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Figure: Target finding.
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Time-Optimal Motion Strategies for Capturing an Omnidirectional
Evader using a Differential Drive Robot
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Time-Optimal Motion Strategies for Capturing an Omnidirectional
Evader using a Differential Drive Robot

Problem formulation

A Differential Drive Robot (DDR) and an omnidirectional evader move on a plane without
obstacles.

The game is over when the distance between the DDR and the evader is smaller than a
critical value l .

Both players have maximum bounded speeds V max
p and V max

e , respectively. The DDR is
faster than the evader, V max

p > V max
e .

The DDR wants to minimize the capture time tf while the evader wants to maximize it.

We want to know the time-optimal motion strategies of the players that are in Nash
Equilibrium.
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The Homicidal Chauffeur Problem

A driver wants to run over a pedestrian in a parking lot without obstacles.

The pursuer is a vehicle with a minimal turning radius (car-like).

The question to be solved is: under what circumstances, and with what strategy, can the
driver of the car guarantee that he can always catch the pedestrian, or the pedestrian
guarantee that he can indefinitely elude the car?

ω

ν

(a) DDR

ν

ω

(b) Car-like

Figure: Control domains
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Model

Reduced space

The problem can be stated in a coordinate system that is fixed to the body of the DDR. The state
of the system is expressed as x(t) = (x(t), y(t)) ∈ R2.
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Model

The evolution of the system in the DDR-fixed coordinate system is described by the following
equations of motion

ẋ(t) =
(

u2(t)− u1(t)
2b

)
y(t) + v1(t) sin v2(t)

ẏ(t) = −
(

u2(t)− u1(t)
2b

)
x(t)−

(
u1(t) + u2(t)

2

)
+ v1(t) cos v2(t)

(1)

This set of equations can be expressed in the form ẋ = f (t , x(t), u(t), v(t)), where
u(t) = (u1(t), u2(t)) ∈ Û = [−V max

p ,V max
p ]× [−V max

p ,V max
p ] and

v(t) = (v1(t), v2(t)) ∈ V̂ = [0,V max
e ]× [0, 2π).
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Preliminaries

Payoff

A standard representation [Isaacs65, Basar95] of the payoff is

J(x(ts), u, v) =

∫
tf

ts
L(x(t), u(t), v(t))︸ ︷︷ ︸ dt + G(x(tf ))︸ ︷︷ ︸

running cost terminal cost

For problems of minimum time [Isaacs65, Basar95], as in this game, L(x(t), u(t), v(t)) = 1 and
G(tf , x(tf )) = 0. Therefore in our game, the payoff is represented as

J(x(ts), u, v) =
∫ tf (x(ts),u,v)

ts
dt = tf (x(ts), u, v)− ts (2)

Note that tf (x(ts), u, v) depends on the sequence of controls u and v applied to reach the point
x(tf ) from the point x(ts).
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Preliminaries

Value of the game

For a given state of the system x(ts), V (x(ts)) represents the outcome if the players implement
their optimal strategies starting at the point x(ts), and it is called the value of the game or the value
function at x(ts) [Isaacs65, Basar95]

V (x(ts)) = min
u(t)∈Û

max
v(t)∈V̂

J(x(ts), u, v) (3)

where Û and V̂ are the set of valid values for the controls at all time t . V (x(t)) is defined over the
entire state space.
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Preliminaries

Open and closed-loop strategies

Let γp(x(t)) and γe(x(t)) denote the closed-loop strategies of the DDR and the evader,
respectively, therefore u(t) = γp(x(t)) and v(t) = γe(x(t)).
A strategy pair (γ∗p (x(t)), γ∗e (x(t))) is in closed-loop (saddle-point) equilibrium [Basar95] if

J(γ∗p (x(t)), γe(x(t))) ≤ J(γ∗p (x(t)), γ
∗
e (x(t)))

≤ J(γp(x(t)), γ∗e (x(t)))∀γp(x(t)), γe(x(t))
(4)

where J is the payoff of the game in terms of the strategies. An analogous relation exists for
open-loop strategies.
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Necessary Conditions for Saddle-Point Equilibrium Strategies

Theorem (Pontryagin’s Maximum Principle - PMP)

Suppose that the pair {γ∗p , γ∗e } provides a saddle-point solution in closed-loop strategies, with
x∗(t) denoting the corresponding state trajectory. Furthermore, let its open-loop representation
{u∗(t) = γp(x∗(t)), v∗(t) = γe(x∗(t))} also provide a saddle-point solution (in open-loop polices).
Then there exists a costate function p(·) : [0, tf ]→ Rn such that the following relations are
satisfied:

ẋ∗(t) = f (x∗(t), u∗(t), v∗(t)), x∗(0) = x(ts) (5)

H(p(t), x∗(t), u∗(t), v(t)) ≤ H(p(t), x∗(t), u∗(t), v∗(t)) ≤ H(p(t), x∗(t), u(t), v∗(t)) (6)

p(t) = ∇V (x(t)) (7)

ṗT (t) = −
∂

∂x
H(p(t), x∗(t), u∗(t), v∗(t)) (Adjoint Equation) (8)

pT (tf ) =
∂

∂x
G(tf , x∗(tf )) along ζ(x∗(t)) = 0 (9)

where

H(p(t), x(t), u(t), v(t)) = pT (t) · f (x(t), u(t), v(t)) + L(x(t), u(t), v(t)) (Hamiltonian) (10)

and T denotes the transpose operator.
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Time-Optimal Motion Primitives

Optimal controls

Lemma

The time-optimal controls for the DDR that satisfy the Isaacs’ equation in the reduced space are
given by

u∗1 = −sgn
(
−yVx

b
+

xVy

b
− Vy

)
V max

p

u∗2 = −sgn
(

yVx

b
−

xVy

b
− Vy

)
V max

p

(11)

We have that both controls are always saturated. The controls of the evader in the reduced space
are given by

v∗1 = V max
e , sin v∗2 =

Vx

ρ
, cos v∗2 =

Vy

ρ
(12)

where ρ =
√

V 2
x + V 2

y . The evader will move at maximal speed.
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Decision problem
Usable part and its boundary

The portion of the terminal surface where the DDR can guarantee termination regardless of the
choice of controls of the evader is called the usable part (UP) [Isaacs65]. From [Isaacs65], we
have that the UP is given by

UP =

{
x(t) ∈ ζ : min

u(t)∈Û
max

v(t)∈V̂
n · f (x(t), u(t), v(t)) < 0

}
(13)

where Û and V̂ are the sets of valid values for the controls, and n is the normal vector to ζ from
point x(t) on ζ and extending into the playing space.
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Decision problem

Theorem

If V max
e /V max

p < l| tan S|/b the DDR can capture the evader from any initial configuration in the
reduced space. Otherwise the barrier separates the reduced space into two regions:

1 One between the UP and the barrier.
2 Another above the barrier.

The DDR can only force the capture in the configurations between the UP and the barrier, in which
case, the DDR follows a straight line in the realistic space when it captures the evader.
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Partition of the reduced space

Rafael Murrieta Cid (CIMAT) Pursuit-Evasion Problems April 2016 19 / 47



Partition of the first quadrant
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Global optimality
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Figure: Graphs
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Simulations - Optimal Strategies
The parameters were V max

p = 1 , V max
e = 0.5, b = 1 and l = 1. Capture time tc = 1.2s.
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Simulations - Evader avoids capture
The parameters were V max

p = 1 , V max
e = 0.787, b = 1 and l = 1.
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State Estimation using the 1D Trifocal Tensor
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A bound for the angle delimiting the field of view of the pursuer

Theorem

If the evader is in position (r0, φ0) in the reduced space at the beginning of the game with φ0 < φv
and S < φv then, if the pursuer applies its time-optimal feedback policy the evader’s position (r , φ)
will satisfy φ < φv at all times until the capture is achieved regardless of the evader’s motion
strategy.
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Feedback-based motion strategies for the DDR
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State Estimation

Simulations
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Maintaining Visibility of an Evader in an Environment with
Obstacles
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The Objective

We address our target tracking problem as a game of kind consisting in the next decision problem:
is the pursuer able to maintain surveillance of an evader at all time?
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Classical Visibility
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Strong Mutual Visibility

Definition

Two regions R and R′ are said to be strongly mutually visible (SMV) if visibility holds for all points
x and x ′ such that x ∈ R and x ′ ∈ R′.

A straightforward test for the SMV relation using a convex hull computation is given in the following
expression:

Regions R and R′ are strongly mutually visible if and only if

int[convex-hull[(R ∪ R′)]] ⊂ W

where W is the polygon representing the workspace.
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Environment Partition and Graphs

(a) Environment partition

(b) Mutual visibility graph (c) Accessibility graph

Figure: Strong Mutual Visibility
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Workspace Partition

SMV (Ri ) is the set of regions that are SMV with region Ri .
The total area of these regions is then given by

Vsm(Ri ) =
∑

Rk∈SMV (Ri )

µ(Rk )

µ(Rk ) denotes the area of region Rk .∑
Vsm(Ri ) is the summation of each Vsm(Ri ) done over all region Ri , this is a global measure

intrinsic to a given partition.

(a) (b)

Figure: (a) Reflex rays and (b) Extended bitangent segment
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Workspace Partition

Theorem

For a given reflex vertex v, for any other procedure ς for partitioning R1 and R2 into two new
regions each, apart from drawing pivot segments, there exists a pivot segment S that partitions
both R1 and R2 that yields a bigger value of

∑
Vsm(Ri ) than the one related to the partition

obtained by applying ς.

v
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v
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Figure: Different partitioning procedures
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Definition

A guard polygon for a given point q is the set of all regions in which each of them is mutually
visible to all the regions that own the point q. Let Q(q) = {R : q ∈ R}, a guard polygon gP(q) for
a given point q is defined by:

gP(q) = {R : (R,Rk ) ∈ MVG, ∀Rk ∈ Q(q)} (14)

(a) If the evader stands on ni ,
it is simultaneously over regions
{R1, R2, R3, R4, R7, R8, R9}

(b) The guard polygon for point ni is gP(ni ) =
{R4, R5}

Figure: Guard polygon

Ri,i+1 = {(v ,w) : tp(v ,w) ≤ te(qi , qi+1) where v ∈ gP(qi ) and w ∈ gP(qi+1)} (15)
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Reduced Visibility Graph (RVG)

The vertices in the RVG are the reflex vertices of the environment.

An edge between two vertices in the RVG is generated if the two vertices are endpoints of the
same edge of an obstacle.

Or if a bitangent line can be drawn between such vertices.
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Safe Areas and RVG with Tree Topology
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Figure: Example 1 with a tree topology RVG and its calculated safe areas, Vp
Ve

= 0.9
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Safe Areas and RVG with Tree Topology
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Figure: Example 2 with a tree topology RVG and its calculated safe areas, Vp
Ve

= 1.1
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RVG with Cycles
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Figure: Cycles algorithm
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Safe Areas and RVG with Cycles
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The S Set
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Figure: Example 4 with its calculated safe areas and sample S sets
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Decidability and Complexity

Theorem

The proposed algorithm always converges in a finite number of iterations, hence, the problem of
deciding whether or not a pursuer is able to maintain SMV of an evader that travels over the RVG,
both players moving at bounded speed, is decidable.

Theorem

The problem of deciding whether or not the pursuer is able to maintain SMV of an evader that
travels over the RVG, both players moving at bounded speed, is NP-complete.
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Conclusions

In this work, we made the following contributions:

1 Pursuit/Evasion: DDR vs Omnidirectional Agent

We presented time-optimal motion strategies and the conditions defining the winner for the
game of capturing an omnidirectional evader with a differential drive robot.

2 Surveillance with Obstacles

We proved decidability of this problem for any arbitrary polygonal environment.

We provided a complexity measure to our evader surveillance game.
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Future Work

1 Pursuit/Evasion: DDR vs Omnidirectional Agent

Capturing an omnidirectional agent using two o more differential drive robots when one is not
able to do it.

To include acceleration bounds in the solution of the problem.

Feedback motion policy based on the image space.

2 Surveillance with Obstacles

A moving evader that is free to travel any path within the workspace.
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Thanks... Questions?

murrieta@cimat.mx
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