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Abstract. In this paper we work under the setting of data with high
dimension d greater than the sample size n (HDLSS). We study asymp-
totics of the first p > 2 sample eigenvalues and their corresponding
eigenvectors under a spiked covariance model for which its fitst p largest
population eigenvalues have the same asymptotic order of magnitude as
d tends to infinity and the rest are constant. We get(the asymptotic joint
distribution of the nonzero sample eigenvalues when ‘d — oo and the
sample size n is fixed. We then prove that the plargest sample eigenva-
lues increase jointly at the same speed asgheir population counterpart,
in the sense that the vector of ratios of the sample and population eigen-
values converges to a multivariate distributiomywhen d — oo and n is
fixed, and to the vector of ones when poth d,;% — oo and d > n. We also
show the subspace consistency of'the'cérresponding sample eigenvectors
when d goes to infinity and n is fixed. Furthermore, using the asymp-
totic joint distribution of the sample eigenvalues we study some inference
problems for the spiked cevarianee model and propose hypothesis tests
for a particular case of this model and confidence intervals for the p
largest eigenvalues. A" simulation is performed to assess the behavior of
the proposed statistical methodologies.

1 Introduction

There_is an increasing current interest in the statistical analysis of data
arising imsproblems of genomics, medical image analysis, climatology, finance
and, functional data analysis, where one frequently observes multivariate
data with high dimension greater than the sample size; see for example
Hall et al. (2005) and Johnstone (2001). An important problem for this
kind of data is the inference about the eigen-structure of the population
covariance matrix. When the data dimension is greater than the sample size,
Principal Component Analysis (PCA) often fails to estimate the population
eigenvalues and eigenvectors since the sample covariance matrix is not a
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2 Bolivar-Cime and Perez-Abreu

good approximation to the population covariance matrix. As pointed out in
Johnstone (2001), one often observes one or a small number of large sample
eigenvalues well separated from the rest. This case is of special interest, and
is called the spiked covariance model.

More specifically, suppose X = [X1, Xo,..., X,] is a d x n data matrix
where the sample X; = (z1;,. .. ,atdj)T, 7 =1,2,... n are independent and
identically distributed random vectors with mean zero and unknown cova-
riance matrix X, and X has rank n with probability one (it is not assuméd
that the X;’s have a multivariate Gaussian distribution). The spiked £6va-
riance model considers a covariance matrix of the type

Y = OAO" where A = diag(t1,72, ..., Tp, 0, ..., 0), (1.1)

with 7 > m > - >7, >0 >0, forsome 1 <p <d,and © is a d x d
orthogonal matrix.
We assume that the spiked covariance model is sueh that 7; = 7(d) and

T

do

— ¢ as d— o0} (1.2)

where ag > ag > -+ > o > 1 and ¢; >0, 7A,2,...,p. We say that the p
largest population eigenvalues of the spiked covariance model (1.1) have the
same asymptotic order of magnitude imdif a1 = ap = - -+ = a = a > 1; and
we say that the p largest population) eigenvalues have different asymptotic
order of magnitude in d if 6> @ > --- > ap > 1. In this paper we
focus our attention on the/spiked covariance models where the p > 2 largest
eigenvalues have same.asymptotic order of magnitude in d.

There are three differént contexts in which the study of PCA for the
spiked covarianceymodel arises: (i) the Classical case, (ii) the Random Matrix
Theory (RMT) context and (iii) the High-Dimensional, Low Sample Size
(HDLSS) context. Each context depends on the particular data analytic
settingmthe modelling features and the way the corresponding asymptotics
are considered with respect to the data dimension d and the sample size n.

In theawell known classical case, one considers d fixed and n goes to infini-
ty#In the RMT situation one considers d and n go to infinity simultaneously,
in the sense that d/n — -, where v € [0, 0c]; see Bai and Yang (2008), Baik
and Silverstein (2006). In this context the population eigenvalues of the
covariance matrix > do not depend on d and the basic analytic tool is the
so-called Marchenko-Pastur theorem; see Baik and Silverstein (2006).

On the other hand, in the so-called HDLSS context the asymptotic results
are developed by letting the data dimension d — oo while keeping fixed the
sample size n. Some references on this framework are Ahn et al. (2007),
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Hall et al. (2005), Jung and Marron (2009), Jung et al. (2012) and Yata
and Aoshima (2009). One can also consider in this framework the case of
letting first the data dimension d — oo while keeping fixed the sample size
n and in a second step, letting n — oo; see Ahn et al. (2007), Jung and
Marron (2009) and Jung et al. (2012). In other words d,n tend to infinity
successively with d increasing at a much faster rate than n, i.e. d > n. In
contrast to the RMT context, in the HDLSS context it may be assumed that
the p largest population eigenvalues of the covariance Y depend also on the
data dimension d.

Under a sample Gaussian assumption on X;, Ahn et al. (2007) ‘show
for p = 1 and ¥ = diag(d*,1,...,1) with a > 1, that the largest*Sample
eigenvalue increases at the same speed as its population eigemvalue, in the
sense that its ratio converges to the distribution X2 /n whefi"d 0o and n
is fixed, where X2 is a r.v. with chi-square distribution,with n degrees of
freedom; and converges to one when d,n — oo andyd nw»Moreover, they
show that the first sample eigenvector is consistent ‘wheén d,n — oo and
d>n.

In the Gaussian case and when the p > 2Wargest'sample eigenvalues have
different asymptotic order of magnitude, it follews from the results in Jung
and Marron (2009) that if 77 > 7 >™» ">77, are the p largest sample
eigenvalues then

Ti X2
2 5& as d — 00, (1.3)
T n
fori =1,2,...,p. Since X2/ =471 as n — oo, in this case we have that
T ab
— 1 as d — co,n — 00, (1.4)
T

for ¢+ = 1,2,...,p, where the limits are applied successively. Thus, the p
largest sample,eigenvalues increase at the same speed as their population
eigenvalues. We give multivariate extensions of these asymptotic results for
the non*Gaussian case and when the p largest population eigenvalues have
same asymptotic order of magnitude. The work of Jung and Marron (2009)
doés not address this asymptotic behavior of the p largest sample eigenvalues
in those cases, even when they have results for the case of same asymptotic
order of magnitude and considering non-Gaussian distributions, only the
marginal convergence in distribution of these sample eigenvalues is shown
in their Lemma 1 considering a p-mixing condition. Moreover, they show
the subspace consistency and the consistency of the corresponding sample
eigenvectors in the case of same and different asymptotic order of magnitude,
respectively. We do not consider p-mixing conditions in our assumptions.
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4 Bolivar-Cime and Perez-Abreu

Yata and Aoshima (2009) study the asymptotic behavior of the sam-
ple eigenvalues and their corresponding eigenvectors for a spiked covariance
model where the p largest population eigenvalues may have same asymptotic
order of magnitude in d. They prove a result similar to (1.4) with different
hypotheses from the considered in the present paper, and without assuming
either a Gaussian distributions or a p-mixing condition. However, the result
(1.4) alone does not contribute to do inference for the p largest population
eigenvalues, and therefore it is important to have multivariate extensions
of (1.3) as we do in the present paper. Yata and Aoshima (2009) shéw a
kind of Central Limit Theorem for the ratios of the sample and population
eigenvalues assuming that the first p largest population eigenvaluessare dif-
ferent. In the present paper we prove, under a Gaussian assumption, a kind
of multivariate Central Limit Theorem for the vector of théseratios, where
the first p largest population eigenvalues have same asymptotic order, and
in particular they may be the same.

Under the assumption of same asymptotic order of magnitude in d we get
the asymptotic joint distribution of the nonzero'sample eigenvalues, which
implies a multivariate extension of (1.3) when d — oo and keeping n fixed.
We then obtain that the p largest sample éigenwalues increase jointly at the
same speed as their population counterpart, in the sense that the vector of
ratios of the sample and population eigemvalues converges to a multivariate
distribution when d — oo and g1 1s¥ixed, and to the vector of ones when
both d,n — oo and d > n. Imytheswork of Jung and Marron (2009) only
the marginal convergence oftthe/sample eigenvalues is taken into account.
The advantage of considering the joint convergence in distribution of the
nonzero sample eigenyalues'is that it is possible to derive asymptotic results
for functions of them. “Eurthermore, these asymptotic results are useful to
consider some inferénce problems, as those considered in the present paper.
We also show the subspace consistency of the first p sample eigenvectors for
our spiked covariance model.

AS§ ansimportant contribution of this article, we also develop some results
béhind hypothesis tests and confidence intervals in the two asymptotic set-
tings of the HDLSS context. Namely, we apply the above results under a
Gaussian assumption, to consider hypothesis tests for our spiked covariance
model and confidence intervals for the p largest population eigenvalues. It
is seen that some classical statistics are also useful when d goes to infinity
and n is fixed, and when d,n go to infinity and d > n.

The organization of the paper is as follows. In Section 2 we study the
asymptotic behavior of the p largest sample eigenvalues in two situations:
when d — oo and n is fixed; and when first the dimension d — oo and then
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subsequently n — oco. In Section 3 the subspace consistency of the corres-
ponding eigenvectors is considered. In Section 4 we consider some eigen-
inference problems in the case when the sample is taken from a multivariate
Gaussian distribution and therefore the sample covariance matrix follows a
Wishart distribution. In this section hypothesis tests for a particular case
of our spiked covariance model and confidence interval for the p largest
eigenvalues are proposed in the HDLSS context. Finally, in Section 5 a si-
mulation study is conducted to show the good performance of the statistical
methodologies proposed in Section 4.

2 Asymptotics of sample eigenvalues

In this section we consider the spiked covariance model (1.1), where the p
largest population eigenvalues have the same asymptotietorder of magnitude
as d goes to infinity. We consider two situations of'the HDLSS framework.
We first deal with the case when d — oo and n igsikept fixed; then we consider
the case when d — oo first and in a second step . —¥ 0.

2.1 Sample size n fixed and data dimension d — oo
We consider the following assumptions for the matrix X:

(a) Let Z = A"120T X and assume'that its entries have uniformly boun-
ded fourth moments with respect to d, in the sense that for each n =
p+1,p+2,... there [exists K, > 0 such that E(z;-lj) < K, for all
1=1,2,...,d, j=1,2, . nandd=n+1,n+2,....

(b) Let Z; be the isth rew vector of Z and define Ep =1Z],....2)]".
Assume théat Zp converges in distribution to some p x n matrix Y, as

d — 0o, which has rank p with probability one.

We observe that the columns of Z are independent and identically dis-
tributed random vectors with mean zero and identity covariance matrix.
These assumptions do not cover all random matrices but are still very gene-
ral and,include some interesting settings. In the case when the independent
colimns of X have the Gaussian distribution Ny (0, X)), assumptions (a) and
(bjsare automatically satisfied and the random matrix Wi = Z.| Z;’s have
a Wishart distribution with one degree of freedom. The assumption (b) is
also satisfied in the case when the Z,’s have a stationary distribution in d,
that is the distribution of Y}, is the distribution of the Zp’s for all d > n. As-
sumption (b) also holds in the case considered by Jung and Marron (2009)
where a p-mixing condition is assumed; see proof of their Lemma 1. We do
not assume p-mixing conditions, as Yata and Aoshima (2009) mention this
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6 Bolivar-Cime and Perez-Abreu

kind of conditions are too strict and have obvious shortcoming, since it is
needed an ordering of the variables and in some settings as microarray data
there is not a natural ordering of the gene expressions and there exists a
clear dependence between them.

Denote by 71 > 7» > --- > 7, the nonzero sample eigenvalues of the
sample covariance matrix S = n~!X X", The first result is an analogue of
Lemma 1 of Jung and Marron (2009). In the next theorem we observe tlhe
joint convergence in distribution of the vector of nonzero sample eigenva-
lues when dimension d goes to infinity and the sample size n is fixed./Note
that Lemma 1 of Jung and Marron (2009) states only the convergenee_in
distribution of each component of this vector (marginal convergenee).

Theorem 2.1. Suppose that the unknown covariance matriz X of the columns
of X is given by the spiked covariance model (1.1), with p <n <&d and where

TL > T2 > -+ > T, have the same asymptotic order of magnitude in d. Con-

sider the assumptions (a) and (b) for the matriz X NThen/ when n is fived

A7 (T, Tay ooy Tn) | — n (01, 02, 00500, . .., 0) T

as d — oo, where {1 > ly > --- > £, > 0 dre the eigenvalues of the random
matriz Uy = C;/2YnYnTC;/2, with Cp =(diag(c1, ca,...,¢cp).

Proof. The proof is based on the,ideas of Section 4.2 of Ahn et al. (2007)
where the case p = 1 was conSidered. We have ¥ = OAOT where A =
diag(7i, ..., 7p,0,...,0) is thé diagomal matrix of the eigenvalues of ¥ and
the corresponding eigenvéctors#are the column vectors of the matrix O.
The sample covariancesmatrix S and the dual sample covariance matrix

Sp =n"'X T X have the $ame nonzero eigenvalues. Moreover, the following
representation holds

d p d
ASp =ZTAZ = ANW;=> nWito Y W,
i=1 i=1 i=p+1
where W; = ZiTZZ- and Z;,i=1,2,...,d, are the row vectors of Z. Hence
p d
dnSp=d *Y mWi+d %o Y W;=U+ocd "V, (2.1)
i=1 i=p+1

where U = >0 | d™ ;W and V = sz:p-H W;.
Let 7, = diag(7i,...,7,) and C, = diag(ci,c2,...,¢p). Note that U =
Z, (d=7,)Z, converges in distribution to U = Y,[C,Y, as d — oc. On
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the other hand, we can show that d~*V converges to the zero matrix in
distribution as d — oo. In order to see that, consider the norm || A ||=
[tr(AT A)]Y/? for the n x n matrix A. By the Markov’s inequality we have
that for any € > 0

P(|d=V || €) = P(|| d™*V |*> ¢%) < (d**e) T E(| V |1?).

Using properties of the trace and the fact that the W;’s are symmetric, 1t
can be seen that the right side of the last inequality is equal to

(d**€?)~ ZZEZZT = (d®*e)~ ZZZZE

i=p+1 j=p+1 i=p+1j=p+1 k=1r=1

Since there exist K, > 0 such that E(zfj) < K, for allz, 5 and by the
Holder’s inequality E(z Z,Cz:JT) < E(z )I/QE(z;*T)l/?, we havesthat the right
side of the last equation is less than or equal to (d*%2)~4(d— p)?n®K,, then

P d-ev H>e>s<d"’)2"2K”:(d‘p)2( ! )Q”QK" (22)

d2a62 d do— 1 62

and the right side of the inequality temds“toe/zero when d — oo because
a > 1. Thus the second term in theiight hand side of (2.1) goes to the zero
matrix in probability, and therefore,imydistribution, as d increases. Hence

d=nSE=% o4 as d — oo.

Then the vector of the roots of the characteristic polynomial of d~*nSp
converge in distributign to#he vector of the roots of the characteristic poly-
nomial of U as d=, oo N
Since U = YnTCpYn, the nonzero eigenvalues of U are the p nonzero eigen-
=~ 1/2 1/24,\T 1/2 T H1/2
values 01 > ly >%-- > £, of Uy = (C,/°Y,)(Cp' 7 Y,)' = G/ YY) G/ .
Hence, if 71 > 7 > --- > 7, are the nonzero eigenvalues of Sp, or of S, we
have
d=n(71, 72, .o, Tn) | == (01, .4y, 0,...,0) "

whien d — oo. O

The following consequence of Theorem 2.1 shows the usefulness of the
joint convergence in distribution of the sample eigenvalues when the dimen-
sion d goes to infinity. The result is a multivariate extension of (1.3). It
gives the joint convergence in distribution of the ratios of the sample and
population eigenvalues to a random vector of multiples of the eigenvalues
corresponding to the random matrix Uy of Theorem 2.1.
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8 Bolivar-Cime and Perez-Abreu

Proposition 2.1. Under the assumptions of Theorem 2.1 and for n fized,
we have the joint weak convergence

~ = ~ N\ T T
T T2 Tp w 1 61 EQ fp
T Ty ey —n T Ty ey, T
T T2 Tp C1 C2 Cp

when d — oo, where {1 > by > --- > £, > 0 are the eigenvalues of the
random matrixz Uy.

Proof. Note the following

~ o~ ~\T . . ~ o~ ~\ N
T T2 Tp . d* d d T T2 Tp
T Ty ey ——(hag T Ty ey T — Ty R
17 2’ Y » 17 27 Y » la’ la’ Y la

which by Theorem 2.1 tends in distribution to

11 1\ /¢ ¢ o\ 2 0,0\ "
C1 Co Cp n n n C1v €2 Cp

Remark 2.1. Suppose 71 > -+ > 7 > 0py1 2w 2 Gq > 0 are functions
of d. The two previous results hold if we considerithe covariance matrix

¥ = OAOT where A = diag(m1 . W Optls - -5 0d),
where T1,...,T, have the same asymptotic order of magnitude in d,
max(op41, .. Lo d SR — 0 as d — oo,

and O is a d x d orthogonal maitriz..The proof is similar to that of Theorem
2.1; we only need to prove_that

d
at” Z oW; =0 as d — oo, (2.3)
7=p+1

where Wy is as . the proof of Theorem 2.1 and 0 is the n X n matric
of zeros. We use the result that if Aq, Bq and Agq — By are non-negative
definitesmatrices and Ag — 0 as d — oo, then By — 0 as d — oo. Let
M, = max(opt1,...,04) and V = E?:pﬂ W;. Since W; is non-negative
definitesand My — o; >0 fori=p+1,...,d, we have that Ag = d"*M;V,
Bi=d* Zf:pﬂ o;W; and Ag — By are non-negative definite matrices. Let
€ >0; analogously to the proof of (2.2) it can be seen that

(d—p)>Min’K, (d—p\° [ My \*n’K,
d2oe2 - d do—1 €2
and the right side of the last inequality tends to zero as d — oo since

d=@=VN, — 0. Therefore Ay — 0 in probability and in distribution as
d — 00. Then we have (2.3).

Pl Ag |>€) <
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PCA and Eigen-inference for a Spiked Covariance Model 9

In particular, the last remark allows us to generalize the previous results
to spiked covariance models such that their p largest eigenvalues have same
asymptotic order of magnitude and the rest are bounded for a constant as
d tends to infinity.

2.2 First d — oo and then n — oo in a second step

In this section we study the asymptotic behavior of the sample eigenvalues
of our spiked covariance model by letting first the data dimension d — %o
and in a second step letting the sample size n — oo. The next theorem is a
generalization of the result given in Section 4.2 of Ahn et al. (2007) which
considers the case p = 1.

Theorem 2.2. Suppose that the unknown covariance matrizofithe columns
of X s given by the spiked covariance model (1.1), withip <sn < d and
where 71 > 19 > --- > T, have the same asymptotic ofden of magnitude in
d. Suppose that X satisfies (a) and the following asswmption:

(b’) Let Z; be the i-th row of Z and define Zp =Z,...,2Z,)]". Assume
that Zp converges in distribution to seme p X n matrix Y, = (Yijn)
as d — oo, which has rank p with probability one and its entries have
uniformly bounded fourth momenitsauth respect to n, that is for some
M >0 we haveE(yfj,n) <M forallkt=1,2,...,p,7=1,2,...,n and
n=p+1,p+2,.... Furthermore,”suppose that the matrix distribution
of Y, Y, is continuous.

Then we have

~ o~ ~ o

=
<71,T2,...,£> L (1,1,...,1)T asd — co,n — oo, (2.4)
1 T2 T

where the limits are applied successively.

For the preof of this theorem, we first have the following Law of Large
Numbers_for random matrices and vector of eigenvalues. It also gives an
extension of the one-dimensional fact that if x2 is a chi-square random
variable with n degrees of freedom, then x?2 /n converges to 1 in probability
(almost surely and in distribution), as n — oo.

Proposition 2.2. Let Y, be a sequence of pxn random matrices with p < n,
such that its columns are independent with mean zero and identity covariance
matriz. Assume that the rank of Y, = (yijn) is p with probability one and
its entries have uniformly bounded fourth moments with respect to n, that is
E(yj,) <K foralli=1,2,....,p, j=1,2,....nandn=p+1,p+2,....
Let A, = YnYnT. Then we have:
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10 Bolivar-Cime and Perez-Abreu
(i)
—1 w
n A, — I, asn — o0.

(ii) Assume that ¥ = OAO" is a p x p positive definite matriz, where
A = diag(Ai, ..., \p) is the diagonal matriz of its eigenvalues and O is
the p x p orthogonal matriz of its eigenvectors. Let {1 > o > --- > £,
be the eigenvalues of W, = OAY2A,AV207 . Then

el (ﬂl lo p

-
w T

a2 (11,1 — .

IV /\p) ( ) as n — oo

Proof. (i) We have that Y,,Y,| = (3°7_, Yik.nYjkn); therefore
n
n_lannT - Ip = (n_l Zyik,nyjk,n - 5i,j)7
k=1

where 0; ; is one if ¢ = j and zero otherwise. It is\stfficient to prove that for

alle >0
P(

For the case i = j, by the.Chebyshev’s inequality and the assumptions
for Y,, we have that

n n
P ( nt Zyzgkm 11| > €> < e %Var (n_l nykm)
k=1 k=1

n 2
_ (n) 78 (z - —n)
k=1

n
Zn_lyik,nyjk,n — 03| > 6) — 0 as n — oo. (2.5)
k=1

n n n

-2 4 2 2 2 2

= (ne) E Z yik,n +2 Z yikl,nyikg,n —2n Z yik,n +n
k=1 k1<k2 k=1

= (ne)™” (Z E(Yin) — n) : (2.6)
k=1

Since E(y4. ) < M for all i,k and n =p+1,p+2,..., the last expression
of (2.6) is less than or equal to (ne)~2(nM —n) = n~'e 2(M — 1) which
tends to zero as n — co. Thus we have (2.5).
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Analogously, for the case i # j, by the Chebyshev’s inequality and the
assumptions for Y,, we have

n n
(S ) <00 v ()
k=1
n

k=1
n n
= (n6)72 Z Z E(yilﬂ,nyjkl,nyikz,nyjkz,n) = (77,6)72 ZE(yfiZk,ny]zk,n)’
k1=1ko=1 k=1

@.7)

By the Holder’s inequality we have E(yfkny?kn) < E(yfk7n)1/2E(y;¥k’n)1/2 <
M, thus the last expression of (2.7) is less than or equal to n~'e¢%2 M which
tends to zero as n — oo.

(ii) Suppose that W,, = V,,£,V,[, where £, = diag(14...,%,) is the di-
agonal matrix of the eigenvalues of W, and V,, is thé orthogonal matrix
of its eigenvectors. Since n~'4, % I, as n — oo, by (1), we have that
Vo(n )V, =n~ W, B % = OAOT and theteforeyn ™4, 5 A as n — oo.
It follows that n=*A~1¢, 5 I, as n — oo. L

Proof of Theorem 2.2 Let ¢ > _la"> -+ > {, > 0 be the eigen-
values of the matrix (70 = C;/2YnYnTC;/2 with C, = diag(c1,...,¢p). Let
F1,, Fz/r and F-1yc, be the distzibution functions of 1, = (1,1,..., nr,

~/- _ (TL T Tp\T -1 _ 1l ! Lo\T :
T/T = (T—i,%,,é) and n_¢/Cp = n (é,é,,i) , respectively.

Since Y, Y, has continuous métfix distribution then Uy and n~'¢ /C, have
continuous distributions. {Thegefore the continuity set of F,-14/c, is given by
C(Fp-14/c,) = RP. By(Proposition 2.1

hm |F2yr(t) = Fr-vye, ()] = 0,
for all ¢ € RP. Therefore
dim [Fryr () = Fu, (0] = |Fyyge, (1) — F1, (1)) Ve € R,

Since Zp has independent column vectors and it converges in distribu-
tion to Y, the column vectors of Y,, are also independent. Because Zp has
uniformly bounded fourth moment with respect to d, by Theorem 4.5.2 of
Chung (2001) we have E(z;) = 0 = E(yijn), E(zf]) =1 E(yzzjn) v
1 =1,2,...,p, 7 = 1,2,...,n, and E(Zik‘zjk) =0— E(yikﬂyjkﬂ) Vk =
1,2,...,n, 1 # j, as d — oo. Therefore, Y,, has mean zero and its column
vectors have identity matrix. Thus by Proposition 2.2(ii)

lim |Fn71£/cp(t) — F]_p<t)‘ = 0,

n—oo
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12 Bolivar-Cime and Perez-Abreu

for all ¢ in the continuity set of Fy,, namely C(Fy,). Thus
lim lim ’F?/T(t) - Flp(t)| = 0,

n—00 d—oo

for all t € C(F1,). O

Thus by Proposition 2.1 and Thereore 2.2 we conclude that the p largest
sample eigenvalues of the considered spiked covariance model increase jointly
at the same speed as their population counterpart, generalizing in this_way
the results of Section 4.2 of Ahn et al. (2007) and Section 4.5 of Jung and
Marron (2009).

3 Subspace consistency of sample eigenvectors

As mentioned in Jung and Marron (2009), in the caSe when several po-
pulation eigenvalues indexed by J are similar, theirycorresponding sample
eigenvectors may not be distinguishable. Theteforejfor j € J the sample
eigenvector v;, corresponding to the j-thesample, eigenvalue, will not be
consistent for its corresponding population”eigenvector o; but rather may
asymptotically be in E; =spanf{o; : j &, J}, the linear span generated by
{oj : j € J}. We define

T .
v: |Projg v;
Angle(v;, Ey) = arccos ( j [Proip, v )

| vj (Il Projg,vj |

B ( v (Fies (0] vj)oi) )
= arccos )

Il 11l Xic s (0 vi)oi |l

the second equality/being true when the o;’s are mutually orthogonal.
We say that

e v, is consistent if
Angle(v;, 0;) 0 as d — oo.
e v; is strongly inconsistent if

Angle(v;, 0;) £, as d — o0.

s
2
e v; is subspace consistent if

Angle(v;, Ey) 50 as d — 00,

for some set of indices J with 7 € J.
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PCA and Eigen-inference for a Spiked Covariance Model 13

From the results of Jung and Marron (2009), under our spiked covarian-
ce model the first p sample eigenvectors v1, v, ..., v, are subspace consis-
tent and the sample eigenvectors vpy1, Vpt2, ..., v, are strongly inconsistent,
when d — oo and n is fixed. We give a similar proof of the subspace con-
sistency of the first p sample eigenvectors using the results of our Section 2
when d — oo and n is fixed. We recall that the population eigenvectors of
the spiked covariance model (1.1) are the column vectors, o1, 09, ...,04, 6f
the matrix O.

Theorem 3.1. Under the same assumptions of Theorem 2.2, let v, va,k. ., ¥p
be the sample eigenvectors corresponding to the first p sample eigenwalites
TL>Ta >+ >Tp. Then fori=1,2,...,p,

Angle(v;, E7) =5 0 as d — oo, (3.1)

where Ej = span{o1,02,...,0p}.

Proof. We follow closely the ideas in Ahnfét,ali, (2007) and Jung and
Marron (2009). Consider the eigenvalue decompesition of the sample co-
variance matrix S = VLV, where L =diag(71,...,7,0,...,0) is the
diagonal matrix of the sample eigenvalues,and V' = [vy,vg,...,v4] is the
matrix of the sample eigenvectors w; =Avij, ... ,vdj)T, j=12,...,d. We
assume that V is orthogonal, that is, V'V = I;. We have ¥ = OAOT,
where A = diag(7i,...,7p,0,...40) 18 the diagonal matrix of eigenvalues of
Y and O = [o01,...,04] the d"X0d 6Tthogonal matrix of its eigenvectors. A
standardized version of thessample covariance matrix S is given by

S=APOLSON 2 = A20TVLVTOA Y2, (3.2)
Thus we have S = "X X T =n"10AY2ZZTAY20T and
S=m 'A"V20TONY2ZZTAVPOTON Y2 =n~t22T.  (3.3)

From™(3:2) we have that the j-th diagonal entry of S is given by 5;; =
)\j_l > heyTi (v, 0;)2, where ) is the j-th diagonal entry of A, for j = 1,2,...,d.
Therefore A;lﬂ(v;roj)z < 845, fori =1,2,...,nand j = 1,2,...,d. Fur-
thermore, from (3.3) we also have s5;; = n‘leZJT =n 1Y 7, zjzk. Thus for
i=1,2,....n

d d d n n d 2
T N2 Aj~ a o _ od” Zjk
RTINS S o A YD I
) . T; nr; . n T; . de
j=p+1 j=p+1 Jj=p+1 k=1 k=1 j=p+1

(3.4)
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14 Bolivar-Cime and Perez-Abreu

By Theorem 2.1 we have 7;/d* = ¢;/n as d — oo, for i = 1,2,...,p. Since
the entries of Z have uniformly bounded fourth moments in d, we have
that there exist K > 0 such that E(z?k) < K} for all j = 1,2,...,d,
k=1,2,....nandd=n+1,n+2,.... Let € > 0 and observe that

d 2 d 2
2- IE(E . iy ) (d-— )R *
Z ik j=p+1 “jk p

that is Z;'l:pﬂ d*azf-k £ 0asd— oco. Hence, it follows from (3.4) that

d
Z (v; 0)* 50 as d — 00, (3.5)
Jj=p+1

fori=1,2,...,p. Since V' OOV = I; we have Z;lzl(v;roj-)z =1, and thus
(3.5) implies
P
Z(v?oj)Q 51 as d —Moo, (3.6)

j=1
fori=1,2,...,p.
Finally, following the argument$dniSection 5.2.2 of Jung and Marron
(2009), we have that for i = 1,2, #™ p;

Angle(v;, £) =arccos z:(v;roj)2
j=1

Then from (3.6) it follews that
Angle(v;, Ey) = 0 as d — 00,

for if= 1,2,...,p. O

Remarks3.1. The result of Theorem 3.1 holds if we consider that the po-
pulation covariance matrix is as in Remark 2.1. The proof is similar to that
of Theorem 35.1.

4 The Gaussian case and some statistical eigen-inference

In this section we assume that the data matrix X comes from a sample of
multivariate Gaussian distribution N(0,%) where the matrix ¥ is a spiked
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PCA and Eigen-inference for a Spiked Covariance Model 15

covariance matrix under the assumption that the p largest eigenvalues have
same order of magnitude in d, with ¢; = -+ = ¢, = ¢ > 0 in (1.2). In
this case the matrix (70 of Theorem 2.1 follows a Wishart random matrix
distribution W(n, cIp).

We now use the asymptotic results in Section 2, in particular the joint
convergence in distribution of the nonzero sample eigenvalues, to consider
some inference problems for the population eigenvalues and to show that,
some of the classical statistics are also useful in the cases when d goesdto
infinity and n is fixed, and when d,n go to infinity and d > n.

We first point out three asymptotic results. The first one is a kind=of Cen-
tral Limit Theorem for the vector of the ratios of the sample andgpopulation
eigenvalues under our model and when d and n go to infinity successively.

Theorem 4.1. Under the same assumptions as in Theorem™2.1, suppose

cp=cp=---=cp=c>01n (1.2) and the columns ofX are»Gaussian. Let
§ = (%, A :—”)T and let o = (1, ..., pp) be the vectorof eigenvalues of a

standard p X p Gaussian matriz with density funetion

aP(p—1)/4 1 50
folor,.sp) = Wp(ﬂ)exp 3 Z%‘ H(@j —®i), Pp > >
2 =1 1<J
(4.1)
Then we have that
~ T
nt/? <T—1p) = as d — 0o,m — 00 (4.2)
T

where the limits are applied successively.

Proof. Without lostof generality we can assume ¢ = 1. Let L = n~1(¢q,. ..
Zp)T, where {1 >% # 3%, > 0 are the eigenvalues of the matrix ZPZ; with
distribution W(n,I,). By Proposition 2.1 we have 7/7 = L as d — oo
and by Corollary 13.3.2 in Anderson (2003) we have n'/2(L —1,)T % ¢ as
n —{oco, where the random vector ¢ has density function given by (4.1); see
Theorem 13.3.5 in Anderson (2003). Thus we have (4.2). O

The next two propositions are consequences of the joint convergence in
distribution of the nonzero sample eigenvalues given in Theorem 2.1, and
they are useful to study some inference problems in the context of data with
dimension greater than the sample size.

Proposition 4.1. Under the assumptions of Theorem 2.1 and considering
cg=cp=--=c¢c,=c>0in (1.2), let T = diag(71,72,...,7p) be the dia-
gonal matriz of the p largest sample eigenvalues and ¢ = diag(¢1, 0o, ..., {p),
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16 Bolivar-Cime and Perez-Abreu

where £1,0a,..., L, are the nonzero eigenvalues of a Wishart matriz with
distribution W(n, cIp). Then we have the following when n is fized:

(i) te(T) /7 = X3, /n as d— oo, fori=1,2,...,p.
(i) V = det(T)/[tx(T)/p]P 3 V = det(¢)/[tx(€)/plP; furthermore V is
asymptotically independent of tr(T)/d* as d — oo.
(iii) det(T)/7F = ( ?:1 Xg_ﬁ_l)/np as d — oo fori = 1,2,...,p, where
Xg_j_i_l are independent random variables with chi-square distribution
with n — j + 1 degrees of freedom, for j =1,2,...,p.

Proof. Using the continuity of the trace and determinant, from¢(the,joint
weak convergence of the eigenvalues in Theorem 2.1 and the assumption of
same asymptotic order of magnitude in d we have that for n fixed

tr(T) /73 = [te(T)/(cd®)][ed® /5] - tr(0)/eng (4.3)
o detT/d) Ly deilt/n) 4

[tr(T/d*)/p]P [tr(¢/n)/p]P
det(T) /7" = [det(T)/(cd®)P][cd” Ja;]? —% det(£)/(nc)?, (4.5)

as d — 0o. From Theorem 3.2.20 in Muirliead«(2005) we have that tr(¢)/cn ~
X2, /nas d — oo and det(¢)/[tr(¢) /p}? 1independent of tr(¢)/n. Thus, using
(4.3) and (4.4) we have (i) and (i)™t fellows from Theorem 3.2.15 in Muir-
head (2005) that det(€)/(nc)? s equal in distribution to ([T)_, X7 ;,,)/n?,
where Xg_j 41 for j = 1,2, 0.4 p, are independent random variables with

chi-square distribution with m— 7 + 1 degrees of freedom, thus from (4.5) we
have (iii). O

Proposition 4.2. Under the assumptions of Theorem 2.1 and considering
co=c=--=c=c>01in (1.2), let T = diag(71,72,...,7p) be the diago-
nal matrix of the p largest sample eigenvalues. Then we have the following:

(i) (npf2)Y?[tx(T) /p — 7] /7 = N(0,1) as d — oo, n — oo, where the
limits are applied successively, fori=1,2,...,p.

(it) Let V = det(T)/[tr(T)/p]P and p = 1 — (2p* + p + 2)/(6np), then
U=-npln(V) B X2 as d — oo, n — oo, where the limits are applied
successively and X2 is a chi-square r.v. withr = (p+2)(p—1)/2 degrees
of freedom.

Proof. It follows from Proposition 4.1(i) that

(@) 1/2 (tr(T)/p - Ti> _ ntr(T) /7 —np  w Xr%p —np (4.6)

2 T (2np)L/2 — (2np)1/2
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PCA and Eigen-inference for a Spiked Covariance Model 17

as d — 0o, where X,%p is a chi-square r.v. with np degrees of freedom. Since
Xgp is equal in distribution to Z?:1 Xp%j, where Xp%j for j=1,2,...,n are
independent r.v.’s with chi-square distribution with p degrees of freedom,
we have by the CLT that

Xr%p —np w
T N(0,1) (4.7)

as n — oo. Thus, from (4.6) and (4.7) we have (i). From Proposition 4.1(ii)
and Theorem 8.3.7 in Muirhead (2005) we obtain (ii). O

4.1 Hypothesis test for the p largest population eigenvalues

Let My be the maximum of the d — p smaller population eigenvalues and
suppose that we have evidence that the sequence { M }4enviis bounded by a
constant number M, that is 0 < My < M for all d > nfand.d*e N. Consider
the null hypothesis

Hy:7;/d* — ¢ forall i=1,2. .7 p, (4.8)

where a > 1 and ¢ > 0 are unspecified_ numbers. Under Hy we have a
population covariance matrix as in Remark 2.1, therefore all the results of
Section 2 are valid in this case.

In order to test the null hypothesis¥H, that the first p largest popula-
tion eigenvalues have the same, asymptotic order of magnitude and ¢; =
cp = -+ = ¢, = c > 0, welegan use the classical ellipticity statistic V=
det(T)/[tr(T)/p]?, see (Muirhead, 2005, pp. 336), where T' = diag(71, 72, . .., 7p)
is the diagonal matrix of thé p largest sample eigenvalues. The null hypo-
thesis (4.8) can beytested/in the following two situations:

e WHEN d —{co AND n IS FIXED. By Proposition 4.1(ii) V % V =
det(€)/[tx(¢)/p]P as d — oo, where £ = diag(ly, lo, ..., ¢p) and £y, Lo, . . .,
Upare the eigenvalues of a Wishart matrix with distribution W(n, clp,).
Tlietefore if V; is the observed value of V, a test of asymptotic signi-
ficance level j is to reject Hy if ‘70 < kg, where kg is the lower 1008%
point of the distribution of V. We expect that this rejection region
works very well, because if A is a p X p random matrix with distribu-
tion W(n, ¥) and if 7 is the observed value of n = det(A)/(tr(A)/p)?,
then the test that rejects Hy : ¥ = cl}, if n9 < kg is unbiased, see
(Muirhead, 2005, pp. 336). Explicit expressions for the density func-
tion of V' are given in Consul (1967) and Consul (1969), and tables of
percentage points of V for some values of p and various values of n
can be found in Nagarsenker and Pillai (1973).
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18 Bolivar-Cime and Perez-Abreu

e WHEN d,n — oo AND d > n. By Proposition 4.2(ii) the statistic R=
—npln(V) B X2, where X2 is a chi-square r.v. with r = (p+2)(p—1)/2
degrees of freedom. Thus, if Ry is the observed value of E, a test of
asymptotic significance level 3 is to reject Hy if Rg > ug, where ug is
the upper 1008% point of the chi-square distribution with r degrees
of freedom.

4.2 Confidence intervals for the p largest population eigenvalues

Under the hypothesis Hy given in (4.8) we have, by Proposition 2.1 and
Theorem 2.2, that the p largest sample eigenvalues increases at the_same
speed as their population counterpart, however this does not guatantee that
these sample eigenvalues are good approximation for their population coun-
terpart. We may be interested in a confidence interval for the population
eigenvalue 7;, for ¢ = 1,2,...,p. Again we have two sit@ations in which we
may address this problem:

e WHEN d — 0o AND n IS FIXED. From Proposition 4.1(i), for 0 < g < 1
and d is large enough

k
P( 5/2 o (1) g “ﬂ/2> ~1- B,
n

n T;

where kg9 and ug/, are the lower and upper 100(3/2)% point of the
chi-square distribution with np/degrees of freedom, respectively. There-
fore, a confidence interval with’ asymptotic confidence level 1 — 3 for
TgiS

[ntr(T) ntr(T )} ‘ (4.9)

ug2 | ko

e WHEN dyn — oo AND d > n. From Proposition 4.2(i), for 0 < 8 < 1
and d,n sufficiently large with d > n we have

where z3/5 is the upper 100(3/2)% point of the standard normal dis-
tribution. Thus, a confidence interval with asymptotic confidence level
1— g for 7; is

tr(T)/p tr(T) /p
1+ z5/9(2/(np)]1/27 1 — 25/2[2/(np)]1/2] (4.10)
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5 Simulations

In this section we present some simulation results to show the performance of
the hypothesis tests and the confidence intervals proposed in Section 4. For
the simulation study we consider d-multivariate Gaussian data with mean
zero and covariance matrix

Y =diag(ri,..., 7, 1,...,1),

where 7, = d* for ¢ = 1,2,...,p, and p = 2,4. We take o = 1.5,3, and
sample sizes n = 25,50, 100 for each value of a.. This is because w¢ want®to
assess the performance of the methodologies varying the order of‘'magnitude
of the largest eigenvalues and increasing the sample size. We take d = 200
and d = 1000 for each pair (a,n) to consider the case when,d > n and
d > n, respectively.

For each setting, M = 10000 replications of the data haye been obtained,
and for each replication the two hypothesis teSts, ofySection 4.1 have been
performed with significance level 5% and taking,the corresponding value
of p. In Table 1 are shown the empirical probabilities of the Type I error
(0 = P(reject Ho|Hp is true)) of the two_tests, given by

_ # <k}
Ql—yM

for the hypothesis test based lon the statistic 17, where kg is the lower 1008%
point of the distribution f V4 and

L #{Ro > ug}
02 = 7M

for the hypothesis test based on the statistic ﬁ, where ug is the upper
1008%point of the chi-square distribution with » = (p+2)(p—1)/2 degrees
of freedéms The values of kg were calculated using the expressions of the
distribution function of V' given in Consul (1967).

For the case p = 2 the values of p1 and py were exactly the same, this
is Because for this value of p the chi-square distribution X2 is a very good
approximation to the distribution of R, and therefore the two tests are equi-
valent. For the case p = 4 we observe that o7 is slightly smaller than 05,
and they tend to be similar as n increases. All the empirical probabilities of
Type I error are close and around 5% as expected, thus we conclude that
the two proposed tests perform very well and they can be used to test the
null hypothesis (4.8) for HDLSS data.
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20 Bolivar-Cime and Perez-Abreu

These simulation results also show the usefulness of the asymptotic setting
d,n — oo and d > n in the HDLSS context, since the results for this
asymptotic setting are very similar to that of d — oo and n is fixed, and the
hypothesis test based on R is the easiest to perform.

« n d p=2 p=4
01 02 01 02

25 200 0.0469 0.0491 0.0495
1000 0.0506 0.0488  0.0492
15 50 200 0.0494 0.0481 0.0483
1000 0.0508 0.0459 0.0461
100 200 0.0451 0.0470 0.0471
1000 0.0519 0.0487 0.0487
25 200 0.0482 0.0502 0.0510
1000 0.0466 0.0518 0.0526
3 50 200 0.0513 0.0491 7.0.0492
1000 0.0494 0.0488 0.0489
100 200 0.0460 0.0485. "0.0486

1000  0.0492 40.0542%,0.0543

Table 1 Empirical probabilities of Type I error of proposed hypothesis tests

200 “%079507 0.9509 0.9513 0.9514

25 12000/ 0.9486 0.9508 0.9510 0.9527

15 50 200 0.9504 0.9545 0.9484 0.9492
1000 0.9533 0.9548 0.9515 0.9518

100 200 0.9502 0.9506 0.9491 0.9493

1000 0.9534 0.9544 0.9516 0.9522

25 200 0.9509 0.9541 0.9516 0.9517

1000 0.9478 0.9520 0.9512 0.9523

3 50 200  0.9507 0.9540 0.9474 0.9478
1000  0.9512  0.9516 0.9512 0.9513

100 200 0.9524 0.9525 0.9511 0.9514

1000  0.9468 0.9488 0.9475 0.9470

Table 2 Empirical coverages of proposed confidence intervals

Similarly, for M = 10000 replications of the data the confidence intervals
(4.9) and (4.10) have been calculated with confidence level 95% and taking
the corresponding value of p. In Table 2 is shown the empirical coverage of
the two classes of intervals for each setting. C; and Cs denote the empirical

imsart-bjps ver. 2012/04/10 file: PCArevision.tex date: July 11, 2012



PCA and Eigen-inference for a Spiked Covariance Model 21

coverage of the confidence intervals (4.9) and (4.10), respectively.

We observe that C is always smaller than Cs. This is because the intervals
(4.10) are slightly wider than the intervals (4.9) and cover larger values. We
also see that all the empirical coverages are near to 95%. Therefore, we
conclude that these proposed intervals have good performance as confidence
intervals for the p largest eigenvalues under the null hypothesis (4.8), in both
asymptotic settings of the HDLSS context.
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