
Dipy’s Registration module

1 Notation and image processing background

We regard an image as a function I that maps voxels of a grid L to a set G
of possible values called the “dynamic range” of I. The images we are inter-
ested in represent objects in physical space, R3. This means that each point
[i, j, k] in the 3-dimensional grid L is associated to a point (x, y, z) ∈ R3.
We use square brackets to emphasize the fact that i, j, k are coordinates of
a grid, which may not be integers. When i, j, k are not integers, the image
is evaluated by interpolation.

The function that maps voxel coordinates of a grid L to their corre-
sponding coordinates in physical space is an invertible affine transformation.
Whenever we talk about a grid L we implicitly assume that this L is asso-
ciated to a specific grid-to-space transformation. Since our images represent
objects in physical space, and these objects are not tied to any specific grid,
the same object may be sampled over any grid L. Note, however, that the
grid L is finite and it may be the case that none of its voxels map to any
point on the object of interest (in that case the object was badly sampled
by L).

2 Diffeomorphic Map

A diffeomorphism is an invertible and differentiable function whose inverse is
also differentiable. We implement a diffeomorphism Ψ by means of a defor-
mation field φ that assigns to each point x a displacement vector φ(x) such
that Ψ(x) = x+φ(x) (therefore, the zero deformation field φ ≡ 0 represents
the identity diffeomorphism). In non-linear image registration, we usually
perform a linear registration first so that the images are roughly aligned.
To avoid doing more than one interpolation of the input images (which may

1



introduce registration inaccuracies), our diffeomorphic map includes a pre-
alignment matrix P so that Ψ(x) = Px+ φ(Px) (Fig. 1). The deformation
field itself is discretized on its own grid (which of course is associated to a
grid-to-space transform), and is evaluated at non-integer coordinates by in-
terpolation. Internally, the diffeomorphic map holds the “default” domain’s
and codomain’s grids, so that images can be “warped” without the need of
specifying their discretization.

To “warp” an image I, defined on LI , towards an image J , defined on
LJ , we need to take each voxel j ∈ LJ and “pull” the intensity value of I
at its corresponding point in LI . This means that by applying a diffeomor-
phism Ψ in the forward direction we “pull” values from the codomain
of Ψ towards its domain. In other words, “warping” an image by Ψ in
the forward direction, means transforming an image from Ψ’s codomain
towards Ψ’s domain. Similarly, “’warping’ an image by Ψ in the back-
ward direction, means transforming an image from Ψ’s domain towards
Ψ’s codomain (Fig. 1).

The DiffeomorphicMap class in Dipy’s registration module contains the
following fields (Fig. 1):

domain shape : Domain gr id shape
domain a f f ine : Domain gr id to phys i c a l space transform
doma in a f f i n e i nv : Phys i ca l space to domain gr id transform
pr ea l i gn : A f f i n e transform from po int s in the domain to po in t s in the disp lacement f i e l d domain
p r e a l i g n i n v : A f f i n e transform from po int s in the disp lacement f i e l d domain to po int s in the domain
d i sp shape : Displacement f i e l d g r id shape
d i s p a f f i n e : Displacement f i e l d g r id to phys i c a l space transform
d i s p a f f i n e i n v : Phys i ca l space to disp lacement f i e l d g r id transform
codomain shape : Codomain gr id shape
codomain a f f ine : Codomain gr id to phys i c a l space transform
codoma in a f f i n e inv : Phys i ca l space to codomain gr id transform
forward : Forward disp lacement f i e l d
backward : Backward disp lacement f i e l d

2



(a) Forward transform: maps points in the domain to points in the codomain.

(b) Backward transform: maps points in the codomain to points in the domain.

Figure 1: Diffeomorphic map. We can map points back and forth between
the domain and codomain. The forward transform maps points from the
domain to the codomain, which defines the “pull-back” that can be used
to warp an image from the codomain grid towards the domain grid.
Similarly, the backward transform is the pull-back warping images from
the domain grid towards the codomain grid.

3 Symmetric Diffeomorphic Registration

The greedy algorithm for Symmetric Diffeomorphic Registration (“Greedy
SyN”) finds a diffeomorphism mapping back and forth between two given
images by looking for two diffeomorphisms mapping the given images to
an “intermediate” shape and then composing the intermediate mappings to
find the diffeomorphism between the two original images (Fig. 2).

3



Both displacement fields (forward and backward) have the same dis-
cretization (same grid shape and grid-to-space transform), which means that
the deformation fields actually define endomorphisms. The domain of these
endomorphisms (equal to their codomain) is called “reference domain”, and
similarly, their discretization grid is called “reference grid”.

For convenience, the reference discretization (grid shape and grid-to-
space transform) is arbitrarily chosen to be the same as the static image.
As a consequence, the prealigning matrix corresponding to the static-to-
reference diffeomorphism (Ψ1 in fig. 2) is the identity (only the moving
image is pre-aligned to the reference).

Figure 2: Symmetric Diffeomorphic Registration. The process may be re-
garded as looking for an “intermediate” shape defined on a reference domain
ΩR such that it can be warped towards the static and moving images by dif-
feomorphisms Ψ1,Ψ2, respectively. The diffeomorphism warping the moving
image towards the static, and vice versa, can then be found by composition.

The fields in SymmetricDiffeomorphicRegistration class, in Dipy’s regis-
tration module, representing Ψ1,Ψ2 are

s t a t i c t o r e f : the DiffeomorphicMap between the s t a t i c image and the r e f e r e n c e g r id
mov ing to re f : the DiffeomorphicMap between the moving image and the r e f e r e n c e g r id

4



The following is an overview of the Greedy SyN algorithm:

Algorithm 1 Overview of the Greedy SyN algorithm

Require: Static image S
Require: Moving image M
1: Initialize diffeomorphism Ψ1 = identity
2: Initialize diffeomorphism Ψ2 = identity
3: repeat
4: Warp the Static image to the reference grid: Sw = Ψ−1

1 (S)
5: Warp the Moving image to the reference grid: Mw = Ψ−1

2 (M)
6: Compute the fwd. step f , (pull Mw towards Sw)
7: Update Ψ1(·) = f(Ψ1(·))
8: Compute the bwd. step b, (pull Sw towards Mw)
9: Update Ψ2(·) = b(Ψ2(·))

10: Invert: Ψ−1
1 = invert(Ψ1)

11: Invert: Ψ−1
2 = invert(Ψ2)

12: Invert: Ψ1 = invert(Ψ−1
1 )

13: Invert: Ψ2 = invert(Ψ−1
2 )

14: until Convergence
15: return Ψ−1

2 (Ψ1(·))

5


