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Abstract. The family of power semicircle distributions defined as normal-
ized real powers of the semicircle density is considered. The marginals of
uniform distributions on spheres in high-dimensional Euclidean spaces are
included in this family and a boundary case is the classical Gaussian dis-
tribution. A review of some results including a genesis and the so-called
Poincaré’s theorem is presented. The moments of these distributions are re-
lated to the super Catalan numbers and their Cauchy transforms in terms
of hypergeometric functions are derived. Some members of this class of dis-
tributions play the role of the Gaussian distribution with respect to additive
convolutions in non-commutative probability, such as the free, the monotone,
the anti-monotone and the Boolean convolutions. The infinite divisibility of
other power semicircle distributions with respect to these convolutions is stud-
ied using simple kurtosis arguments. A connection between kurtosis and the
free divisibility indicator is found. It is shown that for the classical Gaussian
distribution the free divisibility indicator is strictly less than 2.

1. Introduction

The semicircle or Wigner distribution plays an important role in several fields
of mathematics and its applications. In random matrix theory it is the asymp-
totic spectral measure of the Wigner ensembles of random matrices, including the
Gaussian ensembles; see Metha [34], Khorunzhy et al. [27], Wigner [48]. In the
context of representations of symmetric groups, it is the limiting distribution of
a Markov chain of Young diagrams; see Kerov [24] and Kerov and Vershick [25].
It is known that the semicircle distribution is an infinitely divisible distribution
not in the classical but in the free sense, where it plays the role the Gaussian
distribution does in classical probability; see Hiai and Petz [19] and Nica and Spe-
icher [39]. Furthermore, the even moments of the semicircle distribution are the
Catalan numbers which appear in combinatorics and other unexpected places; see
for example Brualdi [11] and Gardner [15].

The semicircle distribution on (−σ, σ), σ > 0, has a density given by

f0(x ;σ) =
2
πσ2

√
σ2 − x2 1(−σ,σ)(x).
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We consider distributions constructed from real powers of the semicircle density.
For θ > −3/2 and σ > 0, let

fθ(x ;σ) = c′θ,σ (f0(x ;σ))2θ+1 = cθ,σ

(
σ2 − x2

)θ+1/2
1|x|≤,σ (1.1)

where

c′θ,σ =
(π

2

)2θ+1 σ2θ

√
π

Γ(θ + 2)
Γ(θ + 3/2)

and cθ,σ =
1√
πσ2

Γ(θ + 2)
Γ(θ + 3/2)

.

A distribution with density (1.1) is called a power semicircle distribution and is
denoted by PS(θ, σ). It is a symmetric compactly supported distribution with
shape parameter θ and range parameter σ.

When d = 2(θ + 2) is an integer, the corresponding power semicircle distri-
bution appears naturally as the distribution of the one-dimensional marginals of
the uniform measure on a sphere of radius

√
d in Rd, as explained, for example,

in Kac [22], Kingman [28] and Diaconis and Freedman [12]. On the other hand,
fθ(x ;

√
(θ + 2)/2σ) converges, when θ → ∞, to the classical Gaussian density

(
√

2πσ)−1 exp(−x2/(2σ2)), a result known as Poincaré’s theorem and which goes
back to the works of Mehler, Maxwell, Borel and Lévy, amongst others; see Di-
aconis and Freedman [12] and Johnson [21]. As pointed out by Mc Kean [33],
Poincaré’s theorem explains why one can think of the Wiener measure (all whose
marginals are Gaussian) as the uniform distribution on an infinite dimensional
spherical surface of radius

√∞; a result the second author learned first from pro-
fessor Gopinath Kallianpur, to whom this paper is dedicated.

Since the power semicircle distributions have compact support, they are not
infinitely divisible in the classical sense. However, this family contains all the
”Gaussian distributions” with respect to the five additive convolutions of proba-
bility measures on R that are important in non-commutative probability; namely,
the commutative, the free, the Boolean, the monotone and the anti-monotone
convolutions. These convolutions correspond to the only five independences, as
studied in Muraki [37].

The left-boundary case θ = −3/2 is the symmetric Bernoulli distribution on
{−σ, σ} playing the role of Gaussian distribution in Boolean convolution (Speicher
and Woroudi [45]). For θ = −1 we obtain the arcsine distribution on (−σ, σ) which
plays in monotone convolution the role Gaussian distribution does in classical
probability (Franz and Muraki [14]). The case θ = 0 is the semicircle distribution
on (−σ, σ) and the right-boundary case θ = ∞ given by Poincaré’s theorem is the
classical Gaussian distribution. Other important families of compactly supported
distributions which are useful in non-commutative probability and that include
the arcsine and semicircle distributions are considered in Kubo, Kuo and Namli
[29], [30] and references therein.

The main purpose of this present article is to study the infinite divisibility of
other power semicircle distributions with respect to the five additive convolutions
in non-commutative probability. In order to do this, we first derive simple nec-
essary conditions based on the kurtosis of a distribution. The use of kurtosis is
motivated by the fact that in non-classical infinite divisibility several distributions
with bounded support are relevant; see for example Anshelevich [1] and Bozejko
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and Bryc [10]. We also prove that the Boolean kurtosis bounds the free divisibility
indicator that was recently introduced by Belinschi and Nica [5]. For some other
simple conditions for infinite divisibility based on the first few cumulants of a dis-
tribution see the recent works by MÃlotkowski [36] for the free case and Hasebe and
Saigo [18] for the monotone convolution case.

As one of the main results of this paper, we show that if θg◦ is the value of
the shape parameter of the ”Gaussian distribution” PS(θg◦ , 1) with respect to the
corresponding convolution ◦, then the power semicircle distribution PS(θ, 1) is not
infinitely divisible with respect to the convolution ◦, for θ < θg◦ . We also include
results and conjectures on the free infinite divisibility of the classical Gaussian
distribution, a result recently proved in Belinschi et al. [4]. In particular, we show
that the free divisibility indicator of the classical Gaussian distribution is strictly
less than 2.

The organization of the paper is as follows. Section 2 presents the main features
and properties of power semicircle distributions, including Poincaré’s theorem.
We also derive their moments and show that they are given in terms of super
Catalan numbers. As a consequence the Cauchy transforms of these distributions
are derived in terms of hypergeometric functions. Section 3 starts with preliminary
material on the analytic approach to free, monotone, anti-monotone and Boolean
convolutions and the corresponding infinite divisibility concept with respect to
these convolutions. It also derives criteria for infinite divisibility based on the
kurtosis of a distribution. The free and the monotone infinite divisibility properties
of the symmetric beta distributions considered in Arizmendi et al. [2] are studied.
A connection between kurtosis and the free divisibility indicator is also included.
Section 4 applies the kurtosis conditions to find the non infinite divisibility of some
power semicircle distributions with respect to above non-classical convolutions.
We finally include results on the free infinite divisibility of the classical Gaussian
distribution.

2. Properties of PSCD: A Review

In this section we present several facts and properties of power semicircle dis-
tributions including a recursive representation, Poincaré’s theorem, moments and
their Cauchy transforms.

2.1. Representations of the classical Gaussian law. The classical Gaussian
distribution has the representation of a scale mixture of chi-square distributions
with an appropriate power semicircle distributions. This fact is useful to obtain
properties of power semicircle distributions.

For positive α, β let Gam(α, β) denote the Gamma distribution with density

gα,β(x) =
1

βαΓ(α)
xα−1 exp(−x

β
), x > 0. (2.1)

For any θ > −3/2 let γθ+2 = χ2
2(θ+2) denote a random variable with chi-square

distribution with 2(θ + 2) degrees of freedom and independent of the random
variable Sθ with power semicircle distribution PS(θ, 1).
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The proof of the following representation theorem of the Gaussian distribution
follows easily using the change of variable formula for densities.

Theorem 2.1. Let θ > −3/2 and let γθ+2 be a random variable with Gamma
distribution Gam(θ + 2, 2) and independent of the random variable Sθ with power
semicircle distribution PS(θ, 1). Then

Z =
√
γθ+2Sθ (2.2)

has a standard Gaussian distribution N(0, 1).

Proof. We shall use the trivial fact that if V is a nonnegative random variable inde-
pendent of a symmetric random variable Y , with densities fV and fY respectively,
then the density of X =

√
V Y is given by

fX(x) = |x|
∫ ∞

−∞

1
y2
fY (y)fV (

x2

y2
)dy, x ∈ R. (2.3)

Using (1.1) and (2.1) in (2.3) we easily obtain

fX(x) = |x|
∫ ∞

−∞

1
y2
fSθ

(y)g(θ+2,2)(
x2

y2
)dy

= |x|
∫ 1

−1

1
y2
c′θ,1(

2
π

√
1− y2)2θ+1 1

2θ+2

(
x2

y2
)θ+1

Γ(θ + 2)
e−x2/(2y2)dy

(r=1/y)
= (

1√
π

)
|x|2θ+3

Γ(θ + 3/2)
1

2θ+1

∫ ∞

1

( r2−1
r2 )θ+ 1

2 r2θ+4

r2
e−x2r2/2dr

(t=r2−1)
= (

1√
π

)
|x|2θ+3

Γ(θ + 3/2)
1

2θ+2
e−x2/2

∫ ∞

0

tθ+ 1
2 e−x2t/2dt

= (
1√
2π

)
|x|2θ+3

Γ(θ + 3/2)
e−x2/2

x2θ+3
Γ(θ + 3/2) =

1√
2π
e−x2/2,

which proves the result. ¤
Recall that a one-dimensional random variable X is said to be variance mixture

of Gaussian if the probability distribution of X is of the form
√
VθZ (in short

X
L=
√
VθZ), where Z and V are independent random variables with V being

positive random variance and Z having the normal distribution with zero-mean
and variance one; see [23], [42], [47].

Corollary 2.2. If X L=
√
V Z is a variance mixture of the Gaussian distribution,

then for any θ > −3/2, X L=
√
V γθ+2Sθ where γθ+2 is a random variable with

Gamma distribution Gam(θ + 2, 2), Sθ has power semicircle distribution PS(θ, 1)
and V, γθ+2 and Sθ are independent random variables.

Power semicircle distributions were considered by Kingman [28], who also de-
fined a convolution of probability measures on R+. It has been recently proved in
Nguyen [38] that the Bessel processes generated by γθ+2 play for Kingman con-
volution the role Brownian motion does in classical convolution. We learned this
result from Geronimo Uribe.
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2.2. Recursive representation. Ledoux [31] pointed out that the semicircle
distribution is a scale mixture of the arcsine distribution with the uniform distri-
bution. The following proposition is a generalization of this result giving a useful
recursive representation for power semicircle distributions.

Proposition 2.3. Let θ ≥ −3/2. Then Sθ
L=
√
U1/(θ+1)Sθ−1 where U is a random

variable with uniform distribution on (0, 1) independent of the random variable
Sθ−1 with power semicircle distribution PS(θ−1, 1). Moreover, S2

θ
L= U

1/(θ+1)
S2

θ−1.

Proof. The density of U1/(2(θ+1)) is fU1/(2(θ+1))(t) = 2(θ + 1)t2θ+1, 0 < t < 1. Let
V = U1/(2(θ+1))Sθ−1 then the density of V is found as follows: For x ∈ (−1, 1),

fV (x) =
∫ ∞

−∞

1
|y|fSθ−1(y)fU1/(2(θ+1))(

x

y
)dy

= 2
Γ(θ + 1)√
πΓ(θ + 1/2)

(θ + 1) |x|2θ+1
∫ 1

x

(
√

1− y2)2θ−1

y2θ+2
dy

(y=sin(u)
= 2

Γ(θ + 2)√
πΓ(θ + 1/2)

|x|2θ+1
∫ π/2

arcsin(x)

cos(y)2θ

sin(y)2θ+2
dy

=
Γ(θ + 2)√
πΓ(θ + 3/2)

(√
1− x2

)2θ+1

= c′θ,1(
2
π

√
1− x2)2θ+1 = fθ(x).

The second statement is a trivial observation. ¤

As a consequence of the above theorem one can derive representations for some
power semicircle distributions as variance mixtures of the arcsine and the semicir-
cular distributions.

Corollary 2.4. For θ = 1, 2, ...

Sθ
L=

√
VθS0

where S0 has a semicircle distribution on (−1, 1) and is independent of the random

variable Vθ
L=

∏θ
i=1 U

1
i+1
i , where U1, ..., Uθ are independent random variables with

uniform distribution on (0, 1). Moreover, for θ = 1, 2, ..., Sθ
L=
√
VθUS−1 where U

has an uniform distribution on (0, 1) and is independent of Vθ.

In fact, any power semicircle distribution PS(θ, 1), θ > −1, is a variance mixture
of the arcsine distribution as follows. We provide the proof of this result in Section
2.5 using Cauchy transforms.

Proposition 2.5. For θ > −1, Sθ
L=
√

1− U1/(1+θ)S−1 where U has an uniform
distribution on (0, 1) and is independent of the arcsine random variable S−1 on
(−1, 1).

2.3. Poincaré’s theorem. An important consequence of Theorem 2.1 is the fact
that the sequence of random variables (Sn), appropriately scaled, converges in dis-
tribution, when n goes to infinite, to the standard classical Gaussian distribution.
This result is a Poincaré’s type theorem which already appears in the works of
Mehler [35] in 1866 and Borel [8] in 1914. One can easily deduce this result from
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Theorem 2.1. For another proof see, for example, the Remark in page 387 of
Khokhlov [26].

Theorem 2.6. Let Sn have the power semicircle distribution PS(n, 1), for n =
0, 1, 2, ... Then the sequence of random variables

{
(
√

2(n+ 2)Sn

}
n≥1

converges in

distribution to the standard classical Gaussian distribution.

Proof. By the law of large numbers, (n + 2)−1γn+2 converges in probability to
E(γ1) = 2, where γm ∼ Gam(m, 2). Hence from (2.2) and using Slutsky’s theorem
we have √

2(n+ 2)Sn =
√

2(n+ 2) (γn+2)−1/2
Z ⇒n→∞ Z

which gives the proof. ¤

A modelling feature of Poincaré’s theorem is the fact that, for large θ, one can
use the power semicircle distribution PS(θ, 2(θ + 2)) as an alternative symmetric
model to the Gaussian distribution with the advantage of having finite range. This
is specially useful when there is a knowledge of the range of the measurements, as
the case of some problems in Metrology; see Lira [32]. This raises the question of
the speed of convergence, a problem studied by Stam [46], Diaconis and Freedman
[12], Borovkov [9], Johnson [21] and Khokhlov [26], amongst others.

A multivariate version of Poincaré’s theorem and its corresponding rate of con-
vergence are considered in [12], [26], [46]. It is an open problem to study the rate
of convergence in Poincaré’s theorem using Stein’s method. See Reinert [41] for a
review of this powerful method to study rates of convergence to the Gaussian and
other distributions.

2.4. Moments. Using the representation (2.2) and the moments of the Normal
and Gamma distributions one can easily obtain the absolute moments and mo-
ments of the power semicircle distributions. The latter are given in terms of the
Catalan numbers

Ck =

(
2k
k

)

k + 1
which are the even moments of the standard semicircle distribution PS(0, 2).

Proposition 2.7. Let Sθ be a random variable with power semicircle distribution
PS(θ, σ), for θ > −3/2, σ > 0. Then,

a) For any α > 0

E |Sθ|α =
σα

√
π

Γ(α/2 + 1/2)
Γ(θ + 2)

Γ(θ + 2 + α/2)
.

b) For any integer k ≥ 1, ESk
θ = 0 and

ES2k
θ =

(σ
2

)2k

Ck(k + 1)!
Γ(θ + 2)

Γ(θ + 2 + k)
.

c) If θ is an integer

ES2k
θ =

(
2k
k

)
(
θ+k+1

k

)
(σ

2

)2k

.
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Proof. It is enough to consider the case σ = 1. It is well known that for α > 0,

E |Z|α =
2α/2

√
π

Γ(α/2 + 1/2)

and

Eγ
α/2
θ+2 = 2α/2 Γ(θ + 2 + α/2)

Γ(θ + 2)
.

Hence, using the independence of Sθ and γ2θ+1, from (2.2) we obtain

E |Sθ|α =
1√
π

Γ(α/2 + 1/2)
Γ(θ + 2)

Γ(θ + 2 + α/2)
.

When k is an integer, by symmetry ESk
θ = 0. On the other hand, taking α = 2k

we have Γ(α/2 + 1/2) =
√
π2−2k(2k)!/k!. Thus,

ES2k
θ =

1
2k
Ck(k + 1)!

Γ(θ + 2)
Γ(θ + 2 + k)

,

which gives (b). Finally, we observe that

ES2k
θ =

1
2k
Ck(k + 1)!

(θ + 1)!
(θ + 1 + k)!

=
1
2k

(
2k
k

)
(
θ+k+1

k

)

which proves (c). ¤

For given θ > −3/2, the corresponding standard distribution (zero-mean and
vairance-one) is obtained when σ2 = 2Γ(θ + 3)/Γ(θ + 2). In particular, when θ is
an integer, the corresponding standard distribution is given when σ2 = 2(θ + 2).

On the other hand, when θ is an integer, the even moments Cθ
k =

(
2k
k

)
/
(
θ+k+1

k

)
of PS(θ, 2(θ + 2)) are a kind of generalized Catalan numbers. Indeed, they are
different from the so-called super Catalan numbers by a factor

(
2(θ+1)

θ+1

)
and (θ +

2)(θ+3) · · · (2θ+1)Cθ
k is an integer multiple of θ!. We refer to Gessel [16] or Hilton

and Pedersen [20] for the study of this kind of generalized Catalan numbers.

2.5. Cauchy transform. The Cauchy transform plays an important role in the
study of different convolutions of probability measures in non-commutative proba-
bility and their related infinitely divisible aspects. For a Borel probability measure
µ on R, its Cauchy transform is defined as

Gµ(z) =
∫ ∞

−∞

1
z − t

µ(dt), z ∈ C+,

where C+ = {ζ ∈ C : Im(ζ) > 0}.
For power semicircle distributions, their Cauchy transforms are given in terms

of the Gauss hypergeometric function

F(a, b; c, z) =
∞∑

k=0

(a)k(b)k

(c)kk!
zk (2.4)

where for a complex ζ and a non integer k we use the Pochhammer symbol (ζ)k

to denote the expression (ζ)k = ζ(ζ + 1) · · · (ζ + k − 1).
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Proposition 2.8. The Cauchy transform Gθ of fθ(x ;σ) is given by

Gθ(z) = z−1F(
1
2
, 1; θ + 2;σ2z−2). (2.5)

Proof. We follow the proof using the moment generating function, as done in [19]
for the semicircle distribution. From Proposition 2.7(b) we have

Gθ(z) = z−1
∞∑

k=0

z−2kEX2k

= z−1
∞∑

k=0

z−2k
(σ

2

)2k (2k)!
k!

Γ(θ + 2)
Γ(θ + 2 + k)

. (2.6)

Using in (2.4) the expressions (θ+ 2)k = Γ(θ+ 2 +k)/Γ(θ+ 2), (1/2)k = (2k)!/22k

and (1)k = k!, from (2.6) we obtain (2.5). ¤

An alternative integral representation for the Cauchy transform follows from
the integral expression of the hypergeometric function; see Gradshteyn and Ryzhil
[17, eq. 9.111].

Corollary 2.9. For θ > −1

Gθ(z) = (θ + 1)
∫ 1

0

(1− t)θ(z2 − tσ2)−1/2dt.

Example 2.10. There is an explicit formula for the Cauchy transform of the
power semicircle distributions in the following special cases:

a) For the arcsine distribution on (−σ, σ)

G−1(z) = (z2 − σ2)−1/2.

b) For the uniform distribution on (−σ, σ)

G−1/2(z) =
1
2

ln
z + σ

z − σ
.

c) For the semicircle distribution on (−σ, σ)

G0(z) =
2
σ2

(z − (z2 − σ2)1/2).

Proof of Proposition 2.5. We have to prove that if U has uniform distribution on
(0, 1) and is independent of the arcsine random variable S−1 on (−1, 1), then, for
θ > −1,

√
1− U1/(θ+1)S−1 follows a power semicircle distribution PS(θ, 1). From

Corollary 2.9, for θ > −1 and σ = 1, we obtain

Gθ(z) = (θ + 1)
∫ 1

0

(1− t)θ(z2 − t)−1/2dt.

Example (a) above says that (z2 − t)−1/2 is the Cauchy transform of the arcsine
density 1

π (t− x2)−1/2 on (−√t,√t). Hence, using change of variables we have

Gθ(z) =
∫ 1

−1

1
z − x

gθ(x)dx
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where

gθ(x) = (θ + 1)
∫ 1

x2
(1− t)θ 1

π
(t− x2)−1/2dt.

Observe that (θ+1)(1−t)θ is the density of the random variable 1−U1/(θ+1) with
U uniformly distributed on (0, 1). Thus, if S−1 has arcsine distribution on (−1, 1)
and is independent of U , a straightforward change of variables similar to the one
used in the proof of Proposition 2.3 shows that gθ(x) is the density of the random
variable X = (1−U1/(θ+1))1/2S−1. The uniqueness of the Cauchy transform gives
that X has distribution PS(θ, 1), for θ > −1. ¤

The following interesting relation between the power of the Cauchy transform
of the semicircle distributions and the generalized Cauchy transform of a power
semicircle distribution was recently proved in Demni [13]. For any z ∈ C+

∫ 2

−2

1
(z − x)λ

(4− x2)λ−1/2dx = dλ

(∫ 2

−2

1
2π(z − x)

√
4− x2dx

)λ

for a constant dλ > 0 and λ > 0.

3. Infinite Divisibility

Recall that the classical convolution of two probability measures µ1, µ2 on R is
defined as the probability measure µ1 ∗ µ2 on R such that

Cµ1∗µ2(t) = Cµ1(t) + Cµ2(t), t ∈ R,
where Cµ(t) = log µ̂(t) with µ̂(t) the characteristic function of µ. The classical
cumulants associated to this convolution are defined as the coefficients cn = cn(µ)
in the series expansion

Cµ(t) =
∞∑

n=1

cn
n!
tn.

The relation between the classical cumulants and the moments mn = mn(µ) is
related to the partitions P (n) of {1, ..., n}, that is

mn =
∑

π∈P (n)

∏
V ∈π

c|V |

3.1. Convolutions and non-classical infinite divisibility. The reciprocal of
the Cauchy transform is the function Fµ (z) : C+ → C+ given by Fµ (z) =
1/Gµ(z).

(a) Free convolution and free cumulants
It was proved in Bercovici and Voiculescu [7] that there are positive numbers η

and M such that Fµ has a right inverse F−1
µ defined on the region

Γη,M := {z ∈ C; |Re(z)| < η Im(z), Im(z) > M} .
The Voiculescu transform of µ is defined by

ϕµ(z) = F−1
µ (z)− z,
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on any region of the form Γη,M where F−1
µ is defined; see [7]. The free cumulant

transform or R-transform is a variant of ϕµ defined as

C¢
µ (z) = zφµ(

1
z

) = zF−1
µ

(
1
z

)
− 1,

for z in a domain Dµ ⊂ C− such that 1/z ∈ Γη,M where F−1
µ is defined.

The free additive convolution of two probability measures µ1, µ2 on R is the
probability measure µ1 ¢ µ2 on R such that φµ1¢µ2(z) = φµ1(z) + φµ2(z) or
equivalently

C¢
µ1¢µ2

(z) = C¢
µ1

(z) + C¢
µ2

(z)
for z ∈ Dµ1 ∩Dµ2 .

Free cumulants were introduced by Speicher [44]. They are the coefficients
kn = kn(µ) is the series expansion

C¢
µ (z) = 1 +

∞∑
n=1

knz
n.

The relation between the free cumulants and the moments is related to the com-
binatorics of the lattice of non-crossing partitions NC(n), namely,

mn =
∑

π∈NC(n)

∏
V ∈π

k|V |.

(b) Boolean convolution and Boolean cumulants
The Boolean convolution of two probability measures µ1, µ2 on R is defined as

the probability measure µ1 ]µ2 on R such that the transform Kµ(z) = z−Fµ(z),
(usually called the self energy), satisfies

Kµ1]µ2 (z) = Kµ1(z) +Kµ2 (z) , z ∈ C+,

see [45]. Boolean cumulants are defined as the coefficients hn = hn(µ) in the series

Kµ(z) = 1 +
∞∑

n=1

hnz
n.

A relation between moments and Boolean cumulants is described in terms of the
combinatorics of the lattice of interval partitions I(n), namely,

mn =
∑

π∈I(n)

∏
V ∈π

h|V |.

(c) Monotone convolution and monotone cumulants
The monotone convolution of two probability measures µ1, µ2 on R is defined

as the probability measure µ1 B µ2 on R such that

Fµ1Bµ2 (z) = Fµ1 (Fµ2 (z)) , z ∈ C+,

and similarly, the anti-monotone convolution µ1 / µ2 is defined as the probability
measure on R such that Fµ1Cµ2 (z) = Fµ2 (Fµ1 (z)) , for z ∈ C+; see [14].

Recently, Hasebe and Saigo [18] have defined the notion of monotone cumulants
(rn)n≥1 which satisfy that rn (µB µ) = 2rn (µ) .
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3.2. Connections between kurtosis and infinite divisibility. Similar to the
definition of infinite divisibility with respect to classical convolution ([43]), it is said
that a probability measure µ is infinitely divisible with respect to the convolution
◦ if for every positive integer n there exists a probability measure µn such that

µ = µn ◦ µn ◦ · · · ◦ µn︸ ︷︷ ︸
n times

.

The kurtosis of a distribution is useful to derive a simple necessary conditions for
infinitely divisible with respect to the classical, free, monotone and anti-monotone
convolutions. It is known that for the Boolean convolution all distributions on R
are infinitely divisible.

The classical kurtosis of a probability measure µ with finite fourth moment is
defined as

Kurt(µ) =
c4(µ)

(c2(µ))2
=

m̃4(µ)
(m̃2(µ))2

− 3,

where c2(µ) and c4(µ) are the second and fourth classical cumulants, and m̃2(µ)
and m̃4(µ) the second and fourth moments around the mean. It is always true
that Kurt(µ) ≥ −2.

In Steutel and Van Harn [47] a necessary condition for the classical infinite di-
visibility of a distribution based on the first fourth classical cumulants is presented.
Below we present a condition based on the kurtosis.

Proposition 3.1. Let µ be a probability measure on R with finite fourth moment.
If µ is infinitely divisible in the classical sense then Kurt(µ) ≥ 0.

Proof. It is well known that if Y = X1 + · · · + Xn is the sum of n identical
random variables which are independent in the classical sense, all with the same
distribution as X, then nKurt[Y ] = Kurt[X]. (This is only the fact that classical
cumulants are additive with respect to classical convolution). In other words,

Kurt(µ) = nKurt(µ ∗ · · · ∗ µ︸ ︷︷ ︸
n times

).

Suppose that µ is infinitely divisible in the classical sense and Kurt(µ) = α < 0.
Let µn be such that µn ∗ · · · ∗ µn︸ ︷︷ ︸

n times

= µ.Since Kurt(µn) = nKurt(µ) = nα, we

can choose n large enough such that nα < −2, which is a contradiction since
Kurt ≥ −2. ¤

The free kurtosis is defined similarly using the free cumulants instead of the
classical cumulants. That is, the free kurtosis of a probability measure µ is defined
as

Kurt¢(µ) =
k4(µ)

(k2(µ))2
=

m̃4(µ)
(m̃2(µ))2

− 2 = Kurt(µ) + 1

where (kn(µ))n≥0 is the sequence of free cumulants.
Let Λ denote the Bercovici-Pata bijection [6] between classical and free infinitely

divisible distributions. Since this bijection preserves cumulants, we have

Kurt¢(Λ(µ)) = Kurt(µ).
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Since k4(µ¢ · · ·¢ µ) = nk4(µ) and k2(µ¢ · · ·¢ µ) = nk2(µ) we have similarly
as for the classical case that if Y = X1 + · · ·+Xn is the sum of n non-commutative
random variables which are independent in the free sense, all with the same spectral
distribution as X, then

nKurt¢[Y ] = Kurt¢[X].

Thus, using similar arguments as for Proposition 12, we have that if the probability
measure µ on R is infinitely divisible in the free sense then Kurt¢(µ) ≥ 0. The
following result is a criterion for a measure to be free infinitely divisible in terms
of the classical kurtosis.

Proposition 3.2. Let µ be a probability measure on R with finite fourth moment.
If µ is infinitely divisible in the free sense then Kurt(µ) ≥ −1.

Proof. Let µ be free infinitely divisible. Since Kurt¢(µ) = Kurt(µ) + 1 and
Kurt¢(µ) ≥ 0, we get the result. ¤

The monotone kurtosis of a zero-mean distribution µ is defined as

KurtB(µ) =
2m4(µ)− 3m2(µ)2

2(m2(µ))2
= Kurt(µ) + 1.5.

Recently Hasebe and Saigo [18] defined the monotone cumulants (rn)n≥0. Hence,
the monotone kurtosis defined in this paper can be regarded as

KurtB(µ) =
r4(µ)

(r2(µ))2
.

The following result gives a necessary condition in terms of kurtosis for a mea-
sure with zero-mean to be infinitely divisible with respect to monotone convolution.

Proposition 3.3. Let µ be a probability measure on R with zero-mean and finite
fourth moment. If µ is infinitely divisible with respect to monotone convolution
then Kurt(µ) ≥ −1.5.

Proof. It is enough to prove thatKurtB ≥ 0. For zero-mean measures the following
identities hold

m4(µ B ν) = m4(ν) +m4(µ) + 3m2(µ)m2(ν) (3.1)

m2(µ B ν) = m2(µ) +m2(ν). (3.2)

Hence, using (3.1) and (3.2) we have

KurtB(µ B µ) =
2m4(µ B µ)− 3m2(µ B µ)2

2(m2(µ B µ))2

=
2(2m4(µ) + 3m2(µ)2)− 3(2m2(µ))2

2(2m2(µ))2

=
4m4(µ)− 6m2(µ)2

8m2(µ)2
=

1
2
KurtB(µ).

Suppose now that µ is infinitely divisible with respect to monotone convolution
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and α = KurtB < 0. Using repeatedly the fact that KurtB(µ) = 2KurtB(µ B µ),
we obtain

KurtB(µ) = 2nKurtB(µ B · · · B µ︸ ︷︷ ︸
2n times

).

Let µn be such that µn B · · · B µn︸ ︷︷ ︸
2n times

= µ. Hence KurtB(µn) = 2nKurtB(µ) = 2nα.

Again, choosing n large enough so that 2nα < −2 we get a contradiction since for
all n, KurtB(µn) = Kurt(µn) + 1.5 > Kurt(µn) ≥ −2. ¤

Example 3.4. Symmetric Beta Distribution. We illustrate the above criteria
in the case of the family of symmetric beta distributions. Recall that for α, β > 0, a
probability measure has a symmetric beta distribution BS(α, β), if it is absolutely
continuous with density function

g (x) =
1

2B(α, β)
|x|α−1

(1− |x|)β−1, |x| < 1.

It was shown in [2], that the symmetric beta distribution BS(1/2, 3/2) is free
infinitely divisible. Therefore, a natural question is whether other members of this
family are infinitely divisible in the free sense. If µ is a symmetric beta distribution
BS(α, β), the kurtosis of µ is given by

Kurt(µ) =
(α+ 2)(α+ 3)(α+ β)(α+ β + 1)
α(α+ 1)(α+ β + 2)(α+ β + 3)

− 3.

Thus, from Proposition 3.2 we have that if µ is free infinitely divisible the following
inequality must hold

(α+ 2)(α+ 3)(α+ β)(α+ β + 1) ≥ 2α(α+ 1)(α+ β + 2)(α+ β + 3). (3.3)

In particular, when β = α we have that if α > 7/25 then BS(α, α) is not ¢-
infinitely divisible. Taking α = 1/2, we have that BS(1/2, β) is not ¢-infinitely
divisible for β < 1/2. Observe that BS(1/2, 3/2) satisfies the inequality (3.3).
In a similar way, from Proposition 3.3 we have that if µ is monotone infinitely
divisible the following inequality must hold

(α+ 2)(α+ 3)(α+ β)(α+ β + 1) ≥ 3
2
α(α+ 1)(α+ β + 2)(α+ β + 3).

Using similar ideas we define, for a probability measure µ on R with zero-mean
and fourth moment, the Boolean kurtosis as

Kurt](µ) =
h4(µ)

(h2(µ))2
= Kurt¢(µ) + 1 = Kurt(µ) + 2. (3.4)

We might expect to obtain a similar criterion as above for Boolean infinite di-
visibility, but since any measure is infinitely divisible with respect to Boolean
convolution, this would only lead to the fact that kurtosis is greater than −2.

Instead of this we shall end this section with the study of a connection between
the Boolean kurtosis and the following remarkable and useful family of homo-
morphisms introduced in Belinschi and Nica [5]. Let P be the class of all Borel
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probability measures on the real line R. For µ ∈ P and every t ≥ 0 consider the
transformation Bt : P → P

Bt(µ) =
(
µ¢(1+t)

)]1/(1+t)

(3.5)

and the ¢-divisibility indicator

φ(µ) := sup{t ∈ [0,∞] | µ ∈ Bt(P)}.
The relation between Bt(µ), the ¢-divisibility indicator and free infinite divisibility
is given in the following proposition due to [5]. Let B(µ) denote the Boolean
Bercovici-Pata bijection that sends a distribution µ into a free infinitely divisible
distribution B(µ).

Proposition 3.5. Let µ ∈ P. The following statements hold
a) B1(µ) = B(µ), ∀µ ∈ P.
b) µ is infinitely divisible with respect to ¢ if and only if φ(µ) ≥ 1.
c) There exists a free infinitely divisible distribution ν such that µ = B(ν) if

and only if φ(µ) ≥ 2.

One useful property that allows us to calculate φ(µ) for some probability mea-
sures is the following: For each t > 0

φ(Bt(µ)) = φ(µ) + t. (3.6)

We can prove a similar relation to (3.6) using Boolean kurtosis instead of φ.

Proposition 3.6. Let µ be a probability measure on R having zero-mean and
fourth moment. Then for each t > 0

Kurt](Bt(µ)) = Kurt](µ) + t. (3.7)

Proof. Since Boolean cumulants are additive with respect to the Boolean convo-
lution, we have that for each t > 0 Kurt](µ]t) = 1

tKurt
](µ) and similarly

Kurt¢(µ¢(1+t)) =
1

(1 + t)
Kurt¢(µ).

Hence, using (3.5) and (3.4) we obtain

Kurt](Bt(µ)) = Kurt]
((

µ¢(1+t)
)]1/(1+t)

)

= (1 + t)Kurt]
(
µ¢(1+t)

)

= (1 + t)
(
Kurt¢

(
µ¢(1+t)

)
+ 1

)

= (1 + t)
(

1
1 + t

Kurt¢ (µ) + 1
)

= Kurt](µ) + t.

¤

Using (3.7) and Propositions 3.2 and 3.5, we obtain that the Boolean kurtosis
is an upper bound for the free divisibility indicator.
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Theorem 3.7. Let µ be a probability measure on R with zero-mean and fourth
moment. Then

Kurt](µ) ≥ φ(µ) (3.8)
with equality if and only if µ = Bt(PS(−3/2, σ2) for some t > 0. Moreover

ψ(µ) = ψt(µ) = Kurt](Bt(µ))− φ(Bt(µ)) ≥ 0 (3.9)

depends only on µ.

Proof. Using (3.6) and (3.7) we have that for each t > 0

Kurt](µ)− φ(µ) = Kurt](Bt(µ))− φ(Bt(µ)).

Hence ψ(µ) = ψt(µ) is independent of t. We would like to prove that ψ(µ) ≥ 0.
If φ(µ) = 1, by Proposition 3.5 µ is infinitely divisible with respect to ¢ and then
by Proposition 3.2 we have Kurt](µ) ≥ 1. Hence ψ(µ) ≥ 0. If φ(µ) < 1, let ν =
B1−φ(µ)(µ). Then by (3.6), φ(ν) = 1 and hence ψ(µ) = ψ(B1−φ(µ)(µ)) = ψ(v) ≥ 0.
If φ(µ) > 1 we have µ = Bφ(µ)−1(ν) for some probability measure ν on R. Using
(3.6) we have φ(µ) = φ((Bφ(µ)−1(ν)) = φ(v) + φ(µ)− 1 and hence φ(v) = 1. This
gives 0 ≤ ψ(v) = ψ(Bφ(µ)−1(ν) = ψ(µ). Then (3.8) is proved.

On the other hand, it has been shown in [5] that φ(PS(−3/2, σ2)) = 0 and it
is well known that Kurt(PS(−3/2, σ2)) = −2, hence Kurt](PS(−3/2, σ2)) = 0.
Thus, equality in (3.8) holds for µ = PS(−3/2, σ2) and by (3.9) it also hods for
Bt(PS(−3/2, σ2), for t > 0.

Suppose now that Kurt](µ) = φ(µ) = p for some p > 0. From [5, Remark 5.5]
we have that there exists ν such that µ = Bp(ν). Using again (3.6), we have that

Kurt](ν) = Kurt](µ)− p = 0. (3.10)

This means that µ = Bp(ν) and Kurt(ν) = Kurt](ν) − 2 = −2, which can only
happen if ν is the symmetric Bernoulli distribution PS(−3/2, σ2). ¤

Remark 3.8. a) The semicircle and the arcsine distributions satisfy the equality in
(3.8). This follows since B1/2(PS(−3/2, 1)) = PS(−1, 1) and B1(PS(−3/2, 1)) =
PS(0, 1); see [5].

b) If µ is the classical Gaussian distribution, µ does not satisfy the equality in
(3.8). This follows since there does not exist t > 0 such that µ = Bt(PS(−3/2, σ2),
a fact that can be easily proved using (4.13) in Example 4.5 in [5].

4. Infinite Divisibility of PSCD

We now use the kurtosis conditions of the last section to study the infinite divis-
ibility of the power semicircle distributions with respect to different convolutions.
We recall that the symmetric Bernoulli distribution PS(−3/2, σ) is the Gaussian
distribution with respect to ]; the arcsine distribution PS(−1, σ) is the Gaussian
distribution with respect to B and C; the semicircle distribution PS(0, σ) is the
free Gaussian and PS(∞, σ) is the classical Gaussian distribution.

We first prove that for θ < 0, the power semicircle distributions are not free
infinitely divisible.
Corollary 4.1. The power semicircle distribution PS(θ, σ) is not infinitely divis-
ible in the free sense if θ < 0.
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Proof. It is enough to consider the case σ = 1. From Proposition 2.7 we have that

ES2k
θ =

1
22k

(2k)!
(k)!

Γ(θ + 2)
Γ(θ + 2 + k)

.

Then, the kurtosis of Sθ is obtained as

Kurt(Sθ) =
ES4

θ

(ES2
θ )2

− 3 = − 3
(θ + 3)

.

Hence for θ < 0, Kurt(Sθ) < −1 and the result follows by Proposition 3.2. ¤

For θ < −1 the power semicircle distributions are not infinitely divisible in the
monotone sense. The result is an immediate consequence of Proposition 3.3.

Corollary 4.2. The power semicircle distribution PS(θ, σ) is not infinitely divis-
ible in the monotone sense if θ < −1.

Proof. Follows since Kurt(Sθ) = − 3
(θ+3) < −1.5 for θ < −1. ¤

In summary we have the following general result. In the theorem below ◦ stands
for any of the convolutions classical ?, free ¢, monotone B or Boolean ].

Theorem 4.3. Let θg◦ be the value of the Gaussian distribution PS(θg◦ , σ) with
respect to the corresponding convolution ◦. The power semicircle distribution
PS(θ, σ) is not infinitely divisible with respect to the convolution ◦ for θ < θg◦ .

Remark 4.4. We conjecture that for θ > 0, the distribution P (θ, 1) is free infin-
itely divisible. This conjecture is based on testing with MATLAB the positive
definiteness of a large number of free cumulants of P (θ, 1).

Remark 4.5. If the above conjecture were true, by Poincaré’s theorem the classical
Gaussian distribution would be free infinitely divisible. This fact is also supported
by using MATLAB for testing the positive definiteness of the free cumulants of
the Gaussian distribution. This conjecture has recently been proved to be true
in [4]. Moreover, we conjecture that the classical Gaussian distribution is a free
multiplicative convolution of the semicircle distribution in the sense of [3], [40].

Remark 4.6. By Theorem 3.7 and since Kurt(Sθ) = − 3
(θ+3) < 0 for all θ, even

if PS(θ, σ) were free infinitely divisible, it would not belong to Bt(P) for t ≥ 2.
Namely, PS(θ, σ) would not be the image of a free infinitely divisible measure
under the Boolean Bercovici-Pata bijection B.

We conclude with the following strict bound for the free divisibility indicator
of the classical Gaussian distribution. Its proof follows from Theorem 3.7 and
Remarks 3.8 (b) and 4.5.

Theorem 4.7. Let µ be the classical Gaussian distribution. Then 1 ≤ φ(µ) < 2
and does not exist a free infinitely divisible distribution ν on R such that µ = B(ν).

Acknowledgment. The authors would like to thank Sakuma Noriyoshi and Ken-
iti Sato for valuable comments and suggestions during the preparation of this work
and to the referee for very useful observations.



INFINITE DIVISIBILITY OF PSCD 177

References

1. Anshelevich, M.: Free martingale polynomials, J. Functional Anal. 201 (2003) 273–291.
2. Arizmendi, O., Barndorff-Nielsen, O. E., and Pérez-Abreu, V.: On free and classical type G
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40. Pérez-Abreu, V. and Sakuma, N.: Free infinite divisibility of free multiplicative mixtures

with the Wigner distribution. arXiv:0910.1199, 7 Oct. 2009.
41. Reinert, G.: Three general approaches to Stein’s method. In: An Introduction to Stein’s

Method. pp 183–221. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 4, Singapore
Univ. Press, Singapore, 2005.

42. Rosinski, J.: On a class of infinitely divisible processes represented as mixtures of Gaussian
processes. In S. Cambanis, G. Samorodnitsky, G. and M. Taqqu (Eds.). Stable Processes and
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V́ıctor Pérez-Abreu: Centro de Investigación en Matemáticas, A.C., Apdo. Postal
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