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Plan of the Seminar

1. Motivation: Asymptotic spectrum of random matrices.

2. Non-commutative probability spaces and free independence.

3. Free additive convolution: analytic approach.

3.1 The Cauchy transform and its reciprocal.
3.2 Voiculescu & free cumulants transforms.
3.3 Free additive convolution of measures.
3.4 Examples.

4. Free multiplicative convolution: analytic approach.

4.1 S-transforms.
4.2 Free multiplicative convolution of measures.
4.3 Examples.

5. Overview Talks 2 and 3: Random Matrices and In�nite
Divisibility (classical and free)



I. Pioneering work on Random Matrices by Eugene Wigner
Ann Math. 1955, 1957, 1958

I Ensemble of random matrices: Sequence X = (Xn)n�1, where
Xn is n� n matrix with random entries.

I Wigner random matrices:

Xn(k, j) = Xn(j , k) =
1p
n

�
Zj ,k , if j < k

Yj , if j = k

fZj ,kgj�k , fYjgj�1 independent sequences of i.i.d. random
variables with assumptions on the �rst two moments:
EZ1,2 = EY1 = 0, EZ 21,2 = 1.

I λn,1 � ... � λn,n eigenvalues of Xn, n � 1.
I Empirical spectral distribution (ESD) of Xn:

bFn(x) = 1

n

n

∑
j=1

1fλn,j�xg.

I What is the limit of bFn (ASD) when n! ∞?



I. Pioneering work on RMT by E. Wigner
Ann Math. 1955, 1957, 1958

Asymptotic spectral distribution (ASD): bFn converges, as
n! ∞, to semicircle distribution on (�2, 2).

Theorem (Wigner)

8 f 2 Cb(R) and ε > 0,

lim
n!∞

P

�����Z f (x)dbFn(x)� Z f (x)w(x)dx ���� > ε

�
= 0.

where w(x)dx is the semicircle distribution on (�2, 2)

w(x) =
1

2π

p
4� x2, jx j � 2.



I. Marchenko-Pastur (1967): Wishart type RM
I Xn = Xp�n with i.i.d. entries under moment assumptions.

I Covariance matrix (p � p) Sn = 1
nXnX

�
n , with eigenvalues

0 � λp,1 � ... � λp,p and ESD bFp(λ).
I If n/p ! c > 0, bFp converges to Marchenko-Pastur (MP)

mc(dx) =
�

fc(x)dx , if c � 1
(1� c)δ0(dx) + fc(x)dx , if 0 < c < 1,

fc(x) =
c

2πx

q
(x � a)(b� x)1[a,b](x),

a = (1�
p
c)2, b = (1+

p
c)2.

I Wireless communication (Talatar, 99): if C (p, n) is capacity
of MIMO system of n receiver & p transmitter antennas,

C (p, n)

p
!
Z b

a
log2 (1+ cRx)mc(dx) = K (c ,R)

C (p, n) � pK (c ,R).
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I. Motivation to study RMT and Free Probability
From the Blog of Terence Tao (Free Probability, 2010):

1. The signi�cance of free probability to random matrix theory
lies in the fundamental observation that random matrices
which are independent in the classical sense, also tend to be
independent in the free probability sense, in the large limit.

2. This is only possible because of the highly non-commutative
nature of these matrices; it is not possible for non-trivial
commuting independent random variables to be freely
independent.

3. Because of this, many tedious computations in random matrix
theory, particularly those of an algebraic or enumerative
combinatorial nature, can be done more quickly and
systematically by using the framework of free probability.



I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of n� n random matrices

Xn & Yn, what are the eigenvalues of Xn + Yn?

1.1 If Xn & Yn are asymptotically free, the ASD of Xn + Yn is the
"free convolution" of the ASD of Xn & Yn.

1.2 Several independent ensembles of random matrices become
asymptotically free.

2. Classical analogous:

2.1 If R1 & R2 are real independent r.v. with distributions µ1 &
µ2, the distribution of R1 + R2 is the classical convolution

µ1 � µ2(E ) =
Z

R
µ1(E � x)µ2(dx) =

Z
R

µ2(E � x)µ1(dx).

2.2 Analytic tool for classical convolution is Fourier transform.

3. Today:

3.1 Asymptotically free random matrices.

3.2 Free convolution: analytic tools similar to classical case.
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I. Asymptotically free random matrices
Some facts about classical independence

I Two real random variables X1 & X2 are independent i� 8
bounded Borel functions (Bb(R)) f , g

E(f (X1)g(X2)) = E(f (X1))E(g(X2))

E ([f (X1)�E(f (X1)] [g(X2)�E(g(X2)]) = 0.

I i� 8 Bb(R) functions f , g

E (f (X1)g(X2)) = 0

whenever E(f (X1)) = E(g(X2)) = 0.

I i� (X1 & X2 are bounded) 8 n,m � 1

E [(X n1 �EX n1 )(X
m
2 �EXm2 )] = 0

EX n1 X
m
2 = EX n1 EXm2 .

Then independence allows to compute all joint moments, so
the moments of X1 + X2.
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I. Asymptotically free random matrices
Voiculescu (1991)

I For an ensemble of Hermitian random matrices X = (Xn)n�1
de�ne "expectation" τ as the linear functional τ, (τ(I) = 1)

τ(X) = lim
n!∞

1

n
E [tr(Xn)] .

I Two Hermitian ensembles X1 & X2 are asymptotically free
(AF) if 8 r 2 Z+ & polynomials pi (�), qi (�), 1 � i � r with

τ(pi (X1)) = τ(qi (X2)) = 0,

we have

τ(p1(X1)q1(X2)...pr (X1)qr (X2)) = 0.

I If X1 & X2 are independent zero-mean non constant real r.v.,
then X1 = X1I & X2 = X2I are not AF.

I If X1 & X2 are AF and commute, one has to be deterministic.

I Non-commutative word!
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I. Asymptotically free RM: Examples

1. X and I = (In) are AF.

2. If X and Y are independent Wigner ensembles, they are AF.

3. If X and Y are independent standard Gaussian ensembles,
then XX� and YY� are AF.

4. If X and Y independent Wishart ensembles, they are AF.

5. If U and V are independent unitarily ensembles, they are AF.

6. If A,B are deterministic ensembles whose ASD have compact
support & U is an unitary ensemble, then UAU� & B are AF.



II. Free probability: Non-commutative probability spaces

De�nitions
(i) A non-commutative probability space (A, τ) is a unital algebra
A over C with a linear functional τ : A ! C with τ(1) = 1.

Elements of A are called non-commutative random variables.

(ii) (A, τ) is C �-probability space if A is a C �-algebra and τ is a
positive linear functional.

(iii) (A, τ) is W �-probability space if A is a W �-algebra and τ is a
normal faithful trace.



II. Non-commutative r.v. with a given distribution

Fact
(i) Given a p.m. µ on R with bounded support, there exist a
C �-probability space (A, τ) and a self-adjoint a 2 A with

τ(f (a)) =
Z

R
f (x)µ(dx), 8f 2 Cb(R).

Fact
(ii) Given a p.m. µ on R, there exists a W �-probability space
(A, τ) and self-adjoint operator a on a Hilbert space H such that

f (a) 2 A 8f 2 Bb(R), (1)

τ(f (a)) =
Z

R
f (x)µ(dx), 8f 2 Bb(R).

If (1) holds, it is said that a is a�liated with A.



II. Free Random Variables

De�nitions
(i) A family of W �-subalgebras fAigi2I � A in a W �-probability
space is free if

τ(a1a2 � � � an) = 0
whenever τ(aj ) = 0, aj 2 Aij , and i1 6= i2, i2 6= i3, ..., in�1 6= in.

(iii) If fAigi2I is a family of free W �-subalgebras & ai is a�liated
with Ai , i 2 I , the r.v. faigi2I are called freely independent.

Fact
Given µ1 & µ2 p.m. on R, there exist a W �-probability
space,W �-subalgebras A1,A2 and self-adjoint operators a1 and a2
on a Hilbert space H a�liated with A1 and A2 respectively, such
that

(i) ai has distribution µi
(i) a1 and a2 are freely independent.



II. Free independence allows to compute joint moments
Example

Computation of τ(abab) when a & b are freely independent:
Suppose fa1, a3g and fa2, a4g are freely independent. Since

τ(ai � τ(ai )1A) = 0,

τ(a1� τ(a1)1A)τ(a2� τ(a2)1A)τ(a3� τ(a3)1A)τ(a4� τ(a4)1A) = 0.

Computations yield

τ(a1a2a3a4) = τ(a1a3)τ(a2)τ(a4) + τ(a1)τ(a3)τ(a2a4)

� τ(a1)τ(a2)τ(a3)τ(a4).

In particular if a1 = a3 = a and a2 = a4 = b

τ(abab) = τ(a)2τ(b2)+ τ(a2)τ(b)2� τ(a)2τ(b)2 6= τ(a)2τ(b)2.



II. Application: Free Central Limit Theorem

Theorem
Let a1, a2,... be a sequence of independent free random variables
with the same distribution with all moments. Assume that
τ(a1) = 0 and τ(a21) = 1. Then the distribution of

Zm =
1p
m
(a1 + ...+ am)

converges to the semicircle distribution as m! ∞.

I Idea of proof: Show that the moments τ(Zkm), k � 1,
converge to the moments of the semicircle distribution
m2k+1 = 0 and

m2k =
1

k + 1

�
2k

k

�
using combinatorics of noncrossing partitions.



II. Free Additive and Multiplicative Convolution

De�nition
Let a1, a2 be free random variables with distributions µ1 & µ2.
The distribution of a1 + a2 is the free additive convolution of µ1
and µ2 and it is denoted by

µ1� µ2.



II. Free Additive and Multiplicative Convolution
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Let a1, a2 be free random variables with distributions µ1 & µ2.
The distribution of a1 + a2 is the free additive convolution of µ1
and µ2 and it is denoted by µ1� µ2.

De�nition
Let µ1 have positive support. Then a1 is a positive self-adjoint
operator and the distribution of a1/2

1 is uniquely determined by µ1.

The distribution of the self-adjoint operator a1/2
1 a2a

1/2
1 is

determined by µ1 and µ2. This measure is the free multiplicative
convolution of µ1 and µ2 and it is denoted by

µ1� µ2.



II. Free Additive and Multiplicative Convolutions

De�nition
Let a1, a2 be free random variables with distributions µ1 & µ2.
The distribution of a1 + a2 is the free additive convolution of µ1
and µ2 and it is denoted by µ1� µ2.

De�nition
Let µ1 have positive support. Then a1 is a positive self-adjoint
operator and the distribution of a1/2

1 is uniquely determined by µ1.

The distribution of the self-adjoint operator a1/2
1 a2a

1/2
1 is

determined by µ1 and µ2. This measure is the free multiplicative
convolution of µ1 and µ2 and it is denoted by µ1� µ2.

Questions and purpose of the talk:
1) Can µ1� µ2 & µ1� µ2 be considered merely as two new types
of "convolutions" in the set of probability measures on R?
2) What are the analytic tools to study them?



III. Free additive convolution: Analytic approach
Recall the classical convolution case

I Fourier transform of probability measure µ on R

bµ(s) = Z
R

eisxµ(dx), s 2 R.

I Cumulant transform

cµ(s) = log bµ(s), s 2 S .

I µ1 � µ2 is the unique p.m. with \µ1 � µ2(s) = bµ1(s) bµ2(s) or
cµ1�µ2(s) = cµ1(s) + cµ2(s).

I Cumulant transform linearizes classical convolution.

I If X1 & X2 are classical independent r.v. with distributions µ1
&µ2, then X1 + X2 has distribution µ1 � µ2.
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R

eisxµ(dx), s 2 R.
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III. The Cauchy transform
I Cauchy transform (CT) of a p.m.µ, Gµ(z) : C+ ! C�

Gµ(z) =
Z ∞

�∞

1

z � x µ(dx).

I Analytic function G = C+ ! C� is CT of a p.m. µ i�

iyG (iy)! 1, asy ! ∞.

I Stieltjes inversion formula

µ((t0,t1]) = �
1

π
lim

δ!0+
lim
y!0+

Z t1+δ

t0+δ
Im(Gµ(x+ iy))dx , t0 < t1.

I If µ is a.c. w.r.t. Lebesgue measure with density fµ,

fµ(x) = �
1

π
lim
y!0+

ImGµ(x + iy).

I Weak convergence of probability measures is metricized by

d(µ1, µ2) = sup
���Gµ1(z)� Gµ2(z)

�� ; Im(z) � 1	 .
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III. Reciprocal Cauchy transform

I G µ(z) : C+ ! C+,

G µ(z) = 1/Gµ(z).

I G µ is basic tool in free, monotone and Boolean convolutions.

I Bercovici & Voiculescu (93): Right inverse G�1µ of G µ exists
in Γ = [α>0Γα,βα

, where

Γα,β = fz = x + iy : y > β, x < αyg , α > 0, β > 0.

I Voiculescu transform

φµ(z) = G
�1
µ (z)� z , z 2 Γµ

α,β.

I (µn)n�1 converges weakly to µ if and only if 9 α, β such that
φµn(z)! φµ(z) in compact sets of Γα,β.
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III. Useful transformations of the Cauchy transform
Free cumulant transforms

I Voiculescu transform

φµ(z) = G
�1
µ (z)� z , z 2 Γµ

α,β.

I Free cumulant transform

Cµ(z) = zφµ(
1

z
) = zG�1µ (

1

z
)� 1.

I µ can be recovered from the cumulant transform

Gµ(
1

z
(Cµ(z) + 1)) = z .

I R-transform

Rµ(z) = G
�1
µ (

1

z
)� 1

z

I φµ, Cµ and Rµ linearize free additive convolution.
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III. Free additive convolution
Analytic de�nition

I For µ1 & µ2 p.m. on R, µ1� µ2 is the unique p.m. on R

such that

φµ1�µ2(z) = φµ1(z) + φµ2(z), z 2 Γµ1
α1,β1

\ Γµ2
α2,β2

or equivalently

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z).

I If a1 & a2 are free independent with distributions µ1 & µ2,
then µ1� µ2 is the distribution of a1 + a2.

I If (X 1n )n�1, (X
2
n )n�1 are asymptotically free random matrices

with ASD µ1 & µ2, then (X 1n + X
2
n )n�1 has ASD µ1� µ2.
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IV. Example: free convolution of Wigners

Semicircle distribution wm,σ2 on (m� 2σ,m+ 2σ) centered at m

wm,σ2(x) =
1

2πσ2

q
4σ2 � (x �m)21[m�2σ,m+2σ](x).

Cauchy transform:

Gwm,σ2
(z) =

1

2σ2

�
z �

q
(z �m)2 � 4σ2

�
,

Free cumulant transform:

Cwm,σ2
(z) = mz + σ2z .

�-convolution of Wigner distributions is a Wigner distribution:

wm1,σ21
�wm2,σ22

= wm1+m2,σ21+σ22
.



III. Free additive convolutions: Examples
Marchenko-Pastur distribution

c > 0

mc(dx) = (1� c)+δ0 +
c

2πx

q
(x � a)(b� x) 1[a,b](x)dx .

Cauchy transform

Gmc =
1

2
�
p
(z � a)(z � b)

2z
+
1� c
2z

Free cumulant transform

Cmc (z) =
cz

1� z .

�-convolution of MP distributions is a MP distribution:

mc1 �mc2 = mc1+c2



III. Free additive convolutions: Examples
Cauchy distribution

σ > 0, Cauchy distribution

cσ(dx) =
1

π

σ

σ2 + x2
dx

Cauchy transform

Gcσ(z) =
1

z + σi

Free cumulant transform

Ccσ(z) = �iσz

�-convolution of Cauchy distributions is a Cauchy distribution

cσ1 � cσ2 = cσ1+σ2 .



III. Free additive convolutions: Examples
Pathological example

What is b� b when b is symmetric Bernoulli distribution

b(dx) =
1

2

�
δf�1g(dx) + δf1g(dx)

�
?.

Cauchy transform:

Gb(z) =
z

z2 � 1.

Free cumulant transform:

Cb(z) =
1

2
(
p
1+ 4z2 � 1).

Then
Cb�b(z) =

p
1+ 4z2 � 1.

Solving for µ = b� b

Gµ(
1

z
(Cµ(z) + 1)) = z .



III. Free additive convolutions: Examples
Pathological example

Solving for b� b

Gb�b(
1

z
(
p
1+ 4z2) = z

Gb�b(z) =
1p
z2 � 4

,

which is the Cauchy transform of the arcsine distribution

a(dx) =
1

π
p
1� x2

1(�1,1)(x)dx .

Then
b� b = a.

Free additive convolution of atomic distributions may be
absolutely continuous!



IV. Free multiplicative convolution
Classical multiplicative convolution of random variables

:

I Given independent classical r.v. X > 0,Y > 0, with
distribution µX , µY , what is the distribution µXY of XY ?

I Analytic tool: Mellin transform

MµX (z) = EµX

�
X z�1

�
=
Z

R
xz�1µX (dx), z 2 C.

I MµX characterizes µX .

I Analytic rule to �nd distribution µXY

MµXY (z) = MµX (z)MµY (z).

I µXY the classical multiplicative convolution of µX & µY
I Analogous in free probability?
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IV. Free multiplicative convolution: The S-transform
For distributions with nonnegative support: Bercovici & Voiculescu (93)

I Ψµ-transform of a general probability distribution µ on R

Ψµ(z) =
1

z
Gµ(

1

z
)� 1.

I If µ has compact support and mk(µ) :=
R

R
tkµ(dt)

Gµ(z) = z
�1 +

∞

∑
k=1

mk(µ)z
�k�1, jz j > rµ,

Ψµ(z) =
∞

∑
k=1

mk(µ)z
k , jz j < rµ.

I If µ 2 P+, 9 χµ : Ψµ(iC+) ! iC+ inverse of Ψµ.
I The S-transform of µ is de�ned by

Sµ(z) = χ(z)
1+ z

z
.

I For µ1, µ2 in P+( 6= δ0), µ1� µ2 is unique p.m. in P+

Sµ1�µ2(z) = Sµ1(z)Sµ2(z).
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IV. Free multiplicative convolution: The S-transform

I If (Xn)n�1, (Yn)n�1 are asymptotically free nonnegative
de�nite random matrices with ASD µ1 and µ2, then the
product (X 1/2

n YnX
1/2
n )n�1 has ASD µ1� µ2.

I In studying µ1� µ2 via Sµ1�µ2 the main problem is that for
general distributions Ψµ has not a unique inverse.

I Raj Rao & Speicher (2007): Combinatorial approach, µ1, µ2
have bounded support, µ1 2 P+, µ1 zero mean.

I Arizmendi and PA (2008): Analytic approach, µ1, µ2 with
unbounded support, µ1 2 P+, µ2 symmetric.
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IV. Free multiplicative convolution: The S-transform
For symmetric distributions: Arizmendi-PA (2009).

I µ 2 Ps (symmetric p.m.), µ2 p.m. in P+ induced by t ! t2,

Gµ(z) = zGµ2(z
2), z 2 CnR+

Ψµ(z) = Ψµ2(z
2), z 2 CnR+

I If µ 6= δ0, Ψµ, there are disjoint sets H, eH in C, Ψµ has

unique inverses χµ : Ψµ(H)! H and eχµ : Ψµ(eH)! eH.
I There are two S-transforms

Sµ(z) = χµ(z)
1+ z

z
and eSµ(z) = eχµ(z)

1+ z

z

S2µ(z) =
1+ z

z
Sµ2(z) and eS2µ(z) = 1+ z

z
Sµ2(z).

I If µ1 in P+ and µ2 in Ps
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IV. Examples of S-transforms

I w Wigner distribution on (�2, 2)

Sw(z) =
1p
z

I mc Marchenko-Pastur distribution with parameter c > 0

Smc (z) =
1

z + c

I bs symmetric Beta distribution SM(2/3, 1/2)

Sbs(z) =
1

z + 1

r
z + 2

z

I a arcsine distribution

Sa(z) =

r
z + 2

z
.
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IV. Examples of multiplicative convolutions

I bs = m1 
 a

I Proof:

Sm1(z) =
1

z + 1
, Sa(z) =

r
z + 2

z
.

Sbs(z) =
1

z + 1

r
z + 2

z
.

I w = m2� a, where m2 
m2 = m2

Proof:

Sm2(z) =

r
1

z + 2
,

Sw(z) =

r
1

z
.

I There is no λ 2 P+ such that a = λ�w.
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Overview Talks 2 and 3

I Talk 2: Random matrices.

I More on asymptotic spectrum of random matrices.

I Some applications.

I Dyson Brownian motion and other eigenvalues processes.

I Talk 3: In�nite divisibility (ID).

I In�nitely divisible random matrices.

I Free ID.

I A bijection between free and classical ID.

I Random matrices: bridge between classical & free ID.
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