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Two transformations A1 and A2 of Lévy measures on Rd based on the arcsine density
are studied and their relation to general Upsilon transformations is considered. The
domains of definition of A1 and A2 are determined and it is shown that they have the
same range. The class of infinitely divisible distributions on Rd with Lévy measures
being in the common range is called the class A and any distribution in the class
A is expressed as the law of a stochastic integral

∫ 1

0
cos(2−1πt)dXt with respect to

a Lévy process {Xt}. This new class includes as a proper subclass the Jurek class
of distributions. It is shown that generalized type G distributions are the image of
distributions in the class A under a mapping defined by an appropriate stochastic
integral. A2 is identified as an Upsilon transformation, while A1 is shown to be not.

Keywords: infinitely divisible distribution; arcsine density; Lévy measure; class A;
generalized type G distribution; general Upsilon transformation

1. Introduction

Let I(Rd) denote the class of all infinitely divisible distributions on Rd. For

µ ∈ I(Rd), we use the Lévy-Khintchine representation of its characteristic function

µ̂(z) given by

µ̂(z) = exp

{
− 1

2
〈Σz,z〉+ i〈γ, z〉

+

∫
Rd

(
ei〈x,z〉− 1− i〈x.z〉

1 + |x|2

)
ν(dx)

}
, z ∈ Rd,

where Σ is a symmetric nonnegative-definite d×d matrix, γ ∈ Rd, and ν is a measure

on Rd (called the Lévy measure) satisfying ν({0}) = 0 and
∫

Rd(1 ∧ |x|2)ν(dx) < ∞.

The triplet (Σ, ν, γ) is called the Lévy-Khintchine triplet of µ ∈ I(Rd). Let ML(Rd)
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acknowledges the hospitality and financial support during his stay
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denote the class of Lévy measures of µ ∈ I(Rd). The class of ν ∈ ML(Rd) satisfying∫
Rd(1 ∧ |x|)ν(dx) < ∞ is denoted by M1

L(Rd).

Let

(1.1) a(x; s) = π−1(s− x2)−1/21(−s1/2,s1/2)(x),

which is the density of the symmetric arcsine law with parameter s > 0. Here

1(−s1/2,s1/2)(x) is the indicator of the interval (−s1/2, s1/2). In [1], a symmetric distri-

bution such that its Lévy measure has a density ` of the form

`(x) =

∫
R+

a(x; s)ρ(ds), x ∈ R,

with a measure ρ on (0,∞) satisfying
∫

(0,∞)
(1 ∧ x)ρ(dx) < ∞ is called a type A

distribution on R. Let Z be a standard normal random variable and V a positive

infinitely divisible random variable independent of Z. The distribution of the one-

dimensional random variable V 1/2Z is infinitely divisible and is called of type G. It

is shown in [1] that an infinitely divisible distribution µ̃ on R is of type G if and only

if there exists a type A distribution µ on R which gives a stochastic integral mapping

representation

(1.2) µ̃ = L
(∫ 1

0

(− log t)1/2dX
(µ)
t

)
.

Here and in what follows, L means “the law of” and {X(µ)
t } means a Lévy process on

Rd whose distribution at time 1 is µ ∈ I(Rd), (d = 1 in (1.2)).

In this paper, we define and study a class of infinitely divisible distributions on

Rd, called the class A and denoted by A(Rd). A distribution in A(Rd) is called a

distribution of class A in this paper. When d = 1 and µ ∈ A(R) is symmetric, µ is a

type A distribution in [1]. The organization of the paper is the following.

Section 2 introduces the arcsine transformation A1 of Lévy measures on Rd based

on (1.1) and considers its domain and range. It is shown that the domain of A1 is

M1
L(Rd). We prove thatA1 is a one-to-one mapping. It is shown that the range R(A1)

contains as a proper subclass the class of Lévy measures of distributions in the Jurek

class U(Rd) studied in [5], [8]. The class U(Rd) includes several known classes of mul-

tivariate distributions characterized by the radial part of their Lévy measures, such as

the Goldie-Steutel-Bondesson class B(Rd), the class of selfdecomposable distributions

L(Rd) and the Thorin class T (Rd), see [1]. Recently, other bigger classes than the

Jurek class have been discussed in the study of extension of selfdecomposability, see

[6] and [13].
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Section 3 deals with the class A(Rd) whose elements are defined as infinitely

divisible distributions on Rdwith Lévy measures ∈ R(A1). Some probabilistic inter-

pretations of A(Rd) are given and the relation to the class G(Rd) of generalized type G

distributions on Rd introduced in [8] is studied. It is shown that A(Rd) = Φcos(I(Rd)),

where Φcos is the stochastic integral mapping

(1.3) Φcos(µ) = L
(∫ 1

0

cos(2−1πt)dX
(µ)
t

)
, µ ∈ I(Rd).

It is also shown that the class MG
L(Rd) is the image of the class MB

L (Rd) ∩M1
L(Rd)

under A1, where MG
L(Rd) and MB

L (Rd) are the classes of Lévy measures of distribu-

tions in G(Rd) and B(Rd), respectively. In addition, the class G(Rd) is described as

the image of A(Rd) under the stochastic integral mapping (1.2), d ≥ 1, including the

multivariate and non-symmetric cases. In order to prove these facts, a modification

A2 of the transformation A1 with the property R(A2) = R(A1) is introduced and

utilized effectively. It is shown that A2 is an Upsilon transformation in the sense of

[3]. This is in contrast to the fact that A1 is not an Upsilon transformation as it is not

commuting with a specific Upsilon transformation, which is different from other cases

considered so far. Finally, Section 4 contains examples of A1 and A2 transformations

of Lévy measures where the modified Bessel function K0 plays an important role.

2. Arcsine transformation A1 on Rd

2.1. Definition and domain. Besides the arcsine density (1.1), we consider the

one-sided arcsine density

a1(r; s) = 2π−1(s− r2)−1/21(0,s1/2)(r)

with parameter s > 0. Then we consider the following arcsine transformation A1 of

measures on Rd.

Definition 2.1. Let ν be a measure on Rd. Define the arcsine transformation A1 of

ν by

(2.1) A1(ν)(B) =

∫
Rd\{0}

ν(dx)

∫ ∞

0

a1(r; |x|)1B

(
r

x

|x|

)
dr, B ∈ B(Rd),

for ν ∈ D(A1), where the domain D(A1) is the class of measures ν on Rd such that

ν({0}) = 0 and the right-hand side of (2.1) belongs to ML(Rd) as B runs in B(Rd).

The range is R(A1) = {A1(ν) : ν ∈ D(A1)}.
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Proposition 2.2. D(A1) = M1
L(Rd).

Proof. Suppose that ν ∈ D(A1). Write ν̃ = A1(ν). Then

(2.2)

∫
Rd

(1 ∧ |x|2)ν̃(dx) = c

∫
Rd

ν(dx)

∫ |x|1/2

0

(|x| − r2)−1/2(1 ∧ r2)dr

with c = 2π1/2. Changing variables r = |x|1/2u and using
∫

(1 ∧ |x|2)ν̃(dx) < ∞, we

see that

c

∫
Rd

(1 ∧ |x|)ν(dx)

∫ 1

0

(1− u2)−1/2u2du < ∞.

Hence ν ∈ M1
L(Rd). This shows D(A1) ⊂ M1

L(Rd).

Next suppose that ν ∈ M1
L(Rd). Let ν̃(B) denote the right-hand side of (2.1).

Then ν̃ is a measure on Rd with ν̃({0}) = 0 and (2.2) holds. Hence∫
Rd

(1 ∧ |x|2)ν̃(dx) ≤ const

∫
Rd

(1 ∧ |x|)ν(dx) < ∞.

This shows that ν ∈ D(A1). Thus M1
L(Rd) ⊂ D(A1). �

2.2. One-to-one property. We next show that the arcsine transformation A1 is

one-to-one. Our proof is different from usual proofs of the one-to-one property by the

use of Laplace transform.

Let us prepare a lemma. For a measure ρ on (0,∞), define a measure σ(ρ) on

(0,∞) by

(2.3) σ(ρ)(du) =

(∫
(u,∞)

π−1/2(s− u)−1/2ρ(ds)

)
du.

This is fractional integral of order 1/2.

Lemma 2.3. Let ρ be a measure on (0,∞) satisfying

(2.4) ρ((b,∞)) < ∞ for all b > 0.

Then

(2.5) σ(σ(ρ))(du) = ρ((u,∞)) du,

which implies that ρ is determined by σ(ρ) under the condition (2.4).

Proof. Using Fubini’s theorem, notice that∫ ∞

u

π−1/2(s− u)−1/2 σ(ρ)(ds)

= π−1

∫ ∞

u

(s− u)−1/2ds

∫
(s,∞)

(v − s)−1/2ρ(dv)
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= π−1

∫
(u,∞)

ρ(dv)

∫ v

u

(s− u)−1/2(v − s)−1/2ds = ρ((u,∞)),

because∫ v

u

(s− u)−1/2(v − s)−1/2ds =

∫ 1

0

s−1/2(1− s)−1/2ds = B(1/2, 1/2) = π,

where B(·, ·) is the Beta function. Hence (2.5) is true. �

Theorem 2.4. The transformation A1 is one-to-one.

Proof. Suppose that ν, ν ′ ∈ M1
L(Rd) and A1(ν) = A1(ν

′). Let (λ, νξ) and (λ′, ν ′ξ) be

polar decompositions (radial decompositions) of ν and ν ′, respectively, as in Proposi-

tion 3.1 of [13]. That is, λ is a measure on the unit sphere S = {ξ ∈ Rd : |ξ| = 1} with

0 ≤ λ(S) ≤ ∞ and νξ, ξ ∈ S, are measures on (0,∞) such that νξ(E) is measurable

in ξ for each E ∈ B((0,∞)), 0 < νξ((0,∞)) ≤ ∞, and

ν(B) =

∫
S
λ(dξ)

∫
(0,∞)

1B(uξ)νξ(du), B ∈ B(Rd);

λ′ and ν ′ξ have similar properties with respect to ν ′. It follows from Definition 2.1

that

A1(ν)(B) =

∫
Rd\{0}

ν(dx)

∫ |x|1/2

0

2π−1(|x| − r2)−1/21B

(
r

x

|x|

)
dr

=

∫
S
λ(dξ)

∫
(0,∞)

νξ(du)

∫ u1/2

0

2π−1(u− r2)−1/21B(rξ)dr

=

∫
S
λ(dξ)

∫ ∞

0

1B(rξ)dr

∫
(r2,∞)

2π−1(u− r2)−1/2νξ(du)

and

A1(ν
′)(B) =

∫
S
λ′(dξ)

∫ ∞

0

1B(rξ)dr

∫
(r2,∞)

2π−1(u− r2)−1/2ν ′ξ(du).

These give polar decompositions of A1(ν) = A1(ν
′). Hence, by Proposition 3.1 of

[13], there is a measurable function c(ξ) satisfying 0 < c(ξ) < ∞ such that λ′(dξ) =

c(ξ)λ(dξ) and, for λ-a. e. ξ,(∫
(r2,∞)

(u− r2)−1/2ν ′ξ(du)

)
dr =

(
c(ξ)−1

∫
(r2,∞)

(u− r2)−1/2νξ(du)

)
dr.

Using a new variable v = r2, we see that(∫
(v,∞)

(u− v)−1/2ν ′ξ(du)

)
dv =

(
c(ξ)−1

∫
(v,∞)

(u− v)−1/2νξ(du)

)
dv.
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Since νξ and ν ′ξ satisfy (2.4) for λ-a. e. ξ, we obtain νξ = c(ξ)−1ν ′ξ for λ-a. e. ξ from

Lemma 2.3. It follows that ν = ν ′. �

2.3. Range. Let us show some necessary conditions for ν̃ to belong to the range of

A1.

Proposition 2.5. If ν̃ is in R(A1) and not zero measure, then ν̃ has a radial de-

composition (λ, `ξ(r)dr) having the following properties:

(1) `ξ(r) is measurable in (ξ, r) and lower semi-continuous in r ∈ (0,∞);

(2) there is bξ ∈ (0,∞] such that `ξ(r) > 0 for r < bξ and, if bξ < ∞, then `ξ(r) = 0

for r ≥ bξ;

(3) lim inf
r↓0

`ξ(r) > 0.

Proof. Let ν̃ = A1(ν) with ν ∈ M1
L(Rd) and (λ, νξ) a polar decomposition of ν.

Then, the proof of Theorem 2.4 shows that ν̃ ∈ ML(Rd) with radial decomposition

(λ, `(r)dr) where

`(r) = 2π−1

∫
(r2,∞)

(u− r2)−1/2νξ(du).

Then our assertion is proved in the same way as Proposition 2.13 of [13]. �

2.4. How big is R(A1)? Several well-known and well studied classes of multivari-

ate infinitely divisible distributions are the following. The Jurek class, the class of

selfdecomposable distributions, the Goldie-Steutel-Bondesson class, the Thorin class

and the class of generalized type G distributions. They are characterized only by

the radial component of their Lévy measures and Σ and γ in the Lévy-Khintchine

triplet are irrelevant. Among them, the Jurek class is the biggest. Recently, some

classes bigger than the Jurek class have been discussed in the study of extension of

selfdecomposability (see e.g. [6] and [13]). Then a natural question is how big R(A1)

is. Let MU
L(Rd) be the class of Lévy measures of distributions in the Jurek class.

The radial component νξ of ν ∈ MU
L(Rd) is characterized as νξ(dr) = `ξ(r)dr with

`ξ(r) being measurable in (ξ, r) and decreasing and right-continuous in r > 0. We

will show below that R(A1) is strictly bigger than MU
L(Rd).

Theorem 2.6. MU
L(Rd) $ R(A1).
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Lemma 2.7. Let ρ be a σ-finite measure on (0,∞). Then, for α > −1 and b > 0,

the measure σ(ρ) in (2.3) satisfies

(2.6)

∫
(b,∞)

uασ(ρ)(du) ≤ C1

∫
(b,∞)

sα+1/2ρ(ds)

and

(2.7)

∫
(0,b]

uασ(ρ)(du) ≤ C2

(∫
(0,b]

sα+1/2ρ(ds) +

∫
(b,∞)

s−1/2ρ(ds)

)
,

where C1 and C2 are constants independent of ρ.

Proof. Let c = π−1/2. We have∫
(b,∞)

uασ(ρ)(du) = c

∫
(b,∞)

ρ(ds)

∫ s

b

uα(s− u)−1/2du

by Fubini’s theorem, and∫ s

b

uα(s− u)−1/2du = sα+1/2

∫ 1

b/s

vα(1− v)−1/2dv ∼ sα+1/2B(α + 1, 1/2), s →∞.

Hence (2.6) holds. We have∫
(0,b]

uασ(ρ)(du) = c

∫
(0,b]

ρ(ds)

∫ s

0

uα(s−u)−1/2du+ c

∫
(b,∞)

ρ(ds)

∫ b

0

uα(s−u)−1/2du.

Notice that ∫ s

0

uα(s− u)−1/2du = sα+1/2B(α + 1, 1/2)

and ∫ b

0

uα(s− u)−1/2du = s−1/2

∫ b

0

uα(1− u/s)−1/2du

≤ s−1/2

∫ b

0

uα(1− u/b)−1/2du = s−1/2bα+1B(α + 1, 1/2), s > b.

Thus (2.7) holds. �

Proof of Theorem 2.6. Let ν̃ ∈ MU
L(Rd) and c =

∫
Rd(1 ∧ |x|2)ν̃(dx). Then ν̃ has a

polar decomposition (λ, `ξ(r)dr) mentioned above. Further, we may and do assume

that λ is a probability measure and
∫∞

0
(1 ∧ r2)`ξ(r)dr = c for all ξ (see the proof of

Proposition 3.1 of [13], letting f(x) = 1 ∧ |x|2). Let ρξ be a measure on (0,∞) such

that ρξ((r
2,∞)) = `ξ(r) for r > 0 and let ηξ = σ(ρξ). The proof of Lemma 2.3 shows

that

ρξ((u,∞)) =

∫
(u,∞)

π−1/2(s− u)−1/2ηξ(ds).
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Hence we have, for B ∈ B(Rd),

ν̃(B) =

∫
S
λ(dξ)

∫ ∞

0

1B(rξ)dr

∫
(r2,∞)

π−1/2(s− r2)−1/2ηξ(ds).

We claim that

(2.8)

∫
S
λ(dξ)

∫ ∞

0

(1 ∧ u)ηξ(du) < ∞.

This will ensure that ν̃ = A1(ν) for ν ∈ D(A1) that has polar decomposition

(λ, 2−1π1/2ηξ(dr)). First, notice that

c =
1

2

∫ 1

0

u1/2ρξ((u,∞))du +
1

2

∫ ∞

1

u−1/2ρξ((u,∞))du

≥ 1

3
ρξ((1,∞)) +

1

2

∫ ∞

1

u−1/2ρξ((u,∞))du.

Then, use (2.6) with α = 0 to obtain∫
(1,∞)

ηξ(du) ≤ C1

∫
(1,∞)

s1/2ρξ(ds)

= C1ρξ((1,∞)) +
C1

2

∫ ∞

1

s−1/2ρξ((s,∞))ds ≤ 3cC1.

Similarly, using (2.7) with α = 1,∫
(0,1]

u ηξ(du) ≤ C2

(∫
(0,1]

s3/2ρξ(ds) +

∫
(1,∞)

s−1/2ρξ(ds)

)
≤ C2

(
3

2

∫ 1

0

s1/2ρξ((s, 1])ds +

∫
(1,∞)

s1/2ρξ(ds)

)
≤ 5cC2.

Hence (2.8) is true. It follows that MU
L(Rd) ⊂ R(A1).

To see the inclusion is strict, consider η ∈ R(A1) defined by

η(B) =

∫
S
λ(dξ)

∫ 1

0

1B(rξ)2π−1(1− r2)−1/2dr.

Then η 6∈ MU
L(Rd), since (1− r2)−1/2 is strictly increasing on (0, 1). �

3. Distributions of class A

3.1. Definition and representation by another arcsine transformation A2.

Definition 3.1. A probability distribution in I(Rd) is said to be a distribution of

class A on Rd if its Lévy measure ν belongs to R(A1). There is no restriction on
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Σ and γ in its Lévy-Khintchine triplet. We denote by A(Rd) the totality of such

distributions on Rd.

Let, for s > 0,

a2(r; s) = a1(r; s
2) = 2π−1(s2 − r2)−1/21(0,s)(r).

Definition 3.2. Let ν be a measure on Rd. Define the arcsine transformation A2 of

ν by

(3.1) A2(ν)(B) =

∫
Rd\{0}

ν(dx)

∫ ∞

0

a2(r; |x|)1B

(
r

x

|x|

)
dr, B ∈ B(Rd).

The domain D(A2) is defined to be the class of ν such that ν({0}) = 0 and the

right-hand side of (3.1) belongs to ML(Rd).

For any measure ν on Rd with ν({0}) = 0, define a measure ν(2) on Rd by

ν(2)(B) =

∫
Rd\{0}

1B

(
|x|2 x

|x|

)
ν(dx), B ∈ B(Rd).

The transformation ν 7→ ν(2) is one-to-one, since we have ν = (ν(2))(1/2), defining

ρ(1/2) for ρ with ρ({0}) = 0 as

ρ(1/2)(B) =

∫
Rd\{0}

1B

(
|x|1/2 x

|x|

)
ρ(dx).

The following propositions give the connections between A1 and A2.

Proposition 3.3. D(A2) = ML(Rd).

Proposition 3.4. ν ∈ ML(Rd) if and only if ν(2) ∈ M1
L(Rd), and in this case

A2(ν) = A1(ν
(2)).

Proposition 3.5. R(A1) = R(A2).

Proof of Propositions 3.3–3.5. Since
∫

Rd f(x)ν(2)(dx) =
∫

Rd f(|x|x)ν(dx) for any

nonnegative measurable function f , we have
∫

Rd(1∧ |x|)ν(2)(dx) =
∫

Rd(1∧ |x|2)ν(dx)

and the first two propositions follow. Proposition 3.5 is a direct consequence of

them. �

We will also use the following fact.

Proposition 3.6. A2 is a one-to-one transformation.

Proof. This follows from Theorem 2.4 and Proposition 3.4. �

The usefulness of introduction of A2 is based on the next property.
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3.2. Transformation A2 as an Upsilon transformation. Barndorff-Nielsen,

Rosiński and Thorbjørnsen [3] considered general Upsilon transformations (see also

[2] and [12]). Given a measure τ on (0,∞), a transformation Υτ from measures on

Rd into ML(Rd) is called an Upsilon transformation associated to τ (or with dilation

measure τ) when

(3.2) Υτ (ν)(B) =

∫ ∞

0

ν(u−1B)τ(du), B ∈ B(Rd).

The domain of Υτ is the class of σ-finite measures ν such that the right-hand side of

(3.2) is a measure in ML(Rd).

Theorem 3.7. A2 is an Upsilon transformation given by

(3.3) A2(ν)(B) =

∫ 1

0

ν(u−1B)2π−1(1− u2)−1/2du, B ∈ B(Rd)

for ν ∈ ML(Rd).

Proof. Let (λ, νξ) be a polar decomposition of ν ∈ ML(Rd). Then, with c = 2π−1,

A2(ν)(B) = c

∫
S
λ(dξ)

∫ ∞

0

1B(rξ)dr

∫
(r,∞)

(s2 − r2)−1/2νξ(ds)

= c

∫
S
λ(dξ)

∫ ∞

0

νξ(ds)

∫ s

0

1B(rξ)(s2 − r2)−1/2dr

= c

∫
S
λ(dξ)

∫ ∞

0

νξ(ds)

∫ 1

0

1B(usξ)(1− u2)−1/2du

= c

∫ 1

0

(1− u2)−1/2du

∫
S
λ(dξ)

∫ ∞

0

1B(usξ)νξ(ds)

= c

∫ 1

0

(1− u2)−1/2du

∫
Rd

1B(ux)ν(dx),

which shows (3.3).

Conversely, let ν be a σ-finite measure on Rd, define ν̃(B) by the right-hand

side of (3.3), and suppose that ν̃ ∈ ML(Rd). Then 0 = ν̃({0}) = ν({0}) and the

calculation above shows that ν ∈ D(A2) and A2(ν) = ν̃. Hence A2 = Υτ of the form

(3.3). �

The mapping A1 is not an Upsilon transformation for any dilation measure τ .

This remarkable result will be proved in Section 3.8, as a byproduct of Theorem 3.13

shown in Section 3.7.
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3.3. Stochastic integral representation of A(Rd). We study a probabilistic in-

terpretation of distributions class A, representing them by stochastic integrals with

respect to Lévy processes.

Let T ∈ (0,∞) and let f(t) be a square integrable function on [0, T ]. Then the

stochastic integral
∫ T

0
f(t)dX

(µ)
t is defined for any µ ∈ I(Rd) and is infinitely divisible.

Define the stochastic integral mapping Φf based on f as Φf (µ) = L
(∫ T

0
f(t)dX

(µ)
t

)
for µ ∈ I(Rd). If µ ∈ I(Rd) has the Lévy-Khintchine triplet (Σ, ν, γ), then, as in

[10, 11, 13], µ̃ = Φf (µ) has the triplet (Σ̃, ν̃, γ̃) expressed as

Σ̃ =

∫ T

0

f(t)2 Σ dt,(3.4)

ν̃(B) =

∫ T

0

dt

∫
Rd

1B(f(t)x) ν(dx), B ∈ B(Rd),(3.5)

γ̃ =

∫ T

0

f(t)dt

(
γ +

∫
Rd

x

(
1

1 + |f(t)x|2
− 1

1 + |x|2

)
ν(dx)

)
.(3.6)

Let us characterize the class A(Rd) as the range of a stochastic integral mapping.

Theorem 3.8. Define Φcos by (1.3). Then Φcos is a one-to-one mapping and

(3.7) A(Rd) = Φcos(I(Rd)).

Proof. Let µ̃ ∈ A(Rd) with triplet (Σ̃, ν̃, γ̃). Then ν̃ ∈ R(A2) by Proposition 3.5

and hence we have (3.3) with some ν ∈ ML(Rd) by Theorem 3.7. Let t = g(u) =∫ 1

u
2π−1(1 − v2)−1/2dv = 2π−1 arccos(u) for 0 < u < 1. Then u = cos(2−1πt) for

0 < t < 1. Thus

ν̃(B) = −
∫ 1

0

dg(u)

∫
Rd

1B(ux)ν(dx) =

∫ 1

0

dt

∫
Rd

1B(x cos(2−1πt))ν(dx).

That is, (3.5) is satisfied with T = 1 and f(t) = cos(2−1πt). Using ν, Σ̃, and γ̃, we

can find Σ and γ satisfying (3.4) and (3.6). Let µ be the distribution in I(Rd) with

triplet (Σ, ν, γ). Then µ̃ = Φcos(µ). Hence A(Rd) ⊂ Φcos(I(Rd)).

Conversely, suppose that µ̃ ∈ Φcos(I(Rd)). Then µ̃ = Φcos(µ) for some µ ∈ I(Rd)

by a similar argument, showing that Φcos(I(Rd)) ⊂ A(Rd).

The mapping Φcos is one-to-one, since ν is determined by ν̃ (Proposition 3.6) and

Σ and γ are determined by Σ̃, γ̃, and ν. �

3.4. Υ0-transformation. We use Υ and Υ0 defined by

Υ(µ) = L
(∫ 1

0

(− log t)dX
(µ)
t

)
, µ ∈ I(Rd),
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Υ0(ν)(B) =

∫ ∞

0

ν(u−1B)e−udu, B ∈ B(Rd).

Let MB
L (Rd) be the class of Lévy measures of the Goldie-Steutel-Bondesson class

B(Rd). In [1], it is shown that Υ(I(Rd)) = B(Rd) and Υ0(ML(Rd)) = MB
L (Rd). Both

Υ0 and Υ are one-to-one.

Proposition 3.9. Let ν ∈ ML(Rd). Then Υ0(ν) ∈ M1
L(Rd) if and only if ν ∈

M1
L(Rd).

Proof. Notice that∫
|x|≤1

|x|Υ0(ν)(dx) =

∫
Rd

|x|ν(dx)

∫ 1/|x|

0

ue−udu,∫
|x|>1

Υ0(ν)(dx) =

∫
Rd

e−1/|x|ν(dx),

to see the equivalence. �

3.5. A representation of completely monotone functions. In [8], the class of

generalized type G distributions on Rd, denoted by G(Rd), is defined as follows:

µ ∈ G(Rd) if and only if the radial component νξ of the Lévy measure of µ satisfies

νξ(dr) = gξ(r
2)dr, where gξ(u) is measurable in (ξ, u) and completely monotone in

u > 0. MG
L(Rd) denotes the class of all Lévy measures of µ ∈ G(Rd). We use the

following result when dealing with G(Rd). It is a result on the arcsine transformation

representation of a function g(r2) when g is completely monotone on (0,∞).

Proposition 3.10. Let g(u) be a function on (0,∞). Then the following three con-

ditions are equivalent.

(a) The function g(u) is completely monotone on (0,∞) and satisfies

(3.8)

∫ ∞

0

(1 ∧ r2)g(r2)dr < ∞.

(b) There exists a completely monotone function h(s) on (0,∞) satisfying

(3.9)

∫ ∞

0

(1 ∧ s)h(s)ds < ∞

such that

(3.10) g(r2) =

∫ ∞

0

a1(r; s)h(s)ds, r > 0.

(c) There exists a measure ρ on (0,∞) satisfying∫ ∞

0

(1 ∧ s)ρ(ds) < ∞

12



such that

(3.11) g(r2) =

∫
(0,∞)

a1(r; s)Υ
0(ρ))(r)(ds), r > 0.

Proof. (a) ⇒ (b): From Bernstein’s theorem, there exists a measure Q on [0,∞) such

that

(3.12) g(u) =

∫
[0,∞)

e−uvQ(dv), u > 0.

It follows from (3.8) that Q({0}) = 0, since Q({0}) = limu→∞ g(u). We need the fact

that the one-dimensional Gaussian density ϕ(x; t) of mean 0 and variance t is the

arcsine transform of the exponential distribution with mean t > 0. More precisely,

(3.13) ϕ(x; t) = (2πt)−1/2e−x2/(2t) = t−1

∫ ∞

0

e−s/ta(x; 2s)ds, t > 0, x ∈ R.

This is the well-known Box-Muller method to generate normal random variables. Its

proof can be given by change of variables s = tu + x2/2. Using (3.13), we have

g(r2) =

∫
(0,∞)

e−r2vQ(dv) =

∫
(0,∞)

v1/2Q(dv)

∫ ∞

r2/2

e−2sv2π−1/2(2s− r2)−1/2ds

=

∫ ∞

r2

π−1/2(s− r2)−1/2ds

∫
(0,∞)

e−svv1/2Q(dv) =

∫ ∞

0

a1(r; s)h(s)ds,

where

(3.14) h(s) = 2−1π1/2

∫
(0,∞)

e−svv1/2Q(dv).

Applying Proposition 2.2 for d = 1, we see (3.9) from (3.8).

(b) ⇒ (c): There is ρ ∈ ML(R) such that h(s)ds = Υ0(ρ) (see Theorem A of [1]).

Since Υ0(ρ) is concentrated on (0,∞), ρ is concentrated on (0,∞). Using Proposition

3.9, we see that
∫

(0,1]
s ρ(ds) < ∞.

(c) ⇒ (a): It follows from Proposition 3.9 that
∫

(0,∞)
(1∧s)Υ0(ρ)(ds) < ∞. Hence

it follows from (3.11) that g(r2) satisfies (3.8) (use Proposition 2.2 for d = 1). Finally

let us prove that g(u) is completely monotone. There is a completely monotone

function h(s) such that Υ0(ρ)(ds) = h(s)ds (see Theorem A of [1] again). Hence we

can find a measure R on [0,∞) such that h(s) =
∫

[0,∞)
e−svR(dv), s > 0. We have

R({0}) = 0. Thus

g(r2) =

∫ ∞

r2

2π−1(s− r2)−1/2ds

∫
(0,∞)

e−svR(dv) =

∫
(0,∞)

e−r2v2π−1/2v−1/2R(dv),

where the last equality is from the same calculus as in the proof that (a) ⇒ (b). Now

we see that g(u) is completely monotone. �
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3.6. A representation of G(Rd) in terms of A1. We now give an alternative

representation for Lévy measures of distributions in G(Rd).

Theorem 3.11. Let µ̃ be an infinitely divisible distribution on Rd with the Lévy-

Khintchine triplet (Σ̃, ν̃, γ̃). Then the following three conditions are equivalent.

(a) µ̃ ∈ G(Rd).

(b) ν̃ = A1(ν) with some ν ∈ MB
L (Rd) ∩M1

L(Rd).

(c) ν̃ = A1(Υ
0(ρ)) with some ρ ∈ M1

L(Rd).

In condition (b) or (c), the representation of ν̃ by ν or ρ is unique.

Proof. (a) ⇒ (b): By definition of G(Rd) and Proposition 3.10, the Lévy measure

ν̃ of µ̃ has polar decomposition (λ, gξ(r
2)dr) where gξ(u) is measurable in (ξ, u) and

satisfies (3.9) and (3.10) with gξ(r
2) and hξ(s) in place of g(r2) and h(s). The measure

Qξ in the representation (3.12) of gξ(u) has the property that Qξ(E) is measurable

in ξ for every Borel set E in [0,∞) (see Remark 3.2 of [1]). Hence the function hξ(s)

given as in (3.14) is measurable in (ξ, s). Thus we have ν̃ = A1(ν), letting ν denote

the Lévy measure with polar decomposition (λ, hξ(s)ds). Notice that ν ∈ MB
L (Rd)

and show that ν ∈ M1
L(Rd) by an argument similar to the proof of Proposition 2.2.

(b) ⇒ (c): Use Proposition 3.9 and the representation of MB
L (Rd) by Υ0.

(c) ⇒ (a): Use Proposition 3.9 again together with Proposition 3.10.

Uniqueness of the representations comes from Theorem 2.4 and that of Υ0. �

3.7. G(Rd) as image of A(Rd) under a stochastic integral mapping. Following

[7], we define the transformation Υα,β(ν) for −∞ < α < 2 and 0 < β ≤ 2. For a

measure ν on Rd with ν({0}) = 0 define

Υα,β(ν)(B) =

∫ ∞

0

ν(s−1B)βs−α−1e−sβ

ds, B ∈ B(Rd),

whenever the right-hand side gives a measure in ML(Rd). This definition is different

from that of [7] in the constant factor β. A special case with β = 1 coincides with

the transformation of Lévy measures in the stochastic integral mapping Ψα studied

by Sato [11]. Of particular interest in this work is the mapping Υ−2,2. Notice that

Υ−1,1 = Υ0.

Proposition 3.12. D(Υ−2,2) = ML(Rd). The mapping Υ−2,2 is one-to-one.

Proof. Let ν̃(B) =
∫∞

0
ν(s−1B)2se−s2

ds. Then∫
Rd

(1 ∧ |x|2)ν̃(dx) =

∫ ∞

0

2se−s2

ds

∫
Rd

(1 ∧ |sx|2)ν(dx)
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=

∫
Rd

|x|2ν(dx)

∫ 1/|x|

0

2s3e−s2

ds +

∫
Rd

ν(dx)

∫ ∞

1/|x|
2se−s2

ds.

Observe that
∫ 1/|x|

0
2s3e−s2

ds is convergent as |x| ↓ 0 and ∼ 2−1|x|−4 as |x| → ∞
and

∫∞
1/|x| 2se

−s2
ds is ∼ e−1/|x|2 as |x| ↓ 0 and convergent as |x| → ∞. Then we see

that
∫

Rd(1 ∧ |x|2)ν̃(dx) is finite if and only if
∫

Rd(1 ∧ |x|2)ν(dx) is finite. To prove

that Υ−2,2 is one-to-one, make a similar argument to the proof of Proposition 4.1 of

[11]. �

The following result is needed in giving the characterization of G(Rd) in terms

of distributions of class A. It shows that A1 and Υ0 are not commutative. However,

A2 and Υ0 are commutative, both being Upsilon transformations with domain equal

to ML(Rd).

Theorem 3.13. It holds that

Υ−2,2(A1(ρ)) = A1(Υ
0(ρ)) for ρ ∈ M1

L(Rd).

Proof. Let ρ ∈ M1
L(Rd), ν = A1(ρ), and ν̃ = Υ−2,2(ν) with polar decompositions

(λ, ρξ), (λ, νξ), and (λ, ν̃ξ), respectively. From Lemma 2.5 of [7] we have ν̃ξ(dr) =

rgξ(r
2)dr with rgξ(r

2) = 2r
∫∞

0
s−2e−r2/s2

νξ(ds). Hence

rgξ(r
2) = 2r

∫ ∞

0

e−r2/s2

s−2ds

∫
(0,∞)

a1(s; u)ρξ(du)

=

∫ ∞

0

e−tt−1/2dt

∫
(0,∞)

a1(t
−1/2r; u)ρξ(du)

=

∫ ∞

0

e−tdt

∫ ∞

0

a1(r; tu)ρξ(du)

=

∫ ∞

0

a1(r; u)Υ0(ρξ)(du).

It follows that ν̃ = A1(Υ
0(ρ)). �

The following result shows that G(Rd) is the class of distributions of stochastic

integrals with respect Lévy processes with distribution of class A at time 1. This is

a multivariate and not necessarily symmetric generalization of (1.2).

Theorem 3.14. Let

Ψ−2,2(µ) = L
(∫ 1

0

(− log t)1/2dX
(µ)
t

)
, µ ∈ I(Rd).

Then Ψ−2,2 is one-to-one and

(3.15) G(Rd) = Ψ−2,2(A(Rd)) = Ψ−2,2(Φcos(I(Rd))).
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Proof. Suppose that µ̃ ∈ G(Rd) with triplet (Σ̃, ν̃, γ̃). Then it follows from Theorems

3.11 and 3.13 that

ν̃ = A1(Υ
0(ρ)) = Υ−2.2(A1(ρ))

for some ρ ∈ M1
L(Rd). Let ν = A1(ρ). Since ν̃ = Υ−2,2(ν) and since u = f(t) =

(− log t)1/2 is the inverse function of t =
∫∞

u
2ve−v2

dv = e−u2
, we have (3.5) for this

f(t) and T = 1. Choose Σ and γ satisfying (3.4) and (3.6). Let µ ∈ I(Rd) having

triplet (Σ, ν, γ). Then µ ∈ A(Rd) and µ̃ = Ψ−2,2(µ). Notice that D(Ψ−2,2) = I(Rd),

as f(t) is square-integrable on (0, 1). Conversely, we can see that if µ ∈ A(Rd), then

Ψ−2,2(µ) ∈ G(Rd). Thus the first equality in (3.15) is proved. The second equality

follows from (3.7) of Theorem 3.8. The one-to-one property of Ψ−2,2 follows from that

of Υ−2,2 in Proposition 3.12. �

Remark 3.15. (a) The two representations of µ̃ ∈ G(Rd) in Theorems 3.11 and 3.14

are related in the following way. Theorem 3.14 shows that µ̃ ∈ G(Rd) if and only

if µ̃ = Υ−2.2(Φcos(µ)) for some µ ∈ I(Rd). This µ has Lévy measure ρ(1/2) if ρ is

the Lévy measure in the representation of µ̃ in Theorem 3.11 (c). For the proof, use

Proposition 3.4, Theorems 3.8 and 3.13.

(b) We have another representation of the class G(Rd). Let h(u) =
∫∞

u
e−v2

dv,

u > 0, and denote its inverse function by h∗(t). For µ ∈ I(Rd), we define

G(µ) = L

(∫ √
π/2

0

h∗(t)dX
(µ)
t

)
.

It is known that G(Rd) = G
(
I(Rd)

)
, see Theorem 2.4 (5) in [8]. This suggests us

that G is decomposed into

G =Ψ−2.2 ◦ Φcos = Φcos ◦Ψ−2.2

with the same domain I(Rd), where ◦ means composition of mappings. The proof is

easy to obtain.

3.8. A1 is not an Upsilon transformation. From Theorem 3.13 we obtain the

following result.

Theorem 3.16. The transformation A1 is not an Upsilon transformation Υτ for any

dilation measure τ .

Proof. Suppose that there is a measure τ on (0,∞) such that A1(ρ)(B) = Υτ (ρ)(B)

for B ∈ B(Rd). Then, we can show that A1(Υ
0(ρ)) = Υ0(A1(ρ)) for ρ ∈ M1

L(Rd),
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using the Fubini theorem. Then, it follows from Theorem 3.13 that Υ−2,2(A1(ρ)) =

Υ0(A1(ρ)) for ρ ∈ M1
L(Rd). Let ρ̃ = A1(ρ). If

∫
Rd |x| ρ(dx) < ∞, then∫

Rd

xΥ0(ρ̃)(dx) =

∫ ∞

0

e−udu

∫
Rd

uxρ̃(dx) =

∫
Rd

xρ̃(dx),

while ∫
Rd

xΥ−2,2(ρ̃)(dx) =

∫ ∞

0

2ue−u2

du

∫
Rd

uxρ̃(dx) = 2−1π1/2

∫
Rd

xρ̃(dx).

Hence Υ−2,2(ρ̃) 6= Υ0(ρ̃) whenever
∫

Rd xρ̃(dx) 6= 0 (for example, choose ρ = δe1 , e1 =

(1, 0, ..., 0)). This is a contradiction. Hence the measure τ does not exist. �

4. Examples

We conclude this paper with examples for Theorems 3.11 and 3.13, where the

modified Bessel function K0 plays a role. We only consider the one-dimensional case

of Lévy measures concentrated on (0,∞). Multivariate extensions are possible by

using polar decomposition.

By the well-known formula for the modified Bessel functions we have

K0(x) =
1

2

∫ ∞

0

e−t−x2/(4t)t−1dt, x > 0.

An alternative expression is

(4.1) K0(x) =

∫ ∞

1

(t2 − 1)−1/2e−xtdt, x > 0,

see (3.387.3) in [4, p.350]. It follows that K0(x) is completely monotone on (0,∞)

and that
∫∞

0
K0(x)dx = π/2. The Laplace transform of K0 in x > 0 is

(4.2) ϕK0(s) :=

∫ ∞

0

e−sxK0(x)dx =


(1− s2)−1/2arccos(s), 0 < s < 1

1, s = 1

(1− s2)−1/2 log(s + (s2 − 1)1/2), s > 1,

see (6.611.9) in [4, p.695].

The following is an example of ν and ν̃ in Theorem 3.11 (b).

Example 4.1. Let

ν̃(dx) = K0(x)1(0,∞)(x)dx

and

(4.3) ν(dx) = 4−1πx−1/2e−x1/2

1(0,∞)(x)dx.
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Then ν ∈ MB
L (R) ∩M1

L(R), and ν̃ = A1(ν) ∈ MG
L(R).

The proof is as follows. Since the function x−1/2e−x1/2
is completely monotone on

(0,∞) and
∫ 1

0
xν(dx) < ∞, we have ν ∈ MB

L (R) ∩M1
L(R). We can show

(4.4) A1(ν)(B) =

∫ 1

0

ν(1/2)(u−1B)2π−1(1− u2)−1/2du, B ∈ B(R),

like (3.3). Hence

A1(ν)(B) =

∫ 1

0

2−1(1− u2)−1/2du

∫ ∞

0

1B(us1/2)s−1/2e−s1/2

ds

=

∫ 1

0

(1− u2)−1/2du

∫ ∞

0

1B(r)e−r/udr

=

∫ ∞

0

1B(r)dr

∫ ∞

1

(y2 − 1)−1/2e−rydy

=

∫ ∞

0

1B(r)K0(r)dr = ν̃(B).

The fact that ν̃ ∈ MG
L(R) can also be shown directly, since K0(x

1/2) is again com-

pletely monotone in x ∈ (0,∞).

It follows from ν̃ ∈ MG
L(R) that ν̃ is the Lévy measure of a generalized type G

distribution µ̃ on R. Using (4.2), we find that this µ̃ is supported on [0,∞) if and

only if it has Laplace transform∫
[0,∞)

e−sxµ̃(dx) = exp
{
−γ0s + ϕK0(s)− 2−1π

}
for some γ0 ≥ 0.

Remark 4.2. A1(ν) in Example 4.1 actually belongs to a smaller class MB
L (R).

Therefore, in connection to Theorem 3.11, it might be interesting to find a necessary

and sufficient condition on ν in order that µ̃ ∈ B(Rd). The ν in Example 4.1 also

belongs to a smaller class than MB
L (R) ∩ M1

L(R). It belongs to the class of Lévy

measures of distributions in R(Ψ−1/2) studied in Theorem 4.2 of [11].

We now give an example of ρ in Theorem 3.11 (c).

Example 4.3. Consider the following Lévy measure in MB
L (R):

(4.5) ρ(dx) = 4−1π1/2x−1/2e−x/41(0,∞)(x)dx.

Then ν in (4.3) satisfies ν = Υ0(ρ).
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To prove this, we write Υ0(ρ) as

Υ0(ρ)(dx) =

∫ ∞

0

ρ(u−1dx)e−udu = 4−1π1/2x−1/2dx

∫ ∞

0

u−1/2e−u−x/(4u)du

on (0,∞). By formula (3.475.15) in [4, pp 369], we have∫ ∞

0

u−1/2e−u−x/(4u)du = π1/2e−x1/2

.

Hence, Υ0(ρ) = ν from (4.3).

Since A1(ν) = A1(Υ
0(ρ)) = Υ−2,2(A1(ρ)) by Theorem 3.13, A1(ρ) is also of

interest.

Example 4.4. Let ρ be as in (4.5). Then

(4.6) A1(ρ)(dx) = 2−1π−1/2e−x2/8K0(x
2/8)1(0,∞)(x)dx.

The proof is as follows. We have, from (4.4),

A1(ρ)(B) = 2−1π−1/2

∫ 1

0

(1− u2)−1/2du

∫ ∞

0

1u−1B(s1/2)s−1/2e−s/4ds

= π−1/2

∫ ∞

0

1B(r)dr

∫ 1

0

u−1(1− u2)−1/2e−r2/(4u2)du

= 2−1π−1/2

∫ ∞

0

1B(r)dr

∫ ∞

1

y−1/2(y − 1)−1/2e−r2y/4dy.

Use (3.383.3) in [4, pp 347] to obtain∫ ∞

1

y−1/2(y − 1)−1/2e−r2y/4dy = e−r2/8K0(r
2/8).

Thus we obtain (4.6).

Remark 4.5. The ρ in (4.5) also belongs to MB
L (R)∩M1

L(R). Therefore A1(ρ) itself

is another example of a measure in MG
L(R).
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