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Chapter 2

Non-Classical Convolution
of Measures

Given a probability measure � on R (with the Borel �-�eld B(R)), let b� denote
its Fourier transform b�(t) = RR eitx�(dx), t 2 R, and C�� its (classical) cumulant
transform C��(t) = ln b�(t), t 2 R.
Let �1 and �2 be two probability measures on R with Fourier transforms b�1

and b�2: The classical convolution of �1 and �2 is the probability measure �1�
�2 on R given by

�1 � �2(B) =
Z
R
�1(B � x)�2(dx) =

Z
R
�2(B � x)�1(dx), B 2 B(R): (2.1)

Therefore \�1 � �2(t) = b�1(t) b�2(t) for each t in R. In other words, if X1 and
X2 are real random variables with distributions �1 and �2, respectively, and
independent in the stochastic (tensor) sense, then

C��1��2(t) = C��1(t) + C
�
�2
(t) for each t in R: (2.2)

That is, the classical cumulant transform linearizes the classical convolution for
the stochastic or tensor independence.
There are analogous cumulant transforms that linearize each of the addi-

tive convolutions considered in Chapter 1 with respect to the �ve non-classical
independencies. They are transformations of the Cauchy type rather than the
Fourier type.
The goal of this chapter is to show a parallelism between classical and non-

classical convolutions from the analytic point of view. We will begin in Section
2.1 with a collection of results on the Herglotz and Pick-Nevanlinna theory of
analytic functions. In Section 2.2 and 2.3 we show the key role these functions
play in the study of the Cauchy and other transforms used in the characterization
of in�nite divisibility with respect to the non-classical independencies. Section
2.4 presents the analytic approach of non-classical additive convolutions while
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2 CHAPTER 2. NON-CLASSICAL CONVOLUTION OF MEASURES

Section 2.5 brie�y deals with the free multiplicative convolution and the S-
transform. Finally, Section 2.6 presents an introduction to divisibility with
respect to the non-classical independencies, and some �rst criteria for in�nite
divisibility of probability measures with compact support.
Throughout the chapter several examples are worked out, with special con-

sideration to the non-classical Gaussian distributions introduced in Chapter 1.

2.1 Herglotz or Pick functions

Let C+= fz 2 C : Im(z) > 0g and C�= fz 2 C : Im(z) < 0g : A Herglotz func-
tion is an analytic function H : C+ ! C+ [ R and by re�ection it is extended
to an analytic function on CnR: Such functions are also called Pick or Pick-
Nevanlinna functions. In this section we collect some properties as well as some
�rst examples of these functions.
There are several equivalent representations for Herglotz functions. The

canonical representation is as follows.

Theorem 1 H is a Herglotz function if and only if

H(z) =  +  z +

Z
R

�
1

t� z �
t

t2 + 1

�
�(dt); z 2 C�; (2.3)

where  2 R,  � 0 and � is a measure on R satisfyingZ
R

1

t2 + 1
�(dt) <1.

Moreover, the triplet (;  ; �) is uniquely determined by H, using

 = Re(H(i)),  = lim
y!1

H(iy)

iy
(2.4)

and the Stieltjes inversion formula

�((t0;t1]) =
1

�
lim
�!0+

lim
y!0+

Z t1+�

t0+�

Im(H(x+ iy))dx, t0 < t1: (2.5)

Remark 2 The measure � is usually called the spectral measure, but we do not
use that name in the present work. We rather call it the �-measure of H.

An alternative representation of a Herglotz function is the Nevanlinna rep-
resentation:

H(z) =  +  z +

Z
R

�
1 + tz

t� z

�
�(dt); (2.6)

with  and  as in (2.4) and where � is the �nite measure

�(u) = �((�1; u]) =
Z u

�1

1

t2 + 1
�(dt): (2.7)
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Elementary examples of Herglotz functions and their canonical representa-
tions are the following:
(i) H(z) = cz for c � 0: In this case  = 0,  = c and � = 0:
(ii) H(z) = �1=z; for which  =  = 0 and � = �0.
(iii) H(z) = ln(z); with the branch (��=2; 3�=2). In this case  =  = 0

and �(dt) = 1(�1;0)(t)dt:
(iv) H(z) =

p
z, where the square root is taken positive on the right half-

axis. The canonical representation is

H(z) =
1p
2
+

Z 0

�1
(
1

t� z �
t

t2 + 1
)

p
t

�
dt; z 2 C�:

The class of Herglotz functions is closed under addition and composition.
In particular, if H is a Herglotz function, ln(H(z)) and �1=H(z) are also Her-
glotz functions. Then, the representation (2.3) for ln(H(z)) trivially gives an
exponential representation for H: Since the imaginary part of ln(z) is uniformly
bounded, the �-measure of ln(H(z)) is absolutely continuous with respect to the
Lebesgue measure. More precisely,

H(z) = exp

�
c+

Z 1

�1

�
1

t� z �
t

1 + t2

�
�(t)dt

�
(2.8)

where c = log jH(i)j 2 R; � 2 L1
�
R; (1 + �2)�1d�

�
, with � the non-zero mea-

surable function

�(�) =
1

�
lim
"#0
Im (log (H (�+ i"))) =

1

�
lim
"#0
arg(H(�+ i")): (2.9)

The main feature of (2.8) is the absolute continuity of the �-measure.
For example the function H(z) = tan(z) is a Herglotz function having expo-

nential representation (2.8) with c = ln tanh(1) and �(t) = 1ftanh(t)<0g.
The choice of the representation of a Herglotz function depends on the con-

text of the problem under consideration. For example, (2.6) is essential in
Chapter 3 to obtain the Lévy-Khintchine representation of in�nitely divisible
distributions with respect to the di¤erent independencies. On the other hand,
the Herglotz exponential representation (2.8) links free probability to the seem-
ingly unrelated area of representation theory of symmetric groups. Although
we will not consider this latter direction, in Section 2.2.3 we compute the ex-
ponential representation of the Cauchy transform of the Gaussian distributions
for each of the independencies considered in Chapter 1.
Finally, another useful characterization of Herglotz functions is given in

terms of the so-called Pick-matrices as follows. As in the Bochner theorem
for Fourier transforms, the notion of positive de�niteness is used, although in a
di¤erent context.

Theorem 3 Let D be a domain in C+. Given a function H : D ! C the
following assertions are equivalent:
i) H can be extended to a Herglotz function to all C+:
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ii) For any n � 1 and z1; :::; zn in D the matrix"
H(zj)�H(zk)

zj � zk

#
j;k

is positive semi-de�nite.

2.2 The Cauchy transform

2.2.1 De�nition and properties

Given a �nite measure � on R, its Cauchy transform G� is de�ned as

G�(z) =

Z
R

1

z � t�(dt); z 2 CnR. (2.10)

The Cauchy and the Fourier transforms are related by the expression

G�(z) =

(
i
R 0
�1 e�itzb�(t)dt; Im(z) > 0

�i
R1
0
e�itzb�(t)dt; Im(z) < 0:

(2.11)

Writing z = x+ iy one easily obtains the following decomposition of G�(z)
in its real and imaginary parts:

G�(x+ iy) =

Z
R

x� t
(x� t)2 + y2�(dt) � i

Z
R

y

(x� t)2 + y2�(dt): (2.12)

Moreover, H�(z) = �G�(z) is a Herglotz function with representation (2.3)
with  = 0, � = � and

 =

Z
R

t

1 + t2
�(dt): (2.13)

From the above considerations we easily obtain the following properties.

Proposition 4 Let � be a �nite measure on R: Then
i) G�(C�) � C� and G�(z) = G�(z).

ii) jG�(z)j �
�(R)
jIm(z)j .

iii)

� Im(G�(z)) = Im(z)
Z
R

1

jz � tj2
�(dt)

and Im(z) ImG�(z) < 0.
iv) lim

y!1
y jG�(iy)j <1.

v) lim
y!1

iyG�(iy) = �(R): In particular, if � is a probability measure

lim
y!1

iyG�(iy) = 1.
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As a special case of the Stieltjes inversion formula (2.5), one can recover the
distribution � from the Cauchy transform G� as follows:

�((t0;t1]) = �
1

�
lim
�!0+

lim
y!0+

Z t1+�

t0+�

Im(G�(x+ iy))dx, t0 < t1. (2.14)

In particular, if � is absolutely continuous with respect to Lebesgue measure
with "density" f� then

f�(x) = �
1

�
lim
y!0+

ImG�(x+ iy). (2.15)

Thus, there is a one-to-one correspondence between �nite measures on R
and their Cauchy transforms. The following result characterizes the analytic
functions that are Cauchy transforms of probability measures. It is analogous
to the Bochner theorem for Fourier transforms. Let us introduce the notation
�� for the Herglotz region

�� = fz = x+ iy : y > 0; x < �yg, for � > 0: (2.16)

Proposition 5 Let G : C+ ! C� be an analytic function. The following
three statements are equivalent:
i) There exists a probability measure � on R such that G� = G in C+.
ii) For each � > 0

lim
jzj!1; z2��

zG(z) = 1:

iii) lim
y!+1

iyG(iy) = 1:

Proof. Equivalence between (i) and (iii) follows from Proposition 4(v) and
the representation (2.3). It is trivial that (iii) follows from (ii), since iy 2 ��
for each y > 0. It remains to prove that a Cauchy transform satis�es (ii).
Now observe that the function t2 � ((x � t)2 + y2)(�2 + 1) has a maximum at
t = (�2+1=�2)x, and one has the inequality jt=(z � t)j � j�+ ij =

p
�2 + 1 for

each t 2 R. Then, for each T > 0, z = x+ iy 2 �� and writing C =
p
�2 + 1

jzG�(z)� 1j =
����Z
R

t

z � t�(dt)
����

� C�(ft : jtj � Tg) +
Z
(�T;T )

���� t

z � t

�����(dt)
� C�(ft : jtj � Tg) + T

y
�((�T; T )):

Hence,
lim sup

jzj!1; z2��
jzG�(z)� 1j � C�(ft : jtj � Tg.
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The results follows since limT!1 �(ft : jtj � Tg) = 0.
The relation between weak convergence of probability measures and the

Cauchy transform is given by the following Lévy continuity type theorem.

Proposition 6 Let �1 and �2 be two probability measures on R and

d(�1; �2) = sup
���G�1(z)�G�2(z)�� ; Im(z) � 1

	
:

Then d is a distance which de�nes the weak topology of probability measures. In
other words, a sequence of probability measures f�ngn�1 on R converges weakly
to a probability measure � on R if and only if

lim
n!1

G�n(z) = G�(z) for each z; Im(z) � 1:

There are useful properties of the Cauchy transform when � is a symmetric
probability measure, i.e., �(A) = �(�A) 8A 2 B(R): Given a symmetric prob-
ability measure � on R, let �(2) be the probability measure in R+ induced by
the map t ! t2. More generally, for a probability measure � on R, the p�th
push�forward measure of �(p) of � is de�ned as

�(p)(B) =

Z
R
1B(jxjp)�(dx); B 2 B((0;1)):

For a symmetric measure we have the following properties of its Cauchy
transform. The �rst is an application of the general inversion formula (2.14).

Proposition 7 A Borel measure is symmetric if and only if its Cauchy trans-
form is an even function

Proof. Assume � is symmetric. Then

G�(�z) =
Z
R

1

�z � t�(dt) = �
Z
R

1

z + t
�(dt)

= �
Z
R

1

z � y�(�dy) = �
Z
R

1

z � y�(dy) = �G�(z):

Conversely, if G�(z) = �G�(�z) = �G�(�z), using (2.14), for t0 < t1

�((t0;t1]) = �
1

�
lim
�!0+

lim
y!0+

Z t1+�

t0+�

Im(G�(x+ iy))dx

= � 1
�
lim
�!0+

lim
y!0+

Z t1+�

t0+�

Im(�G�(�x� iy))dx

= � 1
�
lim

�0!0�
lim
y!0+

Z t1��0

t0��0
Im(G�(�x+ iy))dx

= � 1
�
lim

�0!0�
lim
y!0+

Z �t0+�0

�t1+�0
Im(G�(x+ iy))dx

= �([�t1; � t0));

showing the symmetry of �:
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Proposition 8 Let � be a symmetric probability measure � on R. Then

G�(z) = zG�(2)(z
2); z 2 C n R+:

Proof. Use the symmetry of � twice to obtain

G�(z) =

Z
R

1

z � t�(dt) =
Z
R+

1

z � t�(dt) +
Z
R+

1

z + t
�(dt)

= 2z

Z
R+

1

z2 � t2�(dt) = z

Z
R

1

z2 � t2�(dt)

= z

Z
R+

1

z2 � t�
(2)(dt) = zG�(2)(z

2):

Example 9 (Cauchy distribution) For � > 0, the Cauchy distribution c�
on R has density

f(x) =
1

�

�

�2 + x2
; �1 < x <1:

Its Fourier transform is easily computed as

bc�(x) = exp(�� jxj):
This distribution does not have moments of any order. It is important in non-
commutative probability as it will be seen throughout this work. The relation
(2.11) between Fourier and Cauchy transforms gives

Gc�(z) = �i
Z 0

�1
e�itz bc�(t)dt = �iZ 0

�1
e�itze��jtjdt

= �i
Z 0

�1
e(��iz)tdt =

1

z + �i
; z 2 C+:

2.2.2 Measures with compact support

There are several important distributions with compact support which arise nat-
urally in non-commutative probability, as explained in Chapter 1 and Appendix
A. In this section we include some general results for compactly supported prob-
ability measures.
If � has compact support, say [a; b]; for some �1 < a < b <1, the Cauchy

transform has the power series expansion

G�(z) = z�1 +
1X
k=1

mk(�)z
�k�1, jzj > r�, (2.17)

where mk(�) :=
R
R t

k�(dt) is the k-moment of �, k � 0 and r� := supfjtj : t 2
supp(�)g: For this reason G� is thought as a moment generation function.
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Likewise, it is possible to recognize from the behavior of its moments when
a distribution with all moments has bounded support. Speci�cally, a Borel
measure � on R with all moments mk(�); k � 1, has bounded support if and
only if there is a M > 0 such that

lim sup
k!1

2k
p
m2k �M: (2.18)

In other words, the moments do not grow faster than exponentially.
For a compactly supported probability measure there is a simple exponential

representation for its Cauchy transform.

Proposition 10 Let � be a probability measure with bounded support [a; b].
Then,

�G�(z) = exp
�
c+

Z 1

�1

�
1

t� z �
t

1 + t2

�
�(t)dt

�
; (2.19)

where the behavior of � outside the support is given by

�(t) =

�
0; if t < a
1; if t > b

Proof. Let t 62 [a; b]. Then

lim
"#0
(�G� (t+ i")) = �

Z
[a;b]

1

�� s�(ds) 2
�
R+; if t < a
R�; if t > b

If we apply equations (2.8) and (2.9) to the Herglotz function �G�, we obtain

�(t) =
1

�
lim
"#0
arg (�G� (t+ i")) =

1

�
arg

 
�
Z
[a;b]

1

t� s�(ds)
!
=

�
0; if t < a
1; if t > b

:

Example 11 (Discrete distribution)

If � =
nP
i=1

pi�xi is a discrete measure on A = fx1 < x2 < : : : < xng; for

some n � 1. Then its negative Cauchy transform

�G�(z) =
nX
i=1

�pi
z � xi

=

Pn
i=1 pi

Qn
j 6=i (xj � z)Qn

i=1 (z � xi)
=
P (z)

Q(z)
:

is actually holomorphic in CnA. Clearly, for all x 2 RnA, we have that

lim
"#0
(�G� (x+ i")) =

nX
i=1

�pi
x� xi

2 R:
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Therefore the argument (and hence �(x)) will depend only on the sign of the
last expression. If we look at the restriction of �G� to RnA, we can see that

lim
x!x�i

nX
i=1

�pi
x� xi

= �1:

By continuity, there exists yi 2 (xi; xi+1), such that �G�(yi) = 0, 1 � i � n�1.
If we write

nX
i=1

�pi
x� xi

=
�
Pn

i=1 pi
Qn
j 6=i (x� xj)Qn

i=1 (x� xi)
=
P (x)

Q(x)
:

and since degP = n � 1; then B = fy1; : : : ; yn�1g are all the roots of P .
Therefore, using the knowledge of the roots of P and Q we may compute the
sign of our expression. We obtain that for x 2 Rn(A [B),

sgn(�G�(x)) =
�

1; if x < x1 or x 2 (yi; xi+1),
�1; if x > xn or x 2 (xi; yi),

and hence

�(x) =

�
1; if x > xn or x 2 (xi; yi),
0; if x < x1 or x 2 (yi; xi+1).

Finally, when a probability measure � on R has all moments, we can expand
its Cauchy transform of � as a continued fraction as follows

G�(z) =

Z
R

1

z � t�(dt) =
1

z � �0 �
0

z � �1 �
1

z � �2 �
2
. . .

Here the families m = m(�) � 0 and �m = �m(�) 2 R are called Jacobi
parameters and are de�ned by the recursion

xPm(x) = Pm+1(x) + �mPm(x) + m�1Pm�1(x);

where the polynomials P�1(x) = 0; P0(x) = 1 and (Pm)m�0 is a sequence of
orthogonal polynomials with respect to �, that is,Z

R
Pm(x)Pn(x)�(dx) = 0 if m 6= n:

2.2.3 Examples

The Central Limit Theorems 4-6 in Chapter 1 found the moments of the Gaussian
distributions with respect to Boolean, free and monotone independencies. In this
section we compute the Cauchy transforms of the distributions with the corre-
sponding moments and we identify, via the Stieltjes inversion formula (2.15),
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the associated distributions: symmetric Bernoulli, semicircle and arcsine dis-
tribution. We also compute the Cauchy transform of the Marchenko-Pastur
distribution already mentioned at the end of Section 2.3. For all these distrib-
utions it is possible to �nd a closed form for their Cauchy transform. For the
classical Gaussian distribution there does not exists a closed form of its Cauchy
transform.

2.2.4.1 Symmetric Bernoulli Distribution

Let �� be the Symmetric Bernoulli distribution on f��; �g given by

�� =
1

2
(��� + ��):

Theorem 4 in Chapter 1 establishes that �� is the Gaussian distribution with
respect to Boolean independence. Simple calculations give

G�� (z) =

Z
R

1

z � t��(dt) =
1

2

�
1

z + �
+

1

z � �

�
=

z

z2 � �2

Moreover, by Proposition 10

�G�� (z) = exp
�
c+

Z 1

�1

�
1

t� z �
t

1 + t2

�
��� (t)dt

�
where ��� is given by

��� (t) = 1(�;1)(t):

2.2.4.2 Semicircle distribution

It was seen in Chapter 1 that the semicircle distribution is the limiting distribu-
tion in the free central limit theorem, playing the role the Gaussian distribution
does in classical probability. For this reason the semicircle distribution is some-
times called the free Gaussian.
This distribution appears in several problems related to free probability and

random matrices. The most important point is the fact that it is the asymp-
totic spectral distribution of Gaussian and more general ensembles of random
matrices, when the dimension goes to in�nite - as mentioned also in Chapter
1 and detailed in Chapter 6; a result that goes back to the pioneering work of
Wigner. For that reason, the semicircle distribution is also called the Wigner
distribution.
To compute the Cauchy transform and its density we start from the sequence

of moments found in the Central Limit Theorem with respect to free indepen-
dence (Theorem 5 in Chapter 1). That is, let � be a probability measures on

mk(�) =

�
0 if k is odd
Cn if k is even, k = 2n

(k � 1) (2.20)
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where Cn =
�
2n
n

�
=(n + 1) are the Catalan numbers. These moments satis�ed

the condition (2.18) and hence � has bounded support. Then the moments
generating expansion (2.17) exists and is given by

G�(z) =
1

z
+

1X
k=1

Ck
z2k+1

: (2.21)

Use now the useful recurrence equation for the Catalan numbers Ck =
Pk

j=1 Cj�1Ck�j
to obtain

G�(z) =
1

z
+
1

z
G�(z)G�(z):

Thus, G�(z) satis�es the quadratic equation

G�(z)
2 � zG�(z) + 1 = 0; z 2 C+ (2.22)

whose solution for G�(z) : C+ ! C� is

G�(z) =
z �

p
z2 � 4
2

; (2.23)

where the negative sign of the square root is taken, since (iii) in Proposition 5
has to be satis�ed.
Now, using the Stieltjes inversion formula (2.15), the semicircle distribution

w0;2 on (�2; 2) is found to have density

w0;2(x) =
1

2�

p
4� x2 � 1[�2;2](x): (2.24)

More generally, for m real and �2 > 0, the density of the semicircle distrib-
ution wm;� is given by

wm;�(x) =
1

2��2

p
4�2 � (x�m) � 1[m�2�;m+2�](x): (2.25)

This distribution has mean m and variance �2: Its Cauchy transform is

Gwm;� (z) =
2

r2
(z �

p
(z �m)2 � r2);

where r = 2� is the radius of the support.
Finally, for the semicircle distribution w0;� on (�2�; 2�); the negative of

its Cauchy transform has the exponential representation (2.19) with �w0;L(�)
computed from (2.8) as follows:

�w0;L(�) = lim"#0
arg

�
�2
�2

�
�+ i"�

q
(�+ i")

2 � �2
��

= 1(�2�;2�)(�) sin
�1
�
�

2�

�
+ 1(2�;1)(�):
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2.2.4.3. Arcsine distribution

It was also seen in Chapter 1 that the arcsine distribution is the limiting distrib-
ution in the central limit theorem with respect to monotone and anti-monotone
independence. More speci�cally, Theorem 6 in Chapter 1 says that the limiting
distribution in the Central Limit Theorem with respect monotone convolution
has moments given by

mk(�) =

�
0 if k is odd�
2n
n

�
if k is even, k = 2n.

:

This moment sequence satis�es condition (2.18) and hence its distribution has
bounded support. Let G be the Cauchy transform (2.23) and consider the
function H(z) = G(z)=z. Then

@

@z
H(z) =

�2
z2
p
z2 � 4

.

On the other hand, taking derivatives in (2.21)

@

@z
H(z) =

1X
k=0

@

@z
(
Ck
z2k+2

) =

1X
k=0

(
�(2k + 2)Ck

z2k+3
)

= �2
1X
k=0

�
2k
k

�
z2k+3

=
�2G�(z)

z2
;

gives

G�(z) =
1p

z2 � 4
: (2.26)

Using the Stieltjes inversion formula (2.15) we obtain the arcsine distribution
a0;2 with density

a0;2(x) =
1

�

1p
4� x2

� 1(�2;2)(x): (2.27)

In general, for any � > 0; let a0;� denote the arcsine distribution on (��; �)
with density

a0;�(x) =
1

�

1p
�2 � x2

� 1(��;�)(x):

In this case,

Ga0;� (z) =
1p

z2 � �2
and, by Proposition 10, �Ga0;� has the exponential representation (2.19) with

�a0;� (�) = lim"#0
arg

0@ �1q
(�+ i")

2 � �2

1A
=
1

2
1(��;�)(�) + 1(�;1)(�):
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2.2.4.4 Marchenko-Pastur distribution

This distribution was also already mentioned in Chapter 1. It plays a key role
in several areas. One of the most important comes from the fact that it is
the asymptotic spectral distribution of Wishart and more general ensembles of
sample covariance random matrices, when the dimension goes to in�nite - as
mentioned also in Chapter 1 and also explained in Chapter 5; a result that
goes back to the pioneering work of Marchenko and Pastur. It also plays in
free probability a role analogous to that of the Poisson distribution in classical
probability. For that reason, this distribution is also called the free Poisson
distribution.
This distribution is considered in more generality in Section 2.4.4. Here

we introduce a particular case arising as the square of a random variable with
a symmetric semicircle distribution. More speci�cally, if s has the semicircle
distribution w0;2 on (�2; 2); then s2 has the Marchenko-Pastur distribution
with density

f(x) =

p
x(4� x)
2�x

:

From Proposition 8 we then have that the Cauchy transform of �(2) can be
computed from

zGw(2)(z
2) =

z �
p
z2 � 4
2

;

that is

Gw(2)(z) =
1

2
�
p
z(z � 4)
2z

:

Moreover,

arg(�Gw(2)(z)) = arg(�2Gw(2)(z)) = arg
 p

z(z � 4)
z

� 1
!

and

lim
"#0
arg

 p
(x+ i") (x+ i"� 4)

x+ i"
� 1
!
= arg

 p
x(x� 4)
x

� 1
!

= arg

 
i
p
x(4� x)
x

� 1
!
:

Observing that i
p
x(4� x)
x

� 1
 =

vuut px(4� x)
x

!2
+ 12 =

r
4

x
;

we �nd

arg

 
i
p
x(4� x)
x

� 1
!
=
�

2
+ arcsin

r
x

4
:
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Hence �Gw(2) has the exponential representation (2.19) with

�(x) =

�
1

2
+
1

�
arcsin

r
x

4

�
1(0;4)(x) + 1(4;1)(x):

2.3 Transforms in non-classical independencies

2.3.1 Reciprocal of a Cauchy transform

The reciprocal of the Cauchy transform is an important tool in the study of
convolutions with respect to the non-classical independencies. In particular,
the composition of two reciprocal Cauchy transforms gives the convolution with
respect to monotone and anti-monotone independencies. It also plays a key
role in the study of additive convolutions with respect to free and Boolean
independencies. In this section we present its main properties.

De�nition 12 Let � be a �nite measure on R with Cauchy transform G�. We
de�ne the application F� : C+ ! C+ by

F� (z) =
1

G�(z)
; z 2 C+ :

We observe that F� is a Herglotz function and that there is a one-to-one
correspondence between �nite measures on R and the reciprocal of a Cauchy
transform. Moreover, a characterization of reciprocal Cauchy transforms is pos-
sible, similar to Proposition 5. Recall that �� denotes the Herglotz region
(2.16).

Proposition 13 Let F : C+ ! C+ be a Herglotz function. The following four
statements are equivalently:
i) There exists a �nite Borel measure � on R such that F� = F in C+.
ii) For each � > 0

lim
jzj!1;z2��

F (z)

z
= �(R):

iii) limy!1 F (iy)=iy = �(R). .
iv) There exist  2 R and a �nite Borel measure � on R such that

F (z) =  + �(R)z +
Z
R
(
1 + tz

t� z )�(dt), z 2 C
+:

Proof. The equivalences among (i), (ii) and (iii) follow from Proposition 5.
Since F : C+ ! C+ is a Herglotz function the representation (2.6) holds with
 = limy!1 F (iy)=iy = �(R): This proves the equivalence between (iii) and
(iv).
In particular, when � is a probability measure we obtain a very useful prop-

erty of F�.
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Corollary 14 For each probability measure � on R it holds that

Im(F�(z)) � Im(z)

with equality for all z 2 C+ if and only if � is a Dirac measure.

The fact that, inside the region ��, F�(z) behaves as z when z is large
allows to show that F� is univalent in a certain domain. For � and � positive
we consider the regions

��;� = fz = x+ iy : y > �; jxj < �yg: (2.28)

We say that F� has a right inverse F�1� in a domain � if F�(F�1� (z)) = z
for each z in �: This right inverse plays a key role in free probability and its
existence is guaranteed by the following result.

Lemma 15 Let � be a probability measure on R and let 0 < " < �: There exists
� > 0 such that
i) The function F� is univalent in ��;� :
ii) ���";�(1+") � F�(��;�)

Proof. By (ii) in Proposition 13 we can chose � large enough such that
jF�(z)� zj < " jzj for z 2 ��+";�(1�"). By continuity, the inequality holds
also for z 2 @��+";�(1�"). Let z0 2 ��;� ; Then for some �0 > � large enough,
the image of the boundary of fz 2 ��+";�(1�") : jzj < (2 + ")�0g is a curve
with winding number 1 around z0. By analyticity of F� � z0 and the argument
principle, F (z) = z0 has exactly one solution in the connected component of
CnF () which contains fz 2 ��;� : jzj < �0g. Since �0 can be chosen arbitrarily
large, F is univalent in ��;� . A similar argument shows that ���";�(1+") �
F�(��;�).
In summary we have the following useful result for the reciprocal of a Cauchy

transform.

Proposition 16 Let � be a probability measure on R. There exists a domain
� of the form � = [�>0��;�� such that F� has a right inverse F�1� de�ned in
�. Moreover

Im(F�1� (z)) � Im(z); z 2 � (2.29)

and for each � > 0

lim
jzj!1;z2��

F�1� (z)

z
= 1: (2.30)

Proof. The existence of the domain � = [�>0��;�� follows from the last
lemma. Inequality (2.29) is a consequence of Corollary 14, and (2.30) follows
from Proposition 13 (ii).
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2.3.2 Voiculescu transforms

Using F�1� we now introduce the Voiculescu transform in the domain � =
[�>0��;�� of Proposition 16. The key property of the Voiculescu transform
is that it linearizes the free additive convolution of Chapter 1 for measures with
compact support. We will come back to this point in the next section.

De�nition 17 Let � be a probability measure on R with reciprocal Cauchy
transform F�. The Voiculescu transform �� : �! C� is de�ned as

�� (z) = F�1� (z)� z z 2 �:

A probability measure on R is uniquely determined by its Voiculescu trans-
form. To see this, suppose � and �0 are probability measures on R, such that
�� = ��0 , on a region ��;� . It follows then that also F� = F�0 on some open
subset of C+, and hence (by analytic continuation), F� = F�0 on all of C+.
Consequently � and �0 have the same Cauchy transform, and by the Stieltjes
inversion formula (2.14), this means that � = �0.
A Bochner type characterization of the Voiculescu transform is as follows.

Proposition 18 Let � be an analytic function de�ned on a region ��;�, for
some positive numbers � and �. Then the following two assertions are equiva-
lent:
(i) There exists a probability measure � on R, such that �(z) = ��(z) for all

z in a domain ��;�0 , where �
0 � �.

(ii) There exists a number �0 greater than or equal to �, such that
(a) Im(�(z)) � 0 for all z in ��;�0 .
(b) �(z)=z ! 0, as jzj ! 1; z 2 ��;�0 .
(c) For any positive integer n and any points z1; : : : ; zn in ��;�0 , the n � n

matrix "
zj � zk

zj + �(zj)� zk � �(zk)

#
1�j;k�n

;

is positive semi-de�nite.

Proof. (i))(ii). Assume ��(z) = �(z) for all z in a domain ��;�0 with �
0 � �:

Proposition 16 ��(z) implies (a) and (b). By (a) and the de�nition of ��, there
is a Herglotz function F� such that F�1� (z) = ��(z) + z 2 C+, for all z 2 ��;�0 .
So let z1; : : : ; zn in ��;�0 . Then the matrix�

zj � zk
zj + �(zj)� zk � �(zk)

�
j;k

=

"
F�(F

�1
� (zj))� F�(F�1� (zk))

F�1� (zj)� F�1� (zk)

#
j;k

(2.31)

is positive semi-de�nite by Proposition 3.
It remains to prove that (ii) implies (i). We �rst observe that g(z) = �(z)+z

is analytic and satis�es g(z)=z ! 1, as jzj ! 1; z 2 ��;�0 . Therefore we can
proceed as in Lemma 15 to show that g(z) is univalent in ��;�00 , and g�1(z) 2 C+
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for some �00 > �0. Then the equation F (&) = F (z+�(z)) = z de�nes an analytic
function F , which, by (c), satis�es that the matrices�

zj � zk
zj + �(zj)� zk � �(zk)

�
j;k

=

�
F (&j)� F (&k)

&j � &k

�
j;k

are positive semi-de�nite for all &1; : : : ; &n 2 g�1(��;�00) � C+. Theorem 3
allows F to be extended to a Herglotz function. The fact that �(z)=z ! 0 is
equivalent to F (z)=z ! 1 and from Proposition 13, F = F� for a probability
measure � in R. Finally, F� is univalued for some ��;�000 , and F�(z + �(z)) =
z = F�(z + ��(z)), so �� = � in ��;�000 .
Similar to the Fourier transform, we have a Lévy type continuity theorem

for the Voiculescu transform.

Proposition 19 Let (�n) be a sequence of probability measures on R. Then
the following assertions are equivalent:

(a) The sequence (�n) converges weakly to a probability measure � on R.

(b) There exist positive numbers � and �, and a function �, such that all the
functions �, ��n are de�ned on ��;�, and such that

(b1) ��n(z)! �(z), as n!1, uniformly on compact subsets of ��;�,

(b2) sup
n2N

�����n(z)
z

���! 0, as jzj ! 1, z 2 ��;�.

(c) There exist positive numbers � and �, such that all the functions ��n are
de�ned on ��;�, and such that

(c1) limn!1 ��n(iy) exists for all y in [�;1[.

(c2) sup
n2N

�����n(iy)
y

���! 0, as y !1.

If the conditions (a),(b) and (c) are satis�ed, then � = �� on ��;�.

Proof. Assume that f�ng1n=1 converges in distribution to �. Then, it is not
di¢ cult to see from Proposition 13 that limy!1 F�n(z) = F�(z) uniformly on
compact subsets of C+ and

F�n(z) = z(1 + o(1)); F�(z) = z(1 + o(1)) as jzj ! 1; z 2 ��

uniformly on n. Then, it follows that there exist constants �; � > 0 such that the
Voiculescu transforms �� and ��n are well de�ned and have negative imaginary
part in ��;� : Moreover, ��n = o(z) uniformly in n as jzj ! 1; z 2 ��;� . The
family f��ng

1
n=1 is normal in ��;� . Thus, it is enough to prove that the limit
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of a convergent subsequence f��nj g
1
j=1 is in fact ��. Indeed, if z 2 ��;� one

has z + �(z) 2 C+ and

jF�(z + �(z))� zj =
���F�(z + �(z))� F�nj (z + ��nj (z))���

�
���F�(z + �(z))� F�(z + ��nj (z))���

+
���F�(z + ��nj (z))� F�nj (z + ��nj (z))��� .

Since F�nj converges to F� uniformly in a neighborhood of z + �(z); we have

lim
j!1

���F�(z + ��nj (z))� F�nj (z + ��nj (z))��� = 0.
Then z + �(z) = F�1(z) in ��;� and therefore � = ��:
Assume now that (ii) holds. From the �rst part of the proof it is enough to

prove the convergence of f�ng1n=1. We have F�1�n (z) = z+ ��n(z) = z(1 + o(1))
uniformly in n as jzj ! 1; z 2 ��;� . Then, in particular, iyG�n(iy)� 1 = o(1)
uniformly in n as y !1. The inequality

�Re(iyG�n(iy)� 1) =
Z
R

t2

y2 + t2
�n(dt) �

1

2
�n(ft : jtj � yg)

gives the weak convergence of f�ng1n=1.
Now we can show that the sum of two Voiculescu transforms is again a

Voiculescu transform. We rely on the compactly supported case which was
mentioned in Chapter 1.

Theorem 20 Let ��1 and ��2 be Voiculescu transforms of two probability mea-
sures �1 and �2 on R: Then, � = ��1 + ��2 is the Voiculescu transform of a
probability measure � in R.

Proof. We consider sequences of compactly supported probability measures
(�
(i)
n )n2N converging in distribution to �i, i = 1; 2. From the compactly sup-

ported case, there are probability measures (�n)n2N such that ��n = �
�
(1)
n
+

�
�
(2)
n
. By Proposition 19 (b) there is a domain ��;M where each �

�
(i)
n
! ��i

uniformly on compact subsets of ��;M . Hence (��(1)n
+ �

�
(2)
n
)! � uniformly on

compact subsets ��;M . Thus, by Proposition 19 (a) there exist a probability
measure � such that � = ��.

R-transform and the free cumulant transform

There are some variants of the Voiculescu transform that are useful when dealing
with free additive convolutions. One of them it the R�-transform de�ned by

R� (z) = ��(
1

z
) = F�1�

�
z�1
�
� 1
z

z�1 2 �: (2.32)
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We then have the following useful relation between the Cauchy transform and
the R��transform

G�(R�(z) +
1

z
) = z. (2.33)

Another variant is the free cumulant transform C�� given by

C�� (z) = z��(
1

z
) = zF�1�

�
z�1
�
� 1; z�1 2 �: (2.34)

This will be useful in Chapter 3 to describe the Lévy-Khintchine representation
in terms of triples, in analogy to the classical case.

2.3.3 The self-energy

For a probability measure � on R we de�ne its self-energy transform K� by

K�(z) = z � 1

G�(z)
= z � F�(z); z 2 C+: (2.35)

By Corollary 14 Im(F�(z)) � Im(z), and hence K� maps C+ into C� [ R.
The following characterization follows from the theory of Herglotz functions in
Section 2.1

Theorem 21 For any function K : C+ ! C� [R the following two statements
are equivalent:

(a) K = K� for some probability measure � on R.

(b) There exists a real constant  and a �nite measure � on R, such that

K(z) =  +

Z
R

1 + tz

z � t �(dt); z 2 C+: (2.36)

As for the Voiculescu transform ��, there is a variant of the self-energy K�

that we will use often, called the Boolean cumulant transform de�ned as

C]� (z) = zK�(1=z): (2.37)

2.3.4 Examples

In this subsection we compute several transforms for some of the distributions
in Examples 2.2.3.
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2.3.4.1 Symmetric Bernoulli Distribution (continuation)

We have seen in Example 2.2.3 that the symmetric Bernoulli distribution �� =
1
2 (��� + ��) has Cauchy transform G�� (z) = z=(z2 � �2). Then

F�� (z) =
z2 � �2

z
; (2.38)

K�(z) = z � z2 � �2
z

=
�2

z
(2.39)

and

C]� (z) = �2: (2.40)

2.3.4.2 Semicircle distribution (continuation)

We have seen in Example 2.2.3 that the semicircle distribution w0;2 with density
w0;2(x) =

1
2�

p
4� x2�1[�2;2](x) has Cauchy transform G�(z) = (z�

p
z2 � 4)=2:

Then

Fw0;2(z) =
1

Gw0;2(z)
=

2

z �
p
z2 � 4

, z 2 C+; (2.41)

and

F�1w0;2(z) = z + 1=z, z 2 C+:

Moreover, from the de�nition of the Voiculescu transform and (2.34) we easily
see that the Voiculescu and free cumulant transforms are given, respectively, by

�w0;2(z) = 1=z, z 2 C+ (2.42)

and

C�w0;2(z) = z2, z 2 C+: (2.43)

It is worthy to observe that �w0;2(z) is an analytic function on C
+.

More generally, for m 2 R and �2 > 0, the Cauchy transform of wm;� is
given by

Gwm;�
(z) =

2

r2
(z �

p
(z �m)2 � r2), z 2 C+;

while its free cumulants transform is given by

C�wm;�
(z) = mz +

r2z2

4
= mz + �2z2, z 2 C+ (2.44)

where r = 2� is the radius of the support.
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2.3.4.3 Arcsine distribution (continuation)

From Example 2.2.3 the arcsine distribution a0;2 has Cauchy transform G�(z) =
1=
p
z2 � 4. Then its reciprocal Cauchy transform is

Fa0;2(z) =
1

Ga0;2(z)
=
p
z2 � 4, z 2 C+ (2.45)

and
F�1a0;2(z) =

p
z2 + 4:

Then, similar to the case of the semicircle distribution, one can compute the
Voiculescu and the free cumulant transforms of a0;2 and they are given by

�a0;2(z) =
p
z2 + 4� z (2.46)

and
C�a0;2(z) =

p
4z2 + 1� 1: (2.47)

We observe that �a0;2(z) is not an analytic function on all C.
More generally, for s > 0, the Cauchy transform of the arcsine distribution

as on (�
p
s;
p
s) is given by

Gas (z) = (
p
z2 � s)�1: (2.48)

2.3.4.4 Marchenko-Pastur distribution (continuation)

The Marchenko-Pastur distribution mc of general parameter c > 0 is a com-
pactly supported distribution given by

mc(dx) =

�
(1� c)�0 + 1

2�x

p
(x� a)(b� x)1[a;b](x)dx; if 0 � c � 1

1
2�x

p
(x� a)(b� x)1[a;b](x)dx if c > 1

(2.49)
where a = (1�

p
c)2 and b = (1 +

p
c)2: Its Cauchy transform is given by

Gmc(z) =
1

2
�
p
(z � a)(z � b)

2z
+
1� c
2z

(2.50)

while its free cumulant transform is

C�mc
(z) =

cz

1� z : (2.51)

Indeed, let us compute the distribution mc starting from the free cumulant
transform (2.51). From (2.34) we have

1 +
cGmc(z)

1�Gmc
(z)

= zGmc(z)

and therefore
zGmc

(z)2 � (z � c+ 1)Gmc
(z) + 1 = 0:
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Solving for Gmc(z)

Gmc
(z) =

1

2z

�
z � c+

q
(z � (1�

p
c)2)(z � (1 +

p
c)2) + 1

�
=

1

2
+

p
(z � a)(z � b)

2z
+
1� c
2z

, z 6= 0:

For c � 1; G(1�c)�0(z) =
1�c
z , and for the absolutely continuos part fmc

(x)dx
we have

fmc
(x) = � 1

�
lim
y!+0

Im(
1

2
+

p
(z � a)(z � b)

2z
) =

1

�

p
x (4c� 8� x)

2x
x 2 [a; b]:

(2.52)
Then, from the inversion formula (2.14),

Gmc(dx) =

�
(1� c)�0 + 1

2�x

p
(x� a)(b� x)1[a;b](x)dx; 0 � c � 1

1
2�x

p
(x� a)(b� x) � 1[a;b](x)dx c > 1:

2.4 Additive Convolutions: Analytic approach

In this section we de�ne through analytic methods the non-classical additive
convolutions corresponding to each of the non-classical independencies. These
convolutions coincide with the additive convolutions de�ned in the algebraic
framework of Section 1.2.3 in Chapter 1 for the case of compactly supported
probability measures and in Appendix B for the general case of non necessarily
bounded probability measures. However, we will not provide proofs of these
correspondences. Throughout this monograph we will study non-classical con-
volutions by combining tools from both the analytical and algebraic point of
views. References for the proofs of this equivalence are presented in the Section
of Bibliographic Notes at the end of this chapter.

2.4.1 Free convolution

Let C��1 and C
�
�2
be the free cumulant transforms of �1 and �2 de�ned in the

domains ��1;�1 and ��2;�2 ; respectively. By (2.34) and Theorem 20 we know
that there exists a probability � on R such that C�� = C��1+C

�
�2
in ��1;�1\��2;�2 :

This measure is unique by the uniqueness of the Voiculescu transform. Then
the following de�nition makes sense.

De�nition 22 Let �1 and �2 be probability measures on R: The free convolution
of �1 and �2 is de�ned as the unique probability measure �1��2 on R such that

C��1��2(z) = C
�
�1
(z) + C��2(z); z�1 2 ��1;�1 \ ��2;�2 : (2.53)

In terms of the Voiculescu transform, condition (2.53) is equivalent to

��1��2(z) = ��1(z) + ��2(z) z 2 ��1;�1 \ ��2;�2 (2.54)
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and also to

R�1��2(z) = R�1 (z) +R�2(z) z�1 2 ��1;�1 \ ��2;�2 : (2.55)

Free convolution corresponds to the distribution of sums of free independent
random variables. More precisely, if X and Y are free independent random
variables in some non-commutative probability space (� ;A), then �X � �Y =
�X+Y :
As in the case of the classical convolution � it is easy to see that the free

convolution operation � is commutative and associative, since addition of func-
tions is. Also, if � is a probability measure on R and �x is a Dirac probability
measure, � � �x is the translation of � by x, that is � � �x(A) = �(A � x).
Therefore, �� �x = � � �x.
Furthermore, for a constant c 6= 0 the dilation of a probability measure � on

R by c is the probability measure Dc� on R such that Dc�(A) = �(c�1A). We
observe that the free cumulant transform behaves, with respect to the dilation
Dc, as the classical cumulant transform, that is C�Dc�

(z) = C�� (cz), for any
probability measure � on R and any constant c 6= 0.
On the other hand, some aspects of free convolution are di¤erent to what

is found in classical convolution. For example, if �1 and �2 are probability
measures on R with compact support, for the classical convolution supp(�1 �
�2) = supp(�1) + supp(�2), while if a; b; c are the maxima of the support of
�1; �2 and �1 � �2, respectively, then c = a+ b if �1(fag) + �2(fbg) � 1, while
c < a+ b if �1(fag) + �2(fbg) < 1.
Also, in contrast with classical convolution, the free convolution of two

atomic measures can be absolutely continuous. Example 2.4.4 shows that the
free convolution of the symmetric Bernoulli distribution � = 1

2 (��1 + �1) with
itself is the arcsine distribution a0;2. This shows furthermore that, contrary to
the classical convolution case, the operation � is not distributive with respect
to the convex sum of probability measures. Indeed, if � were distributive, with
� = 1

2 (��1 + �1); we would have

�� � = �� 1
2
(��1 + �1) =

1

2
(�� ��1) +

1

2
(�� �1)

=
1

2
(
1

2
(��1 + �1)� ��1) +

1

2
(
1

2
(��1 + �1)� �1)

=
1

4
��2 +

1

2
�0 +

1

4
�2;

which is a contradiction since

1

4
��2 +

1

2
�0 +

1

4
�2 6= a0;2

2.4.2 Boolean convolution

Recall from Section 2.3.3 that the self-energy is given by K�(z) = z�F�(z); z 2
C+:
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De�nition 23 The Boolean convolution of two probability measures �1 and �2
on R is de�ned as the unique probability measure �1 ] �2 on R such that

K�1]�2(z) = K�1(z)
+K�2(z); z 2 C+: (2.56)

In terms of the Boolean cumulant transform (2.40), this is equivalent to say that

C]
�1]�2

(z) = C]
�1
(z) + C]

�2
(z); z�1 2 C+: (2.57)

The Boolean convolution is associative and commutative, i.e. (�1]�2)]�3 =
�1 ] (�2 ] �3) for all probability measures �1; �2; �3.
Boolean convolution corresponds to the distribution of the sum of Boolean

independent random variables. More precisely, let X;Y be Boolean independent
random variables in some non-commutative probability space (� ;A) then

�X ] �Y = �X+Y : (2.58)

Di¤erent to the free and classical cases, for the Boolean convolution a Dirac
mass does not shift the measure, as shown by the following example. This
may be explained by the fact that scalars are not well behaved under Boolean
independence.

Example 24 Let � = 1
2��1 +

1
2�1. Then � ] �1 6= � � �1.

G�(z) =
1

2
(
1

z � 1 +
1

z + 1
) =

z

z2 � 1 : (2.59)

from where

F�(z) =
z2 � 1
z

: (2.60)

Hence

K�(z) = z � z2 � 1
z

=
1

z
:

Since F�1(z) = z � 1 and K�1(z) = �1, we have K�]�1(z) =
1
z � 1 =

1�z
z .

Since � � �1 = 1
2�0 +

1
2�2,

F���1(z) =
1

2
(
1

z
+

1

z � 2) =
z + 1

(z)(z � 1)

2.4.3 Monotone convolution

De�nition 25 The monotone convolution of two probability measures �1 and
�2 on R is de�ned as the unique probability measure �1 . �2 on R such that

F�1.�2(z) = F�1(F�2(z)) z 2 C+:
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By the uniqueness of the reciprocal Cauchy transform F�, monotone con-
volution is well de�ned. Moreover, since composition of functions is associative,
then the monotone convolution is associative too. That is, (�1 . �2) . �3 =
�1 . (�2 . �3) for all probability measures �1; �2; �3. It is not, however, commu-
tative, i.e. in general �1 . �2 6= �2 . �1 as Example 26 below shows.
Monotone convolution corresponds to the sum of monotone independent ran-

dom variables. Namely, ifX and Y are monotone independent non-commutative
random variables in some non-commutative probability space (� ;A) then �X .
�Y = �X+Y :

Example 26 Let �1 = a0;2 and �2 = �2. Then �1 . �2 6= �2 . �1. Indeed, on
one hand, from (2.45) the reciprocal of the Cauchy transform of the arcsine law
is F�1(z) =

p
z2 � 4: On the other hand, it is easily seen that F�2(z) = z � 2:

Then
F�1.�2(z) =

p
(z � 2)2 � 4 =

p
z2 � 4z

and
F�2.�1(z) =

p
(z � 2)2 � 4 =

p
z2 � 4� 2:

Since the reciprocal Cauchy transforms F�1.�2 and F�2.�1 do not coincide, �1 .
�2 6= �2 . �1.

2.4.4 Examples

2.4.4.1 Free convolution of the symmetric Bernoulli distribution: Arc-
sine distribution

The free convolution of two atomic measure can be absolutely continuous.

Proposition 27 Let � be the symmetric Bernoulli distribution � = 1
2 (��1+�1):

Then �� � is the arcsine distribution a0;2 on (�2; 2).

Proof. We have seen in Example 2.2.3 that G�(z) = z=(z2 � 1). From (2.33)
and writing L�(z) = R�(z) +

1
z we have G�(L�(z)) = z and therefore

(L�(z))
2 � (L�(z))

z
= 1:

Solving for L�(z) we have the two solutions

L�(z) =
1�

p
1 + 4z2

2z
:

Then the R-transform of � is

R�(z) =

p
1 + 4z2 � 1

2z

and computing R��� we have

1

z
+R���(z) =

1

z
+ 2R�(z) =

p
1 + 4z2

z
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and p
1 + 4(G���(z))2

G���(z)
= z:

Therefore

G���(z) =
1p

z2 � 4
; z 2 C+; (2.61)

which according to Example 2.2.3 is the Cauchy transform of the arcsine distri-
bution on (�2; 2):

2.4.4.2 Boolean convolution of the symmetric Bernoulli distribution

Let ��1 and ��2 be two symmetric Bernoulli distributions with parameters �1
and �2. Then ��1 ] ��2 = ��1+�2 . Indeed, from (2.39) K�i(z) =

�i
z and then

K��1]��2 (z) =
�1 + �2

z
:

More generally we have

Proposition 28 ��1 ] � � � ] ��n = ��1+���+�n .

2.4.4.3 semicircle distribution (continuation)

From Example 2.2.3 the free cumulant transform of the semicircle distribution
wm;� with zero mean and variance �2 is given by

C�wm;�
(z) = mz + �2z2, z 2 C: (2.62)

Several important consequences follow from this fact, which resembles the fact
that the sum of independent classical Gaussian distribution has the Gaussian
distribution with the sum of the means and variances.

Proposition 29 Let wm1;�1 ; :::; wmn;�n be semicircle distributions with means
m1;:::;mn and variances �21; :::; �

2
n; respectively: Then wm;� = wm1;�1 � � � � �

wmn;�n has the semicircle distribution with mean m1 + � � � +mn and variance
�21 + � � �+ �2n:

Proof. Using (2.62) we have

C�wm;�
(z) = C�wm1;�1

(z) + � � �+ C�wmn;�n
(z) =

= (�21z
2 +m1z) + � � �+ (�2nz2 +mnz)

= (�21 + � � �+ �2n)z2 + (m1 + � � �+mn)z

from which the proposition follows by the uniqueness of the free cumulant trans-
form.
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2.4.4.4 Arcsine distribution (continuation)

Let �1 = a0;�1 and �2 = a0;�2 . Then �1 . �2 = a
0;
p
�21+�

2
2

. Indeed, from (2.45)

the reciprocal Cauchy transform of the arcsine law with parameter �i is given
by F�i(z) =

p
z2 � �2i : Then,

F�1.�2 =

r
(
q
z2 � �22)2 � �21 =

q
z2 � (�22 + �21)

More generally the following results is easily proved.

Proposition 30 Let a0;�i ; i = 1; :::n be symmetric arcsine distributions on
(��i; �i), i = 1; :::; n: Then a0;�1 . � � � . a0;�n has the semicircle distribution
a
0;
p
�21+���+�2n

:

2.4.4.5 Free Poisson distribution (continuation)

From the free cumulant transform (2.51) we easily see that the free convolution
of Marchenko-Pastur distributions is again a Marchenko-Pastur distribution.
More speci�cally,

Proposition 31 Let mc1;; :::; mcn be Marchenko-Pastur distributions with pa-
rameters c1;:::; cn respectively. Then mc = mc1 � � � ��mcn has the Marchenko-
Pastur distribution with parameter c1 + � � �+ cn:

2.5 Free multiplicative convolutions: Analytic
approach

2.5.1 The S-transform

The free product � of two random variables was considered in Chapter 1. In
this section we present the main elements of the analytic approach to the free
product of probability measures. In this context, it is useful to consider another
analytic tool called the S-transform: We brie�y indicate the main results of the
subject without proofs.
For a probability measure � on R de�ne de moment generating function

	� : CnR! C as

	�(z) =

Z
R

zx

1� zx�(dx) = z�1G�(z
�1)� 1; z 2 CnR: (2.63)

Using Proposition 8 one can easily see that if � is a symmetric probability
measure 	�(z) = 	�2(z2); z 2 CnR+.
On the other hand, if � has compact support with moments mn(�), n � 1;

we obtain the power series expansion

	�(z) =
1X
n=1

mn(�)z
n: (2.64)
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When m1(�) 6= 0, the inverse ��(z) of 	�(z) exists and is unique as a formal
power series in z: In this case, the S-transform is de�ned as

S�(z) = ��(z)
1 + z

z
: (2.65)

Since S�(z) is obtained from the Cauchy transform G� and the inverse ��(z) is
unique, then there is a one-to-one correspondence between non-zero mean prob-
ability measures with compact support and the corresponding S-transforms.
When m1(�) = 0; the main problem is that 	�(z) does not have a unique

inverse. Indeed, if � 6= �0 has zero mean, then m2(�) > 0 and the series (2.64)
starts with m2(�)z

2. This means that 	�(z) cannot be invertible by a power
series in z but in

p
z. Then there are two inverses corresponding to the branches

of
p
z. In other words, there are two power series � and e� in

p
z that satisfy

	�(��(z)) = z:
On the other hand, for probability measures with unbounded support on

R+ and such that �(f0g) < 1; the function 	�(z) has a unique inverse ��(z)
in the left-half plane iC+ and 	�(iC+) is a region contained in the circle with
diameter (�(f0g)� 1; 0). In this case the S-transform of � is de�ned also as in
(2.65): It satis�es z = C�� (zS�(z)) for su¢ ciently small z 2 	�(iC+).
The de�nition of S-transform can be extended to symmetric probability

measures � on R as follows. Let H = fz 2 C�; jRe(z)j < jIm(z)jg and eH =
fz 2 C+; jRe(z)j < Im(z)g. When �(f0g) < 1, the transform 	� has a
unique inverse on H, �� : 	�(H) ! H and a unique inverse on eH, e�� :

	�( eH)! eH: In this case there are two S-transforms for � given by
S�(z) = ��(z)

1 + z

z
and eS�(z) = e��(z)1 + zz (2.66)

and these are such that

S2�(z) =
1 + z

z
S�(2)(z) and eS2�(z) = 1 + z

z
S�(2)(z) (2.67)

for z in 	�(H) and 	�( eH), respectively. Moreover the following result holds.
Lemma 32 Assume that � is a probability measure on R+ or symmetric on R.
For some su¢ ciently small " > 0, we have a region D" that includes f�it; 0 <
t < "g such that

z = C�� (zS�(z)) (2.68)

for z 2 D".

2.5.2 Free multiplicative convolutions via the S-transform

We now show how to compute the multiplicative convolution of two probability
measures on R+ using the S-transform.
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Proposition 33 Let �1 and �2 be probability measures on R+ with �i 6= �0,
i = 1; 2: Then �1� �2 6= �0 and

S�1��2(z) = S�1(z)S�2(z)

in that component of the common domain which contains (�"; 0) for small " > 0:
Moreover, (�1� �2)(f0g) = maxf�1(f0g); �2(f0g)g:

Multiplicative convolution is closed under weak convergence. More precisely,

Proposition 34 Let f�ng
1
n=1 and f�ng

1
n=1 be sequences of probability measures

on R+ converging to probability measures � and � on R+, respectively, in the
weak* topology and such that � 6= �0 6= �. Then, the sequence f�n � �ng1n=1
converges to �� � in the weak* topology.

On the other hand, the free multiplicative convolution �1��2 of a probability
measure �1 supported on R+ with a symmetric probability measure �2 on R
can be computed via the S-transform as follows

S�1��2(z) = S�1(z)S�2(z): (2.69)

Theorem 35 Let � and � be probability measures on R such that � is symmet-
ric, � 2 M+ and � 6= �0 6= �: Let S� and eS� be the two S-transforms of �.
Then

S���(z) = S�(z)S�(z) and eS���(z) = eS�(z)S�(z) (2.70)

are the two S-transforms of the symmetric probability measure �� �, where the
functions in (2.70) are considered in the common domain which contains (�"; 0)
for small " > 0:

The key in proving the above theorem is the following lemma, which is a
result of independent interest.

Lemma 36 Let � and � be probability measures on R such that � is symmetric,
� 2M+ and � 6= �0 6= �: Then

�1 � �
(2)
2 � �1 = (�1 � �2)(2): (2.71)

Free additive powers of a probability measure � on R+ may also be described
by the S-transform in the following way

S��t(z) =
1

t
S�(z=t); (2.72)

while the S transform of a dilation is given by

SDt(�)(z) =
1

t
S�(z): (2.73)

Then we can deduce the following important equality,

(�� �)�t = Dt(�
�t � ��t) t > 1: (2.74)
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The fact that the free powers ��t, t > 1 exist is proved as follows:We �rst prove
that for � with support on the positive real line � we have that

��
�
(1� 1

t
)�0 +

1

t
�t

�
= (1� 1

t
)�0 +

1

t
��t:

Since the LHS is a well de�ned probability measure then the RHS is also a
probability measure. Moreover, by the second part of Proposition 33 � ��
(1� 1

t )�0 +
1
t �t
�
has an atom of size at least 1 � t at 0 and then ��t is a

probability measure.
Let � = (1� 1

t )�0 +
1
t�

�t then G�(z) = t�1
tz +

1
tG��t(z), from where

	�(z) = 1=zG�(1=z)� 1

=
1

z

�
t� 1
t(1=z)

+
1

t
G��t(1=z)

�
� 1

=
t� 1
t

+
1

tz
G��t(1=z)� 1

= (
1

t

�
zG��t(z)� 1

�
=
1

t
	��t(z):

This implies that ��(z) = ���t(tz) and hence

S�(z) =
1 + z

z
���t(tz) =

1 + z

1 + tz
tS��t(tz)

=
1 + z

1 + tz
S�(z) = S�(z)S�(z)

where � = (1� 1
t )�0 +

1
t �t, as desired.

2.5.3 Examples

The S-transform of the Gaussian distributions associated to the four non-classical
independencies can be straightforwardly computed from previous considera-
tions. We leave the details to the readers. For the Wigner measure w0;a with
zero mean and variance a

Sw0;a(z) =

r
1

az
(2.75)

and for "its square", the Marchenko-Pastur distribution mc with parameter
c > 0

Smc
(z) =

1

z + c
: (2.76)

For the arcsine distribution (�
p
s;
p
s)

Sas(z) =

r
z + 2

sz
; (2.77)
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while for the positive arcsine distribution on (0; s)

a+s (dx) =
1

�

1p
x(s� x)

1(0;s)(x)dx; (2.78)

its S-transform is

Sa+s (z) =
z + 2

s(z + 1)
: (2.79)

2.5.4 A symmetric beta distribution

We end the section with an example of the multiplicative convolution of the
arcsine distribution with the Marchenko-Pastur distribution. More speci�cally,
we are interested in identifying the distribution �s = as �m1.
Using (2.77) and (2.76) in (2.70) we have that S�s(z) = Sac(z)Sm1(z), i.e.

S�s(z) =
1

z + 1

r
z + 2

sz
:

Then, from (2.66)

zS�s(z) = �as(z);

	as(zS�s(z)) = 	as(�as(z)) = z:

This means by equation (2.68) that

C��s(z) = 	as(z): (2.80)

We will prove that �s has the symmetric beta distribution SBs(3=2; 1=2) on
(�2

p
s; 2
p
s) with density

g(x) =
1

2�
p
s
jxj�1=2 (2

p
s� jxj)1=2; jxj < 2

p
s: (2.81)

First, the Cauchy transform of �s is given by

G�s(z) =
�1p
2s

q
1�

p
z�2(z2 � 4s): (2.82)

Indeed, using (2.80), (2.63) and (2.48), we have that �s is such that

G�s

�
z2p
z2 � s

�
= z�1:

Making the change of variable r = z2=
p
z2 � s; we observe that r 2 C+ when

z 2 C+ and that r and z satisfy

z4 � z2r2 + r2s = 0:
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Solving for z2, we �nd z2 =
�
r2 �

p
r2(r2 � 4s)

�
=2 and hence

z = �

s
r2 �

p
r2(r2 � 4s)
2

:

Then, the potential candidates for G�s are

p
2

�
q
z2 �

p
z2(z2 � 4s)

:

Since, by Proposition 4, G�s must be such thatG�s : C+ ! C� and jzjG�s(z)!
1 when jzj ! 1, we deduce that

�G�s(z) =
p
2q

z2 +
p
z2(z2 � 4s)

:

Then, multiplying and dividing by
�p

z2 � (z2(z2 � 4s))1=2
�
,

�G�s(z) =
p
2
q
z2 �

p
z2(z2 � 4s)p

z4 � z2(z2 � 4s)

=

p
2
q
z2 �

p
z2(z2 � 4s)

p
4sz2

=
1p
2s

q
1�

p
z�2(z2 � 4s):

Next, we use the inversion formula (2.15) to show that the density of G�s is
given by (2.81). We notice that there is an imaginary part when jxj < 2

p
s and

x 6= 0: Thus, we are looking for b < 0 such thatq
1�

p
x�2(x2 � 4s) = a+ ib:

That is,

1� i
p
x�2(4s� x2) = a2 � b2 + 2iab;p
x�2(4s� x2) = �2ab

if and only if
x�2(4s� x2) = 4a2b2 = 4b4 + 4b2:

Then, solving for b2 in the equation

b4 + b2 � 1
4
x�2(4s� x2) = 0
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we obtain

b2 =
�1�

p
1 + x�2(4s� x2)

2
:

Since b2 is real and nonnegative, we have

b2 =
1

2
jxj�1 (

p
4s� jxj)

and therefore

b = �
r
1

2
jxj�1 (

p
4s� jxj);

from where we obtain the result.

2.6 Divisibility for convolutions in the 5 univer-
sal independencies

The analytic approach to in�nite divisibility is the subject of Chapter 3. How-
ever, in this section we present a brief introduction and some simple criteria for
in�nite divisibility with respect to the additive convolutions for the �ve inde-
pendencies. These conditions are for distributions determined by moments and
are based on properties of the cumulants introduced in Chapter 1, as well as a
few other parameters of the distributions.
Although the condition of the existence of moments seems restrictive these

conditions are useful, since contrary to the case of classical in�nite divisibility
some of the most important compactly supported distributions are in�nitely
divisible with respect to non-classical convolutions.

2.6.1 De�nition and �rst examples

Let ~ denote, generically, any of the �ve convolutions �;�;];B and C associ-
ated to classical, free, Boolean, monotone and anti-monotone independencies,
respectively. We write ~ 2 f�;�;];B;Cg. A probability measure � on R is n-
divisible with respect to the convolution ~ if there exists a probability measure
�n on R such that

� = �n ~ �n ~ � � �~ �n| {z }
n times

.

In the case of the commutative convolutions �;� and ]; this is equivalent to
saying that there exists a probability measure �n such that

C~� (z) = C~�1(z) + :::+ C
~
�n
(z)

for z in a suitable domain of de�nition of C~� .
Similar to the de�nition of in�nite divisibility with respect to classical con-

volution, it is said that a probability measure � on R is in�nitely divisible with
respect to the convolution ~ if for every positive integer n, � is n-divisible.
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The Gaussian distribution for each of the �ve universal independence is in-
�nitely divisible with respect to the associated convolution. Indeed, it is well
known that the classical Gaussian distribution is in�nitely divisible with respect
to the classical convolution. Proposition 29 gives the in�nite divisibility of the
semicircle distribution with respect to the free convolution �. Likewise, Propo-
sition 30 gives the in�nite divisibility of the arcsine distribution with respect
to the monotone B and anti-monotone C convolutions. Finally, the in�nite
divisibility of the symmetric Bernoulli distribution with respect to Boolean con-
volution ] is given by Proposition 28, but also from the fact that any probability
measure on R is in�nitely divisible with respect to the Boolean convolution, as
easily seen as follows.

Proposition 37 Let � be a probability measure on R. Then � is in�nitely
divisible with respect to the Boolean convolution ].

Proof. Given �, from Theorem 21 there is a �nite measure � on R and a real
constant , such that

K�(z) =  +

Z
R

1 + tz

z � t �(dt); z 2 C+:

For n in N, let �n be the probability measure on R such that

K�n(z) = n�1 + n�1
Z
R

1 + tz

z � t �(dt); z 2 C+:

Then for any z in C+

K�n ] � � � ]n| {z }
n t im e s

(z) =
nX
j=1

K�n(z) = nK�n(z) = K�(z):

By uniqueness of the self-energy and the Cauchy transforms, this means that
�n ] � � � ] �n = �; which completes the proof.

2.6.2 Kurtosis and n-divisibility

The kurtosis of a probability distribution is a widely used quantity in statistics
and gives information about the shape of a given distribution. Here we derive a
simple necessary conditions for n-divisibility with respect to the classical, free,
monotone and anti-monotone additive convolutions in terms of the kurtosis.
We use the �rst fourth cumulants with respect to these convolutions, as de�ned
in Chapter 1.
The classical kurtosis of a probability measure � with �nite fourth moment

is de�ned as

Kurt(�) =
c4(�)

(c2(�))2
=

em4(�)

(em2(�))2
� 3;
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where c2(�) and c4(�) are the second and fourth classical cumulants, and em2(�)
and em4(�) the second and fourth moments around the mean. It is always true
that Kurt(�) � �2.
The kurtosis of the Gaussian distributions with respect to the �ve universal

independencies are easily computed. For the classical Gaussian the kurtosis is
zero. For the semicircle distribution w0;�; Kurt(w0;�) = �1 while for the arc-
sine distribution a0;�; Kurt(a0;�) = �1:5. Finally, for the symmetric Bernoulli
distribution its kurtosis is �2:

Proposition 38 Let � be a probability measure on R with �nite fourth moment.
If � is n-divisible in the classical sense then Kurt(�) � � 2

n .

Proof. Suppose � is n-divisible. Let �n be such that �n � � � � � �n| {z }
n times

= �; by

linearity of the cumulants we can see that

Kurt(�n) =
1
nc4(�)

( 1nc2(�))
2
= n

c4(�)

(c2(�))2
= nKurt(�)

So Kurt(�) = 1
nKurt(�n) > �

2
n , where we used the fact that Kurt � �2:

The free kurtosis is de�ned similarly using the free cumulants instead of the
classical cumulants. That is, the free kurtosis of a probability measure � is
de�ned as

Kurt�(�) =
�4(�)

(�2(�))2
=

em4(�)

(em2(�))2
� 2 = Kurt(�) + 1

where �2(�) and �4(�) are the second and fourth free cumulants. Notice that
Kurt�(�) � �1:
Using similar arguments as in Proposition 38, we obtain a su¢ cient condition

for free n-divisibility.

Proposition 39 Let � be a probability measure on R with �nite fourth moment.
If � is in�nitely divisible in the free sense then Kurt�(�) � �1=n:

Proof. Let � be n-divisible in the free sense and �n be such that

�n � � � �� �n| {z }
n times

= �:

Since Kurt�(�n) = nKurt�(�) and Kurt�(�n) � �1, we get the result.
As a consequence of Proposition 27 the arcsine distribution a0;2 is 2-divisible

with respect to �. However, Proposition 39 shows that it is not 3-divisible with
respect to �, since Kurt�(a0;2) = Kurt(a0;2) + 1 = �:5.
The monotone kurtosis of a zero-mean distribution � is de�ned as

KurtB(�) =
2m4(�)� 3m2(�)

2

2(m2(�))2
= Kurt(�) + 1:5:
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In general, the monotone kurtosis is then de�ned as

KurtB(�) =
r4(�)

(r2(�))2
:

where r2(�) and r4(�) are the second and fourth monotone cumulants. The
following result gives a necessary condition in terms of kurtosis for a measure
with zero-mean to be n-divisible with respect to monotone convolution. It is
proved similarly to the classical and free cases above.

Proposition 40 Let � be a probability measure on R with zero-mean and �nite
fourth moment. If � is n-divisible with respect to monotone convolution then
KurtB(�) � � 1

2n ::

Using similar ideas we de�ne, for a probability measure � on R with zero-
mean and fourth moment, the Boolean kurtosis as

Kurt](�) =
h4(�)

(h2(�))2
= Kurt�(�) + 1 = Kurt(�) + 2: (2.83)

We might expect to obtain a similar criterion as above for Boolean in�nite
divisibility, but since any measure is in�nitely divisible with respect to Boolean
convolution, this would only lead to the fact that kurtosis is greater than �2.

2.6.3 In�nite divisibility and cumulants

For distributions having compact support or being determined by moments,
working with cumulants turns out to be very useful to rule out measures which
are not in�nitely divisible.
The main criteria is the conditionally positive de�niteness of cumulants for

in�nitely divisible measures, similar to the classical case. Let f�NgN>0 be a
sequence of measures and, as in Chapter 1, denote by cn; �n; rn; hn the corre-
sponding sequence of classical, free, Boolean and monotone cumulants and by
mn the moments.

Lemma 41 The following statements are equivalent.
(1) For each n > 1 the following limit exists:

lim
N!1

Nmn(�N ):

(2) For each n > 1 the following limit exists:

lim
N!1

Ncn(�N ):

(3) For each n > 1 the following limit exists:

lim
N!1

Nkn(�N ):
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(4) For each n > 1 the following limit exists:

lim
N!1

Nrn(�N ):

(5) For each n > 1 the following limit exists:

lim
N!1

Nhn(�N ):

Moreover, if the limits exists they are all equal.

Proof. Let us prove that (2) implies (1). The other implications are similar
from the corresponding formulas relating cumulants with moments in Chapter
1. By the moment cumulant formula we have

lim
N!1

Nmn(�N ) = lim
N!1

N
X

�2P(n)

c�(�N ) (2.84)

= lim
N!1

Ncn(�N ) (2.85)

where the last equality follows since by assumption (2), all partitions � with
more than one block tend to zero.
Recall that a sequence fangn� is conditionally positive de�nite if for every

n � 1 and �i 2 C; i = 1; :::; n
nX

i;j=1

�i�jai+j � 0:

Theorem 42 Let ~ 2 f�;�;];B;Cg be any of the additive convolutions. Let �
be a probability measure on R determined by moments and ~ in�nitely divisible.
Then the sequence of cumulants with respect to the convolution ~ is conditionally
positive de�nite.

Proof. Let �N be the N -component of M; i.e. �N = �~1=N . Then, for every
N; we have that cn(�) = Ncn(�N ). By the last lemma we have

cn(�N ) = lim
N!1

Nmn(�N )

and then
kX

n;m=1

�n�m�n+m = lim
N!1

N
kX

n;m=1

�n�mmm+n(�n)

= lim
N!1

N

kX
n;m=1

�n�m

Z
R
xm+n(�n)

= lim
N!1

N

Z
R
(
kX

n=1

�nx
n) � (

kX
m=1

�mx
m)(�n)

� 0:
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2.7 Additional Comments

The Herglotz exponential representation (2.8) links free probability to the seem-
ingly unrelated area of representation theory of symmetric groups. More specif-
ically, the irreducible representations of symmetric groups are in one-to-one cor-
respondence with Young diagrams, which in turn, admit a unique Herglotz ex-
ponential representation, and hence correspond to a probability measure. Then
the limiting shape of a typical diagram obtained by adding boxes according to
the Plancherell measure on the symmetric group corresponds to the semicircle
law. Some other quite standard shapes of Young diagrams such as the square
or the horizontal line, are mapped, respectively, to the Gaussian distributions
for Boolean and monotone independencies, namely, the symmetric Bernoulli
distribution and the arcsine law. Furthermore, the statistics of operations on
representations, such as outer products and restrictions, can be explained in
terms of free operations on probability measures, such as free convolutions and
free compressions. The interested reader is referred to the following works: The
limiting shape of the Young diagrams was established by Kerov and Vershik
[KV77]. Its relation to the semicircle law was later found by Kerov in [Ke93];
see also [Ke00], [KV81]. Biane [Bi98] proved that the structure behind this
correspondence is much richer, by showing the relations between operations on
representation theory and operations in free probability.

2.8 Bibliographic Notes

The material in Herglotz and Pick-Nevanlinna functions in Section 2.1 is mainly
a collection of results taken from the books by Akhiezer [Ak65] and Donoghue
[Do74]. The canonical representation of a Pick function is essentially a con-
sequence of Cauchy´s integral formula. Its proof and importance in classical
in�nite divisibility are given in the monograph by Bondesson [Bo92]. For the
exponential representation (2.8) we refer to the book by Teschl [Te02].
Section 2.2 on the Cauchy transform is a collection of several results available

in the literature and most of them follows from the fact that a Cauchy transform
is a Pick function; see also the books by Hiai and Petz [HP00] and Hora and
Obata [HO07]. The negative of a Cauchy transform is sometimes called the
Borel transform in Theory of Operators (e.g.[Te02]) or the Stieltjes transform.
The latter is extensively used in the study of the asymptotic analysis of the
spectrum of random matrices; see for example the book by Bai and Silverstein
[BS10].
The classical convolution of measures and its role in classical in�nite divis-

ibility is systematically presented in the book by Sato [Sa99]. The analytic
approach to free convolution was �rst initiated by Voiculescu [Vo86] in the case
of probability measures with compact support and by Maassen [Ma92] for dis-
tributions with �nite variance. The material in Sections 2.3 and 2.4 on analytic
transforms for possibly unbounded distributions, are mainly based in the sem-
inal paper by Bercovici and Voiculescu [BV93] in the case of free convolutions,
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Speicher and Woroudi [SW97] in the Boolean case and Franz and Muraki [FM05]
in the monotone case. In some cases we have presented additional details for
the convenience of the reader. See also [BNT06], [HP00].
The combinatorial approach to non-classical convolutions is not considered

in this work, apart from the material already presented in Chapter 1. For a
comprehensive combinatorial treatment of free convolutions of measures with
compact support we refer to the book by Nica and Speicher [NS06] where the
free cumulates are extensively studied.
The S-transform for probability measures on R+ was also introduced by

Voiculescu [Vo87] and systematically studied by Bercovici and Voiculescu [BV93]:
Proposition 33 collects Corollaries 6.6 and 6.7 and Lemma 6.9 in [BV93]. The
S-transform for probability measures with bounded support and zero mean was
considered by Raj Rao and Speicher [SRR07] and the case of unbounded support
by Arizmendi and Pérez-Abreu [APA09].
The symmetric beta distribution obtained as the multiplicative convolution

as�m1 in Example 2.5.4 is an uncommon distribution with an explicit Cauchy
transform. This example is due to Arizmendi et al. [ABNPA10]. A generaliza-
tion was obtained by Arizmendi and Hasebe [AH12] who found a whole class
of distributions with explicit Cauchy transforms, which includes the symmetric
beta distribution.
The book by Steutel and Van Harn [SV03] contains some su¢ cient conditions

for classical in�nite divisibility based on the �rst four cumulants. The relevance
of kurtosis in in�nite divisibility is considered in Arizmendi and Pérez-Abreu
[APA10]. The conditionally positive de�niteness of classical cumulants is part
of the folklore in the literature. The free case is considered in Nica and Speicher
[NS06] and the monotone case is due to Hasebe and Saigo [HS11].
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