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Figure: Target capturing.
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Figure: Target tracking.
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Figure: Target finding.
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Possible Applications

Transportation of items in airports or supermarkets.
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Possible Applications

Monitoring and surveillance.
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Possible Applications

Convoys of vehicles and assisted driving.
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Time-Optimal Motion Strategies for Capturing an Omnidirectional
Evader using a Differential Drive Robot
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Time-Optimal Motion Strategies for Capturing an Omnidirectional
Evader using a Differential Drive Robot

Problem formulation

A Differential Drive Robot (DDR) and an omnidirectional evader move on a plane without
obstacles.

The game is over when the distance between the DDR and the evader is smaller than a
critical value l .

Both players have maximum bounded speeds V max
p and V max

e , respectively. The DDR is
faster than the evader, V max

p > V max
e .

The DDR wants to minimize the capture time tf while the evader wants to maximize it.

We want to know the time-optimal motion strategies of the players that are in Nash
Equilibrium.
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The Homicidal Chauffeur Problem

A driver wants to run over a pedestrian in a parking lot without obstacles.

The pursuer is a vehicle with a minimal turning radius (car-like).

The question to be solved is: under what circumstances, and with what strategy, can the
driver of the car guarantee that he can always catch the pedestrian, or the pedestrian
guarantee that he can indefinitely elude the car?

ω

ν

(a) DDR

ν

ω

(b) Car-like

Figure: Control domains
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Model

Reduced space

The problem can be stated in a coordinate system that is fixed to the body of the DDR. The state
of the system is expressed as x(t) = (x(t), y(t)) ∈ R2.
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Model

The evolution of the system in the DDR-fixed coordinate system is described by the following
equations of motion

ẋ(t) =

(
u2(t)− u1(t)

2b

)
y(t) + v1(t) sin v2(t)

ẏ(t) = −
(

u2(t)− u1(t)
2b

)
x(t)−

(
u1(t) + u2(t)

2

)
+ v1(t) cos v2(t)

(1)

This set of equations can be expressed in the form ẋ = f (t , x(t), u(t), v(t)), where
u(t) = (u1(t), u2(t)) ∈ Û = [−V max

p ,V max
p ]× [−V max

p ,V max
p ] and

v(t) = (v1(t), v2(t)) ∈ V̂ = [0,V max
e ]× [0, 2π).
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Preliminaries

Payoff

A standard representation [Isaacs65, Basar95] of the payoff is

J(x(ts), u, v) =

∫
tf

ts
L(x(t), u(t), v(t))︸ ︷︷ ︸ dt + G(x(tf ))︸ ︷︷ ︸

running cost terminal cost

For problems of minimum time [Isaacs65, Basar95], as in this game, L(x(t), u(t), v(t)) = 1 and
G(tf , x(tf )) = 0. Therefore in our game, the payoff is represented as

J(x(ts), u, v) =

∫ tf (x(ts),u,v)

ts
dt = tf (x(ts), u, v)− ts (2)

Note that tf (x(ts), u, v) depends on the sequence of controls u and v applied to reach the point
x(tf ) from the point x(ts).
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Preliminaries

Value of the game

For a given state of the system x(ts), V (x(ts)) represents the outcome if the players implement
their optimal strategies starting at the point x(ts), and it is called the value of the game or the value
function at x(ts) [Isaacs65, Basar95]

V (x(ts)) = min
u(t)∈Û

max
v(t)∈V̂

J(x(ts), u, v) (3)

where Û and V̂ are the set of valid values for the controls at all time t . V (x(t)) is defined over the
entire state space.

Rafael Murrieta Cid (CIMAT) Pursuit-Evasion Problems July 2014 16 / 57



Preliminaries

Open and closed-loop strategies

Let γp(x(t)) and γe(x(t)) denote the closed-loop strategies of the DDR and the evader,
respectively, therefore u(t) = γp(x(t)) and v(t) = γe(x(t)).
A strategy pair (γ∗p (x(t)), γ∗e (x(t))) is in closed-loop (saddle-point) equilibrium [Basar95] if

J(γ∗p (x(t)), γe(x(t))) ≤ J(γ∗p (x(t)), γ∗e (x(t)))

≤ J(γp(x(t)), γ∗e (x(t)))∀γp(x(t)), γe(x(t))
(4)

where J is the payoff of the game in terms of the strategies. An analogous relation exists for
open-loop strategies.
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Necessary Conditions for Saddle-Point Equilibrium Strategies

Theorem (Pontryagin’s Maximum Principle - PMP)

Suppose that the pair {γ∗p , γ∗e } provides a saddle-point solution in closed-loop strategies, with
x∗(t) denoting the corresponding state trajectory. Furthermore, let its open-loop representation
{u∗(t) = γp(x∗(t)), v∗(t) = γe(x∗(t))} also provide a saddle-point solution (in open-loop polices).
Then there exists a costate function p(·) : [0, tf ]→ Rn such that the following relations are
satisfied:

ẋ∗(t) = f (x∗(t), u∗(t), v∗(t)), x∗(0) = x(ts) (5)

H(p(t), x∗(t), u∗(t), v(t)) ≤ H(p(t), x∗(t), u∗(t), v∗(t)) ≤ H(p(t), x∗(t), u(t), v∗(t)) (6)

p(t) = ∇V (x(t)) (7)

ṗT (t) = −
∂

∂x
H(p(t), x∗(t), u∗(t), v∗(t)) (Adjoint Equation) (8)

pT (tf ) =
∂

∂x
G(tf , x∗(tf )) along ζ(x∗(t)) = 0 (9)

where

H(p(t), x(t), u(t), v(t)) = pT (t) · f (x(t), u(t), v(t)) + L(x(t), u(t), v(t)) (Hamiltonian) (10)

and T denotes the transpose operator.
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Time-Optimal Motion Primitives

Optimal controls

Lemma

The time-optimal controls for the DDR that satisfy the Isaacs’ equation in the reduced space are
given by

u∗1 = −sgn
(
−yVx

b
+

xVy

b
− Vy

)
V max

p

u∗2 = −sgn
(

yVx

b
−

xVy

b
− Vy

)
V max

p

(11)

We have that both controls are always saturated. The controls of the evader in the reduced space
are given by

v∗1 = V max
e , sin v∗2 =

Vx

ρ
, cos v∗2 =

Vy

ρ
(12)

where ρ =
√

V 2
x + V 2

y . The evader will move at maximal speed.
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Decision problem

Theorem

If V max
e /V max

p < l| tan S|/b the DDR can capture the evader from any initial configuration in the
reduced space. Otherwise the barrier separates the reduced space into two regions:

1 One between the UP and the barrier.
2 Another above the barrier.

The DDR can only force the capture in the configurations between the UP and the barrier, in which
case, the DDR follows a straight line in the realistic space when it captures the evader.
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Partition of the reduced space
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Partition of the first quadrant
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Global optimality

US

IIIζ

III

(c)

1

1

2

3

4

1

1
2

(d)

Figure: Graphs

Rafael Murrieta Cid (CIMAT) Pursuit-Evasion Problems July 2014 23 / 57



Simulations - Optimal Strategies
The parameters were V max

p = 1 , V max
e = 0.5, b = 1 and l = 1. Capture time tc = 1.2s.
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Simulations - Evader avoids capture
The parameters were V max

p = 1 , V max
e = 0.787, b = 1 and l = 1.
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A bound for the angle delimiting the field of view of the pursuer

Theorem

If the evader is in position (r0, φ0) in the reduced space at the beginning of the game with φ0 < φv
and S < φv then, if the pursuer applies its time-optimal feedback policy the evader’s position (r , φ)
will satisfy φ < φv at all times until the capture is achieved regardless of the evader’s motion
strategy.
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Feedback-based motion strategies for the DDR
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State Estimation

Simulations
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Maintaining Visibility of an Evader in an Environment with
Obstacles
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The Objective

We address our target tracking problem as a game of kind consisting in the next decision problem:
is the pursuer able to maintain surveillance of an evader at all time?
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Environment Partition and Graphs

(a) Environment partition

(b) Mutual visibility graph (c) Accessibility graph

Figure: Strong Mutual Visibility
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Definition

A guard polygon for a given point q is the set of all regions in which each of them is mutually
visible to all the regions that own the point q. Let Q(q) = {R : q ∈ R}, a guard polygon gP(q) for
a given point q is defined by:

gP(q) = {R : (R,Rk ) ∈ MVG, ∀Rk ∈ Q(q)} (13)

(a) If the evader stands on ni ,
it is simultaneously over regions
{R1,R2,R3,R4,R7,R8,R9}

(b) The guard polygon for point ni is gP(ni ) =
{R4,R5}

Figure: Guard polygon

Ri,i+1 = {(w , z) : tp(w , z) ≤ te(qi , qi+1) where w ∈ gP(qi ) and z ∈ gP(qi+1)} (14)
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Safe Areas and RGV with Tree Topology

n1
n3

n2

n4

(a)

RVG

n1

n3
n2

n4

(b)

Figure: Example 1 with a tree topology RVG and its calculated safe areas, Vp
Ve

= 0.9
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Safe Areas and RGV with Tree Topology
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Figure: Example 2 with a tree topology RVG and its calculated safe areas, Vp
Ve

= 1.1
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Safe Areas and RVG with Cycles
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The S Set
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Figure: Example 4 with its calculated safe areas and sample S sets
Rafael Murrieta Cid (CIMAT) Pursuit-Evasion Problems July 2014 36 / 57



Cycles algorithm
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Figure: Cycles algorithm
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Decidability and Complexity

Theorem

The proposed algorithm always converges in a finite number of iterations, hence, the problem of
deciding whether or not a pursuer is able to maintain SMV of an evader that travels over the RVG,
both players moving at bounded speed, is decidable.

Theorem

The problem of deciding whether or not the pursuer is able to maintain SMV of an evader that
travels over the RVG, both players moving at bounded speed, is NP-complete.

Rafael Murrieta Cid (CIMAT) Pursuit-Evasion Problems July 2014 38 / 57



Object Detection
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Related Work

D. Meger, A. Gupta and J. Little, “Viewpoint Detection Models for Sequential Embodied Object
Category Recognition”, ICRA, 2010.
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Object Finding
Previous work.

Judith Espinoza, Alejandro Sarmiento, Rafael Murrieta-Cid and Seth Hutchinson, Motion
Planning Strategy for Finding an Object with a Mobile Manipulator in Three-Dimensional
Environments, Journal Advanced Robotics, 25(13-14):1627-1650, August 2011.

Simulations
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Observation Model

The robot is equipped with a software module DT (detector), capable of identifying T

DT returns a discrete detection score o1 < o2 < · · · < o3 where y ∈ {o1, o2, . . . , on},
measuring how well the image matches the appearance of T, hence the confidence of the
identification
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Observation Model

The observation model of T is then created in the form of a probability distribution P(oj |ci )
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Motion Model

The motion model is given by the probability distribution P(xt |xt−1, ut−1).

We have 4 motion commands.

c2 c

...

...

fo
rw
ar
d
ba
ck
w
ar
d

left
right

(a) Motion commands

c2 c

18

c'9

c

1c
2c

10c

9c
17c

...

...
(b) c′9 = R(xt−1 =
c9, ut−1 = left)

Figure: Motion model
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Confirmation of Detection

The target is declared as detected if the detector returns a confidence score greater than ô at
time t + 1 and If the robot reaches at time t a position where the condition P(yt+1 ≥ ô|It , ut )
is satisfied.

This gives us a twofold goal that mixes robot localisation relatively to the candidate object and
target identification using its appearance.
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Computation of motion strategy

We use SDP to calculate the motion policy Π(It , t).

JN−1(IN−1) = max
uN−1∈UN−1

[
g̃(IN−1, uN−1) + E

xN−1

{
E
xN

{
gF (xN )|xN−1, uN−1

}
|IN−1, uN−1

}]

π(N − 1, IN−1) = arg max
uN−1∈UN−1

[
g̃(IN−1, uN−1) + E

xN−1

{
E
xN

{
gF (xN )|xN−1, uN−1

}
|IN−1, uN−1

}]
and for t < N − 1

Jt (It ) = max
ut∈Ut

[
g̃(It , ut ) + E

yt+1
{Jt+1(It , yt+1, ut )|It , ut}

]
π(t , It ) = arg max

ut∈Ut

[
g̃(It , ut ) + E

yt+1
{Jt+1(It , yt+1, ut )|It , ut}

]
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Gain Function

Since we want the robot to achieve a position where P(yt+1 ≥ ô|It , ut ) > λ holds, we set the
gain function g̃(It , ut ) to:

P(yt+1 ≥ ô|It , ut ) =
∑
xt+1

P(yt+1 ≥ ô|xt+1)
∑
xt

P(xt+1|xt , ut )P(xt |It ) (15)
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Simulations and Experimental Results

We use a 24-cell decomposition.

For each target T, the detector DT uses a deformable part model algorithm [1] trained on a set
of images taken from a single cell cg of the decomposition.

[1] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object Detection with
Discriminatively Trained Part Based Models”, Trans. on Pattern Analysis and Machine
Intelligence, 2010.

6 score values as observation
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Simulation

Simulations
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Simulation

(a) (b)

(c) Path generated with
λ = 0.8 (true bottle)

(d) Path generated with
λ = 0.8 (false bottle)

Figure: SimulationRafael Murrieta Cid (CIMAT) Pursuit-Evasion Problems July 2014 50 / 57



Similar Bottles

Scene λ # of Path Planning % of
object sensing length time (ms) confirmation

locations
0.80 10.820 9.346 367.723 100

True Bottle 0.85 10.825 9.122 361.993 100
0.90 12.030 9.244 415.965 99.5
0.80 21.333 18.002 721.861 1.5

False Bottle 0.85 17 14.561 621.074 0.5
0.90 - - - 0

Table: Statistics for similar bottles
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Object Detection

Experiments with the Robot
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Conclusions

In this work, we made the following contributions:

1 Pursuit/Evasion: DDR vs Omnidirectional Agent

We presented time-optimal motion strategies and the conditions defining the winner for the
game of capturing an omnidirectional evader with a differential drive robot.

2 Surveillance with Obstacles

We proved decidability of this problem for any arbitrary polygonal environment.

We provided a complexity measure to our evader surveillance game.

3 Object Detection

We proposed a motion policy mixing robot localisation and target confirmation using the
target’s appearance.

We presented experimental results.
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Future Work

1 Pursuit/Evasion: DDR vs Omnidirectional Agent

The results will be extended for capturing an omnidirectional agent using two o more
differential drive robots when one is not able to do it.

We will include acceleration bounds in the solution of the problem.

2 Surveillance with Obstacles

A moving evader that is free to travel any path within the workspace.
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Future Work
3 Object Detection

Propose a motion policy for a robot with many degrees of freedom.

Many Degrees of Freedom
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