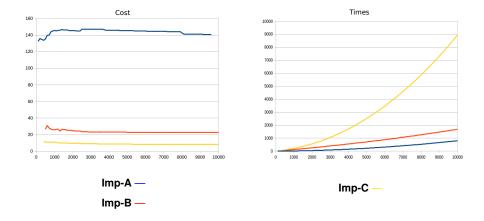
Imp-A.

Imp-B.

Imp-C. Homotopy Class 1

Imp-C. Homotopy Class 2

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))


Simulations

Rafael Murrieta Cid (CIMAT)

RRT* with Visibility Constraints

January 2020 32 / 41

Performance Review

◆□ > ◆□ > ◆□ > ◆□ >

Experiments in a real robot

Experiments

Rafael Murrieta Cid (CIMAT)

RRT* with Visibility Constraints

・ロト ・ 四ト ・ ヨト ・ ヨト

The methodology of reusing simpler local planners within general complex systems, may be used for other dynamical systems. The steps to follow are the next ones:

- Start from a single simple system for which an optimal local planner is available for a running cost term.
- Add new subsystems to the original simpler system, yielding a more complex system, and design a cost functional that has the form of a sum of terms.
- If or the terms related to the newly added subsystems, design cost terms that are detachable to the running cost for the original subsystem.
- Reuse the optimal local planner for the original simple system in the context of the more complex system.

Ratael Murrieta Cid (CIMAT)

(日)

- We present an experimental setup that allowed us to obtain theoretical insight on what are the sufficient and necessary conditions for the RRT* to be asymptotically optimal in a kinodynamic planning context.

- A local planner with optimal words is not necessary.

- We show that planner with **optimal letters** can obtain global asymptotic optimality, which alleviates the lack of the synthesis in optimal control problems, in the context of time-optimal trajectories.

- The topological property is not necessary but it is part of a set of sufficient conditions.
- The problem of achieving asymptotical global optimality is different than approximating a geometric path by paths computed by a local planner, respecting the nonholonomic constraints.
- Formal results about the local planners were presented.
- A complex robotic system was contemplated, namely, a mobile manipulator robot including visibility constraints in the planning requirements.

- Relevant concepts for complex robotic systems such as detachability and time dominance were introduced.

- Experiments in a physical robot that validate the theoretical modeling were presented.

Rafael Murrieta Cid (CIMAT)

Future Work

- Second order dynamics
- Other dynamical systems
 - Drones
 - Applications to self-driving cars

Publications

- I. Becerra, H. Yervilla-Herrera and R. Murrieta-Cid, An Experimental Analysis on the Necessary and Sufficient Conditions for the RRT* Applied to Dynamical Systems, 13th International Workshop on the Algorithmic Foundations of Robotics, WAFR 2018, Mérida México, 2018
- I. Becerra, H. Yervilla-Herrera, E. Cuevas and R. Murrieta-Cid, RRT* with Visibility Constraints for Robotic Dynamical Systems and their Local Planners Properties, Submitted to IEEE Transactions on Robotics. In second review, 2019.

(4) (5) (4) (5)

Thanks

Questions?

murrieta@cimat.mx

Ratael Murrieta Cid (CIMAT)

RRT* with Visibility Constraints

January 2020 41 / 41

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Planning algorithms, Steven M. LaValle, Cambridge, 2006.

Robot motion planning and control, Jean-Paul Laumond, Springer, 1998.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A