Free Convolutions in Free Probability

Victor Pérez-Abreu
Center for Research in Mathematics CIMAT
Guanajuato, Mexico

Joint Analysis and Probability Seminar Department of Mathematics
University of Tennessee
Knoxville, TN, April 11, 2012

Plan of the Seminar

1. Motivation: Asymptotic spectrum of random matrices.
2. Non-commutative probability spaces and free independence.
3. Free additive convolution: analytic approach.
3.1 The Cauchy transform and its reciprocal.
3.2 Voiculescu \& free cumulants transforms.
3.3 Free additive convolution of measures.
3.4 Examples.
4. Free multiplicative convolution: analytic approach.
4.1 S-transforms.
4.2 Free multiplicative convolution of measures.
4.3 Examples.
5. Overview Talks 2 and 3: Random Matrices and Infinite Divisibility (classical and free)

I. Pioneering work on Random Matrices by Eugene Wigner

 Ann Math. 1955, 1957, 1958- Ensemble of random matrices: Sequence $X=\left(X_{n}\right)_{n \geq 1}$, where X_{n} is $n \times n$ matrix with random entries.
- Wigner random matrices:

$$
X_{n}(k, j)=X_{n}(j, k)=\frac{1}{\sqrt{n}} \begin{cases}Z_{j, k}, & \text { if } j<k \\ Y_{j}, & \text { if } j=k\end{cases}
$$

$\left\{Z_{j, k}\right\}_{j \leq k},\left\{Y_{j}\right\}_{j \geq 1}$ independent sequences of i.i.d. random variables with assumptions on the first two moments:
$\mathbb{E} Z_{1,2}=\mathbb{E} Y_{1}=0, \quad \mathbb{E} Z_{1,2}^{2}=1$.

- $\lambda_{n, 1} \leq \ldots \leq \lambda_{n, n}$ eigenvalues of $X_{n}, n \geq 1$.
- Empirical spectral distribution (ESD) of X_{n} :

$$
\widehat{F}_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{\lambda_{n, j} \leq x\right\}} .
$$

- What is the limit of \widehat{F}_{n} (ASD) when $n \rightarrow \infty$?

I. Pioneering work on RMT by E. Wigner

 Ann Math. 1955, 1957, 1958Asymptotic spectral distribution (ASD): \widehat{F}_{n} converges, as $n \rightarrow \infty$, to semicircle distribution on ($-2,2$).

Theorem (Wigner)
$\forall f \in C_{b}(\mathbb{R})$ and $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\int f(x) \mathrm{d} \widehat{F}_{n}(x)-\int f(x) \mathrm{w}(x) \mathrm{d} x\right|>\varepsilon\right)=0
$$

where $\mathrm{w}(x) \mathrm{d} x$ is the semicircle distribution on $(-2,2)$

$$
\mathrm{w}(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}}, \quad|x| \leq 2
$$

I. Marchenko-Pastur (1967): Wishart type RM

- $X_{n}=X_{p \times n}$ with i.i.d. entries under moment assumptions.
- Covariance matrix $(p \times p) S_{n}=\frac{1}{n} X_{n} X_{n}^{*}$, with eigenvalues $0 \leq \lambda_{p, 1} \leq \ldots \leq \lambda_{p, p}$ and ESD $\widehat{F}_{p}(\lambda)$.
- If $n / p \rightarrow c>0, \widehat{F}_{p}$ converges to Marchenko-Pastur (MP)

$$
\begin{aligned}
\mathrm{m}_{c}(\mathrm{~d} x) & =\left\{\begin{array}{cl}
f_{c}(x) \mathrm{d} x, & \text { if } c \geq 1 \\
(1-c) \delta_{0}(\mathrm{~d} x)+f_{c}(x) \mathrm{d} x, & \text { if } 0<c<1, \\
f_{c}(x) & =\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a, b]}(x), \\
a & =(1-\sqrt{c})^{2}, \quad b=(1+\sqrt{c})^{2} .
\end{array}\right.
\end{aligned}
$$

I. Marchenko-Pastur (1967): Wishart type RM

- $X_{n}=X_{p \times n}$ with i.i.d. entries under moment assumptions.
- Covariance matrix $(p \times p) S_{n}=\frac{1}{n} X_{n} X_{n}^{*}$, with eigenvalues $0 \leq \lambda_{p, 1} \leq \ldots \leq \lambda_{p, p}$ and ESD $\widehat{F}_{p}(\lambda)$.
- If $n / p \rightarrow c>0, \widehat{F}_{p}$ converges to Marchenko-Pastur (MP)

$$
\begin{aligned}
\mathrm{m}_{c}(\mathrm{~d} x) & =\left\{\begin{array}{cl}
f_{c}(x) \mathrm{d} x, & \text { if } c \geq 1 \\
(1-c) \delta_{0}(\mathrm{~d} x)+f_{c}(x) \mathrm{d} x, & \text { if } 0<c<1, \\
f_{c}(x) & =\frac{c}{2 \pi x} \sqrt{(x-a)(b-x) \mathbf{1}_{[a, b]}(x),} \\
a & =(1-\sqrt{c})^{2}, \quad b=(1+\sqrt{c})^{2} .
\end{array}\right.
\end{aligned}
$$

- Wireless communication (Talatar, 99): if $C(p, n)$ is capacity of MIMO system of n receiver \& p transmitter antennas,

$$
\begin{aligned}
& \frac{C(p, n)}{p} \rightarrow \int_{a}^{b} \log _{2}(1+c R x) \mathrm{m}_{c}(\mathrm{~d} x)=K(c, R) \\
& C(p, n) \sim p K(c, R)
\end{aligned}
$$

I. Motivation to study RMT and Free Probability

From the Blog of Terence Tao (Free Probability, 2010):

1. The significance of free probability to random matrix theory lies in the fundamental observation that random matrices which are independent in the classical sense, also tend to be independent in the free probability sense, in the large limit.
2. This is only possible because of the highly non-commutative nature of these matrices; it is not possible for non-trivial commuting independent random variables to be freely independent.
3. Because of this, many tedious computations in random matrix theory, particularly those of an algebraic or enumerative combinatorial nature, can be done more quickly and systematically by using the framework of free probability.

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.
1.2 Several independent ensembles of random matrices become asymptotically free.

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.
1.2 Several independent ensembles of random matrices become asymptotically free.
2. Classical analogous:

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.
1.2 Several independent ensembles of random matrices become asymptotically free.
2. Classical analogous:
2.1 If $R_{1} \& R_{2}$ are real independent r.v. with distributions $\mu_{1} \&$ μ_{2}, the distribution of $R_{1}+R_{2}$ is the classical convolution

$$
\mu_{1} * \mu_{2}(E)=\int_{\mathbb{R}} \mu_{1}(E-x) \mu_{2}(\mathrm{~d} x)=\int_{\mathbb{R}} \mu_{2}(E-x) \mu_{1}(\mathrm{~d} x) .
$$

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.
1.2 Several independent ensembles of random matrices become asymptotically free.
2. Classical analogous:
2.1 If $R_{1} \& R_{2}$ are real independent r.v. with distributions $\mu_{1} \&$ μ_{2}, the distribution of $R_{1}+R_{2}$ is the classical convolution

$$
\mu_{1} * \mu_{2}(E)=\int_{\mathbb{R}} \mu_{1}(E-x) \mu_{2}(\mathrm{~d} x)=\int_{\mathbb{R}} \mu_{2}(E-x) \mu_{1}(\mathrm{~d} x) .
$$

2.2 Analytic tool for classical convolution is Fourier transform.

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.
1.2 Several independent ensembles of random matrices become asymptotically free.

2. Classical analogous:

2.1 If $R_{1} \& R_{2}$ are real independent r.v. with distributions $\mu_{1} \&$ μ_{2}, the distribution of $R_{1}+R_{2}$ is the classical convolution

$$
\mu_{1} * \mu_{2}(E)=\int_{\mathbb{R}} \mu_{1}(E-x) \mu_{2}(\mathrm{~d} x)=\int_{\mathbb{R}} \mu_{2}(E-x) \mu_{1}(\mathrm{~d} x) .
$$

2.2 Analytic tool for classical convolution is Fourier transform.

3. Today:

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.
1.2 Several independent ensembles of random matrices become asymptotically free.

2. Classical analogous:

2.1 If $R_{1} \& R_{2}$ are real independent r.v. with distributions $\mu_{1} \&$ μ_{2}, the distribution of $R_{1}+R_{2}$ is the classical convolution

$$
\mu_{1} * \mu_{2}(E)=\int_{\mathbb{R}} \mu_{1}(E-x) \mu_{2}(\mathrm{~d} x)=\int_{\mathbb{R}} \mu_{2}(E-x) \mu_{1}(\mathrm{~d} x) .
$$

2.2 Analytic tool for classical convolution is Fourier transform.
3. Today:
3.1 Asymptotically free random matrices.

I. Motivation to study RMT and Free Probability

1. A question: Knowing eigenvalues of $n \times n$ random matrices $X_{n} \& Y_{n}$, what are the eigenvalues of $X_{n}+Y_{n}$?
1.1 If $X_{n} \& Y_{n}$ are asymptotically free, the ASD of $X_{n}+Y_{n}$ is the " free convolution" of the ASD of $X_{n} \& Y_{n}$.
1.2 Several independent ensembles of random matrices become asymptotically free.

2. Classical analogous:

2.1 If $R_{1} \& R_{2}$ are real independent r.v. with distributions $\mu_{1} \&$ μ_{2}, the distribution of $R_{1}+R_{2}$ is the classical convolution

$$
\mu_{1} * \mu_{2}(E)=\int_{\mathbb{R}} \mu_{1}(E-x) \mu_{2}(\mathrm{~d} x)=\int_{\mathbb{R}} \mu_{2}(E-x) \mu_{1}(\mathrm{~d} x) .
$$

2.2 Analytic tool for classical convolution is Fourier transform.

3. Today:

3.1 Asymptotically free random matrices.
3.2 Free convolution: analytic tools similar to classical case.

I. Asymptotically free random matrices

Some facts about classical independence

- Two real random variables $X_{1} \& X_{2}$ are independent iff \forall bounded Borel functions $\left(B_{b}(\mathbb{R})\right) f, g$

$$
\begin{gathered}
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=\mathbb{E}\left(f\left(X_{1}\right)\right) \mathbb{E}\left(g\left(X_{2}\right)\right) \\
\mathbb{E}\left(\left[f\left(X_{1}\right)-\mathbb{E}\left(f\left(X_{1}\right)\right]\left[g\left(X_{2}\right)-\mathbb{E}\left(g\left(X_{2}\right)\right]\right)=0 .\right.\right.
\end{gathered}
$$

I. Asymptotically free random matrices

Some facts about classical independence

- Two real random variables $X_{1} \& X_{2}$ are independent iff \forall bounded Borel functions $\left(B_{b}(\mathbb{R})\right) f, g$

$$
\begin{gathered}
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=\mathbb{E}\left(f\left(X_{1}\right)\right) \mathbb{E}\left(g\left(X_{2}\right)\right) \\
\mathbb{E}\left(\left[f\left(X_{1}\right)-\mathbb{E}\left(f\left(X_{1}\right)\right]\left[g\left(X_{2}\right)-\mathbb{E}\left(g\left(X_{2}\right)\right]\right)=0 .\right.\right.
\end{gathered}
$$

- iff $\forall B_{b}(\mathbb{R})$ functions f, g

$$
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=0
$$

whenever $\mathbb{E}\left(f\left(X_{1}\right)\right)=\mathbb{E}\left(g\left(X_{2}\right)\right)=0$.

I. Asymptotically free random matrices

Some facts about classical independence

- Two real random variables $X_{1} \& X_{2}$ are independent iff \forall bounded Borel functions $\left(B_{b}(\mathbb{R})\right) f, g$

$$
\begin{gathered}
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=\mathbb{E}\left(f\left(X_{1}\right)\right) \mathbb{E}\left(g\left(X_{2}\right)\right) \\
\mathbb{E}\left(\left[f\left(X_{1}\right)-\mathbb{E}\left(f\left(X_{1}\right)\right]\left[g\left(X_{2}\right)-\mathbb{E}\left(g\left(X_{2}\right)\right]\right)=0 .\right.\right.
\end{gathered}
$$

- iff $\forall B_{b}(\mathbb{R})$ functions f, g

$$
\mathbb{E}\left(f\left(X_{1}\right) g\left(X_{2}\right)\right)=0
$$

whenever $\mathbb{E}\left(f\left(X_{1}\right)\right)=\mathbb{E}\left(g\left(X_{2}\right)\right)=0$.

- iff $\left(X_{1} \& X_{2}\right.$ are bounded $) \forall n, m \geq 1$

$$
\begin{gathered}
\mathbb{E}\left[\left(X_{1}^{n}-\mathbb{E} X_{1}^{n}\right)\left(X_{2}^{m}-\mathbb{E} X_{2}^{m}\right)\right]=0 \\
\mathbb{E} X_{1}^{n} X_{2}^{m}=\mathbb{E} X_{1}^{n} \mathbb{E} X_{2}^{m} .
\end{gathered}
$$

Then independence allows to compute all joint moments, so the moments of $X_{1}+X_{2}$.

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right] .
$$

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right] .
$$

- Two Hermitian ensembles $\mathbf{X}_{1} \& \mathbf{X}_{2}$ are asymptotically free (AF) if $\forall r \in Z_{+}$\& polynomials $p_{i}(\cdot), q_{i}(\cdot), 1 \leq i \leq r$ with

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0,
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right] .
$$

- Two Hermitian ensembles $\mathbf{X}_{1} \& \mathbf{X}_{2}$ are asymptotically free (AF) if $\forall r \in Z_{+}$\& polynomials $p_{i}(\cdot), q_{i}(\cdot), 1 \leq i \leq r$ with

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0,
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

- If $X_{1} \& X_{2}$ are independent zero-mean non constant real r.v., then $\mathbf{X}_{1}=X_{1} \mathrm{I} \& \mathbf{X}_{2}=X_{2} \mathrm{I}$ are not AF .

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right]
$$

- Two Hermitian ensembles $\mathbf{X}_{1} \& \mathbf{X}_{2}$ are asymptotically free (AF) if $\forall r \in Z_{+}$\& polynomials $p_{i}(\cdot), q_{i}(\cdot), 1 \leq i \leq r$ with

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

- If $X_{1} \& X_{2}$ are independent zero-mean non constant real r.v., then $\mathbf{X}_{1}=X_{1} \mathrm{I} \& \mathbf{X}_{2}=X_{2} \mathrm{I}$ are not AF .
- If $\mathbf{X}_{1} \& \mathbf{X}_{2}$ are AF and commute, one has to be deterministic.

I. Asymptotically free random matrices

Voiculescu (1991)

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right]
$$

- Two Hermitian ensembles $\mathbf{X}_{1} \& \mathbf{X}_{2}$ are asymptotically free (AF) if $\forall r \in Z_{+}$\& polynomials $p_{i}(\cdot), q_{i}(\cdot), 1 \leq i \leq r$ with

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

- If $X_{1} \& X_{2}$ are independent zero-mean non constant real r.v., then $\mathbf{X}_{1}=X_{1} \mathrm{I} \& \mathbf{X}_{2}=X_{2} \mathrm{I}$ are not AF .
- If $\mathbf{X}_{1} \& \mathbf{X}_{2}$ are AF and commute, one has to be deterministic.
- Non-commutative word!

I. Asymptotically free RM: Examples

1. \mathbf{X} and $\mathrm{I}=\left(\mathrm{I}_{n}\right)$ are AF .
2. If \mathbf{X} and \mathbf{Y} are independent Wigner ensembles, they are AF.
3. If \mathbf{X} and \mathbf{Y} are independent standard Gaussian ensembles, then $\mathbf{X X} \mathbf{X}^{*}$ and $\mathbf{Y} \mathbf{Y}^{*}$ are AF .
4. If \mathbf{X} and \mathbf{Y} independent Wishart ensembles, they are AF .
5. If \mathbf{U} and \mathbf{V} are independent unitarily ensembles, they are $A F$.
6. If A, B are deterministic ensembles whose ASD have compact support \& U is an unitary ensemble, then $U A U^{*} \& B$ are AF.

II. Free probability: Non-commutative probability spaces

Definitions

(i) A non-commutative probability space (\mathcal{A}, τ) is a unital algebra \mathcal{A} over \mathbb{C} with a linear functional $\tau: \mathcal{A} \rightarrow \mathbb{C}$ with $\tau(\mathbf{1})=1$.
Elements of \mathcal{A} are called non-commutative random variables.
(ii) (\mathcal{A}, τ) is C^{*}-probability space if \mathcal{A} is a C^{*}-algebra and τ is a positive linear functional.
(iii) (\mathcal{A}, τ) is W^{*}-probability space if \mathcal{A} is a W^{*}-algebra and τ is a normal faithful trace.
II. Non-commutative r.v. with a given distribution

Fact
(i) Given a p.m. μ on \mathbb{R} with bounded support, there exist a C^{*}-probability space (\mathcal{A}, τ) and a self-adjoint $\mathbf{a} \in \mathcal{A}$ with

$$
\tau(f(\mathbf{a}))=\int_{\mathbb{R}} f(x) \mu(\mathrm{d} x), \quad \forall f \in C_{b}(\mathbb{R}) .
$$

Fact
(ii) Given a p.m. μ on \mathbb{R}, there exists a W^{*}-probability space
(\mathcal{A}, τ) and self-adjoint operator a on a Hilbert space H such that

$$
\begin{gather*}
f(\mathbf{a}) \in \mathcal{A} \quad \forall f \in B_{b}(\mathbb{R}), \tag{1}\\
\tau(f(\mathbf{a}))=\int_{\mathbb{R}} f(x) \mu(\mathrm{d} x), \quad \forall f \in B_{b}(\mathbb{R}) .
\end{gather*}
$$

If (1) holds, it is said that \mathbf{a} is affiliated with \mathcal{A}.

II. Free Random Variables

Definitions
(i) A family of W^{*}-subalgebras $\left\{\mathcal{A}_{i}\right\}_{i \in I} \subset \mathcal{A}$ in a W^{*}-probability space is free if

$$
\tau\left(\mathbf{a}_{1} \mathbf{a}_{2} \cdots \mathbf{a}_{n}\right)=0
$$

whenever $\tau\left(\mathbf{a}_{j}\right)=0, \mathbf{a}_{j} \in \mathcal{A}_{i_{j}}$, and $i_{1} \neq i_{2}, i_{2} \neq i_{3}, \ldots, i_{n-1} \neq i_{n}$.
(iii) If $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ is a family of free W^{*}-subalgebras $\& \mathbf{a}_{i}$ is affiliated with $\mathcal{A}_{i}, i \in I$, the r.v. $\left\{\mathbf{a}_{i}\right\}_{i \in I}$ are called freely independent.

Fact

Given $\mu_{1} \& \mu_{2}$ p.m. on \mathbb{R}, there exist a W^{*}-probability space, W^{*}-subalgebras $\mathcal{A}_{1}, \mathcal{A}_{2}$ and self-adjoint operators \mathbf{a}_{1} and \mathbf{a}_{2} on a Hilbert space H affiliated with \mathcal{A}_{1} and \mathcal{A}_{2} respectively, such that
(i) \mathbf{a}_{i} has distribution μ_{i}
(i) \mathbf{a}_{1} and \mathbf{a}_{2} are freely independent.

II. Free independence allows to compute joint moments

Example

Computation of $\tau(\mathbf{a b a b})$ when $\mathbf{a} \& \mathbf{b}$ are freely independent: Suppose $\left\{\mathbf{a}_{1}, \mathbf{a}_{3}\right\}$ and $\left\{\mathbf{a}_{2}, \mathbf{a}_{4}\right\}$ are freely independent. Since

$$
\tau\left(\mathbf{a}_{i}-\tau\left(\mathbf{a}_{i}\right) 1_{\mathcal{A}}\right)=0,
$$

$\tau\left(\mathbf{a}_{1}-\tau\left(\mathbf{a}_{1}\right) 1_{\mathcal{A}}\right) \tau\left(\mathbf{a}_{2}-\tau\left(\mathbf{a}_{2}\right) 1_{\mathcal{A}}\right) \tau\left(\mathbf{a}_{3}-\tau\left(\mathbf{a}_{3}\right) 1_{\mathcal{A}}\right) \tau\left(\mathbf{a}_{4}-\tau\left(\mathbf{a}_{4}\right) 1_{\mathcal{A}}\right)=0$.
Computations yield

$$
\begin{aligned}
\tau\left(\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3} \mathbf{a}_{4}\right) & =\tau\left(\mathbf{a}_{1} \mathbf{a}_{3}\right) \tau\left(\mathbf{a}_{2}\right) \tau\left(\mathbf{a}_{4}\right)+\tau\left(\mathbf{a}_{1}\right) \tau\left(\mathbf{a}_{3}\right) \tau\left(\mathbf{a}_{2} \mathbf{a}_{4}\right) \\
& -\tau\left(\mathbf{a}_{1}\right) \tau\left(\mathbf{a}_{2}\right) \tau\left(\mathbf{a}_{3}\right) \tau\left(\mathbf{a}_{4}\right) .
\end{aligned}
$$

In particular if $\mathbf{a}_{1}=\mathbf{a}_{3}=\mathbf{a}$ and $\mathbf{a}_{2}=\mathbf{a}_{4}=\mathbf{b}$
$\tau(\mathbf{a b a b})=\tau(\mathbf{a})^{2} \tau\left(\mathbf{b}^{2}\right)+\tau\left(\mathbf{a}^{2}\right) \tau(\mathbf{b})^{2}-\tau(\mathbf{a})^{2} \tau(\mathbf{b})^{2} \neq \tau(\mathbf{a})^{2} \tau(\mathbf{b})^{2}$.

II. Application: Free Central Limit Theorem

Theorem
Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots$ be a sequence of independent free random variables with the same distribution with all moments. Assume that $\tau\left(\mathbf{a}_{1}\right)=0$ and $\tau\left(\mathbf{a}_{1}^{2}\right)=1$. Then the distribution of

$$
\mathbf{Z}_{m}=\frac{1}{\sqrt{m}}\left(\mathbf{a}_{1}+\ldots+\mathbf{a}_{m}\right)
$$

converges to the semicircle distribution as $m \rightarrow \infty$.

- Idea of proof: Show that the moments $\tau\left(\mathbf{Z}_{m}^{k}\right), k \geq 1$, converge to the moments of the semicircle distribution $m_{2 k+1}=0$ and

$$
m_{2 k}=\frac{1}{k+1}\binom{2 k}{k}
$$

using combinatorics of noncrossing partitions.

II. Free Additive and Multiplicative Convolution

Definition

Let $\mathbf{a}_{1}, \mathbf{a}_{2}$ be free random variables with distributions $\mu_{1} \& \mu_{2}$. The distribution of $\mathbf{a}_{1}+\mathbf{a}_{2}$ is the free additive convolution of μ_{1} and μ_{2} and it is denoted by

$$
\mu_{1} \boxplus \mu_{2}
$$

II. Free Additive and Multiplicative Convolution

Definition

Let $\mathbf{a}_{1}, \mathbf{a}_{2}$ be free random variables with distributions $\mu_{1} \& \mu_{2}$. The distribution of $\mathbf{a}_{1}+\mathbf{a}_{2}$ is the free additive convolution of μ_{1} and μ_{2} and it is denoted by $\mu_{1} \boxplus \mu_{2}$.

Definition

Let μ_{1} have positive support. Then \mathbf{a}_{1} is a positive self-adjoint operator and the distribution of $\mathbf{a}_{1}^{1 / 2}$ is uniquely determined by μ_{1}. The distribution of the self-adjoint operator $\mathbf{a}_{1}^{1 / 2} \mathbf{a}_{2} \mathbf{a}_{1}^{1 / 2}$ is determined by μ_{1} and μ_{2}. This measure is the free multiplicative convolution of μ_{1} and μ_{2} and it is denoted by

$$
\mu_{1} \boxtimes \mu_{2}
$$

II. Free Additive and Multiplicative Convolutions

Definition

Let $\mathbf{a}_{1}, \mathbf{a}_{2}$ be free random variables with distributions $\mu_{1} \& \mu_{2}$. The distribution of $\mathbf{a}_{1}+\mathbf{a}_{2}$ is the free additive convolution of μ_{1} and μ_{2} and it is denoted by $\mu_{1} \boxplus \mu_{2}$.

Definition

Let μ_{1} have positive support. Then \mathbf{a}_{1} is a positive self-adjoint operator and the distribution of $\mathbf{a}_{1}^{1 / 2}$ is uniquely determined by μ_{1}. The distribution of the self-adjoint operator $\mathbf{a}_{1}^{1 / 2} \mathbf{a}_{2} \mathbf{a}_{1}^{1 / 2}$ is determined by μ_{1} and μ_{2}. This measure is the free multiplicative convolution of μ_{1} and μ_{2} and it is denoted by $\mu_{1} \boxtimes \mu_{2}$.

Questions and purpose of the talk:

1) Can $\mu_{1} \boxtimes \mu_{2} \& \mu_{1} \boxtimes \mu_{2}$ be considered merely as two new types of "convolutions" in the set of probability measures on \mathbb{R} ?
2) What are the analytic tools to study them?

III. Free additive convolution: Analytic approach

Recall the classical convolution case

- Fourier transform of probability measure μ on \mathbb{R}

$$
\widehat{\mu}(s)=\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{~d} x), \quad s \in \mathbb{R} .
$$

III. Free additive convolution: Analytic approach

Recall the classical convolution case

- Fourier transform of probability measure μ on \mathbb{R}

$$
\widehat{\mu}(s)=\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{~d} x), \quad s \in \mathbb{R} .
$$

- Cumulant transform

$$
c_{\mu}(s)=\log \widehat{\mu}(s), \quad s \in S .
$$

III. Free additive convolution: Analytic approach

Recall the classical convolution case

- Fourier transform of probability measure μ on \mathbb{R}

$$
\widehat{\mu}(s)=\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{~d} x), \quad s \in \mathbb{R}
$$

- Cumulant transform

$$
c_{\mu}(s)=\log \widehat{\mu}(s), \quad s \in S .
$$

- $\mu_{1} * \mu_{2}$ is the unique p.m. with $\widehat{\mu_{1} * \mu_{2}}(s)=\widehat{\mu}_{1}(s) \widehat{\mu}_{2}(s)$ or

$$
c_{\mu_{1} * \mu_{2}}(s)=c_{\mu_{1}}(s)+c_{\mu_{2}}(s) .
$$

III. Free additive convolution: Analytic approach

Recall the classical convolution case

- Fourier transform of probability measure μ on \mathbb{R}

$$
\widehat{\mu}(s)=\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{~d} x), \quad s \in \mathbb{R}
$$

- Cumulant transform

$$
c_{\mu}(s)=\log \widehat{\mu}(s), \quad s \in S .
$$

- $\mu_{1} * \mu_{2}$ is the unique p.m. with $\widehat{\mu_{1} * \mu_{2}}(s)=\widehat{\mu}_{1}(s) \widehat{\mu}_{2}(s)$ or

$$
c_{\mu_{1} * \mu_{2}}(s)=c_{\mu_{1}}(s)+c_{\mu_{2}}(s) .
$$

- Cumulant transform linearizes classical convolution.

III. Free additive convolution: Analytic approach

Recall the classical convolution case

- Fourier transform of probability measure μ on \mathbb{R}

$$
\widehat{\mu}(s)=\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{~d} x), \quad s \in \mathbb{R}
$$

- Cumulant transform

$$
c_{\mu}(s)=\log \widehat{\mu}(s), \quad s \in S .
$$

- $\mu_{1} * \mu_{2}$ is the unique p.m. with $\widehat{\mu_{1} * \mu_{2}}(s)=\widehat{\mu}_{1}(s) \widehat{\mu}_{2}(s)$ or

$$
c_{\mu_{1} * \mu_{2}}(s)=c_{\mu_{1}}(s)+c_{\mu_{2}}(s) .
$$

- Cumulant transform linearizes classical convolution.
- If $X_{1} \& X_{2}$ are classical independent r.v. with distributions μ_{1} $\& \mu_{2}$, then $X_{1}+X_{2}$ has distribution $\mu_{1} * \mu_{2}$.

III. The Cauchy transform

- Cauchy transform (CT) of a p.m. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x) .
$$

III. The Cauchy transform

- Cauchy transform (CT) of a p.m. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x) .
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is CT of a p.m. μ iff

$$
\text { iyG }(\text { iy }) \rightarrow 1 \text {, asy } \rightarrow \infty .
$$

III. The Cauchy transform

- Cauchy transform (CT) of a p.m. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x)
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is CT of a p.m. μ iff

$$
\text { iyG }(\text { iy }) \rightarrow 1, \text { asy } \rightarrow \infty .
$$

- Stieltjes inversion formula

$$
\mu\left(\left(t_{0}, t_{1}\right]\right)=-\frac{1}{\pi} \lim _{\delta \rightarrow 0+} \lim _{y \rightarrow 0+} \int_{t_{0}+\delta}^{t_{1}+\delta} \operatorname{Im}\left(G_{\mu}(x+i y)\right) d x, \quad t_{0}<t_{1}
$$

III. The Cauchy transform

- Cauchy transform (CT) of a p.m. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x)
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is CT of a p.m. μ iff

$$
\text { iyG }(\text { iy }) \rightarrow 1, \text { asy } \rightarrow \infty .
$$

- Stieltjes inversion formula

$$
\mu\left(\left(t_{0}, t_{1}\right]\right)=-\frac{1}{\pi} \lim _{\delta \rightarrow 0+} \lim _{y \rightarrow 0+} \int_{t_{0}+\delta}^{t_{1}+\delta} \operatorname{Im}\left(G_{\mu}(x+i y)\right) d x, \quad t_{0}<t_{1}
$$

- If μ is a.c. w.r.t. Lebesgue measure with density f_{μ},

$$
f_{\mu}(x)=-\frac{1}{\pi} \lim _{y \rightarrow 0+} \operatorname{Im} G_{\mu}(x+i y)
$$

III. The Cauchy transform

- Cauchy transform (CT) of a p.m. $\mu, G_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$

$$
G_{\mu}(z)=\int_{-\infty}^{\infty} \frac{1}{z-x} \mu(\mathrm{~d} x) .
$$

- Analytic function $G=\mathbb{C}^{+} \rightarrow \mathbb{C}^{-}$is CT of a p.m. μ iff

$$
\text { iyG }(\text { iy }) \rightarrow 1, \text { asy } \rightarrow \infty .
$$

- Stieltjes inversion formula

$$
\mu\left(\left(t_{0}, t_{1}\right]\right)=-\frac{1}{\pi} \lim _{\delta \rightarrow 0+} \lim _{y \rightarrow 0+} \int_{t_{0}+\delta}^{t_{1}+\delta} \operatorname{Im}\left(G_{\mu}(x+i y)\right) d x, \quad t_{0}<t_{1}
$$

- If μ is a.c. w.r.t. Lebesgue measure with density f_{μ},

$$
f_{\mu}(x)=-\frac{1}{\pi} \lim _{y \rightarrow 0+} \operatorname{Im} G_{\mu}(x+i y)
$$

- Weak convergence of probability measures is metricized by

$$
d\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\left|G_{\mu_{1}}(z)-G_{\mu_{2}}(z)\right| ; \operatorname{lm}(z) \geq 1\right\}
$$

III. Reciprocal Cauchy transform

- $\underline{G}_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

III. Reciprocal Cauchy transform

- $\underline{G}_{\mu}(z): \mathrm{C}^{+} \rightarrow \mathrm{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

- \underline{G}_{μ} is basic tool in free, monotone and Boolean convolutions.

III. Reciprocal Cauchy transform

- $\underline{G}_{\mu}(z): \mathrm{C}^{+} \rightarrow \mathrm{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

- \underline{G}_{μ} is basic tool in free, monotone and Boolean convolutions.
- Bercovici \& Voiculescu (93): Right inverse \underline{G}_{μ}^{-1} of \underline{G}_{μ} exists in $\Gamma=\cup_{\alpha>0} \Gamma_{\alpha, \beta_{\alpha}}$, where

$$
\Gamma_{\alpha, \beta}=\{z=x+i y: y>\beta, x<\alpha y\}, \alpha>0, \beta>0 .
$$

III. Reciprocal Cauchy transform

- $\underline{G}_{\mu}(z): \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

- \underline{G}_{μ} is basic tool in free, monotone and Boolean convolutions.
- Bercovici \& Voiculescu (93): Right inverse \underline{G}_{μ}^{-1} of \underline{G}_{μ} exists in $\Gamma=\cup_{\alpha>0} \Gamma_{\alpha, \beta_{\alpha}}$, where

$$
\Gamma_{\alpha, \beta}=\{z=x+i y: y>\beta, x<\alpha y\}, \alpha>0, \beta>0 .
$$

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu} .
$$

III. Reciprocal Cauchy transform

- $\underline{G}_{\mu}(z): \mathrm{C}^{+} \rightarrow \mathrm{C}^{+}$,

$$
\underline{G}_{\mu}(z)=1 / G_{\mu}(z)
$$

- \underline{G}_{μ} is basic tool in free, monotone and Boolean convolutions.
- Bercovici \& Voiculescu (93): Right inverse \underline{G}_{μ}^{-1} of \underline{G}_{μ} exists in $\Gamma=\cup_{\alpha>0} \Gamma_{\alpha, \beta_{\alpha}}$, where

$$
\Gamma_{\alpha, \beta}=\{z=x+i y: y>\beta, x<\alpha y\}, \alpha>0, \beta>0 .
$$

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu} .
$$

- $\left(\mu_{n}\right)_{n \geq 1}$ converges weakly to μ if and only if $\exists \alpha, \beta$ such that $\phi_{\mu_{n}}(z) \rightarrow \phi_{\mu}(z)$ in compact sets of $\Gamma_{\alpha, \beta}$.

III. Useful transformations of the Cauchy transform

Free cumulant transforms

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu} .
$$

III. Useful transformations of the Cauchy transform

Free cumulant transforms

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu}
$$

- Free cumulant transform

$$
C_{\mu}(z)=z \phi_{\mu}\left(\frac{1}{z}\right)=z \underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-1 .
$$

III. Useful transformations of the Cauchy transform

Free cumulant transforms

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu}
$$

- Free cumulant transform

$$
C_{\mu}(z)=z \phi_{\mu}\left(\frac{1}{z}\right)=z \underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-1 .
$$

- μ can be recovered from the cumulant transform

$$
G_{\mu}\left(\frac{1}{z}\left(C_{\mu}(z)+1\right)\right)=z
$$

III. Useful transformations of the Cauchy transform

Free cumulant transforms

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu}
$$

- Free cumulant transform

$$
C_{\mu}(z)=z \phi_{\mu}\left(\frac{1}{z}\right)=z \underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-1 .
$$

- μ can be recovered from the cumulant transform

$$
G_{\mu}\left(\frac{1}{z}\left(C_{\mu}(z)+1\right)\right)=z
$$

- R-transform

$$
R_{\mu}(z)=\underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-\frac{1}{z}
$$

III. Useful transformations of the Cauchy transform

Free cumulant transforms

- Voiculescu transform

$$
\phi_{\mu}(z)=\underline{G}_{\mu}^{-1}(z)-z, \quad z \in \Gamma_{\alpha, \beta}^{\mu} .
$$

- Free cumulant transform

$$
C_{\mu}(z)=z \phi_{\mu}\left(\frac{1}{z}\right)=z \underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-1 .
$$

- μ can be recovered from the cumulant transform

$$
G_{\mu}\left(\frac{1}{z}\left(C_{\mu}(z)+1\right)\right)=z
$$

- R-transform

$$
R_{\mu}(z)=\underline{G}_{\mu}^{-1}\left(\frac{1}{z}\right)-\frac{1}{z}
$$

- ϕ_{μ}, C_{μ} and R_{μ} linearize free additive convolution.

III. Free additive convolution

Analytic definition

- For $\mu_{1} \& \mu_{2}$ p.m. on $\mathbb{R}, \mu_{1} \boxplus \mu_{2}$ is the unique p.m. on \mathbb{R} such that

$$
\phi_{\mu_{1} \boxplus \mu_{2}}(z)=\phi_{\mu_{1}}(z)+\phi_{\mu_{2}}(z), \quad z \in \Gamma_{\alpha_{1}, \beta_{1}}^{\mu_{1}} \cap \Gamma_{\alpha_{2}, \beta_{2}}^{\mu_{2}}
$$

or equivalently

$$
C_{\mu_{1} \boxplus \mu_{2}}(z)=C_{\mu_{1}}(z)+C_{\mu_{2}}(z) .
$$

III. Free additive convolution

Analytic definition

- For $\mu_{1} \& \mu_{2}$ p.m. on $\mathbb{R}, \mu_{1} \boxplus \mu_{2}$ is the unique p.m. on \mathbb{R} such that

$$
\phi_{\mu_{1} \boxplus \mu_{2}}(z)=\phi_{\mu_{1}}(z)+\phi_{\mu_{2}}(z), \quad z \in \Gamma_{\alpha_{1}, \beta_{1}}^{\mu_{1}} \cap \Gamma_{\alpha_{2}, \beta_{2}}^{\mu_{2}}
$$

or equivalently

$$
C_{\mu_{1} \boxplus \mu_{2}}(z)=C_{\mu_{1}}(z)+C_{\mu_{2}}(z) .
$$

- If $\mathbf{a}_{1} \& \mathbf{a}_{2}$ are free independent with distributions $\mu_{1} \& \mu_{2}$, then $\mu_{1} \boxplus \mu_{2}$ is the distribution of $\mathbf{a}_{1}+\mathbf{a}_{2}$.

III. Free additive convolution

Analytic definition

- For $\mu_{1} \& \mu_{2}$ p.m. on $\mathbb{R}, \mu_{1} \boxplus \mu_{2}$ is the unique p.m. on \mathbb{R} such that

$$
\phi_{\mu_{1} \boxplus \mu_{2}}(z)=\phi_{\mu_{1}}(z)+\phi_{\mu_{2}}(z), \quad z \in \Gamma_{\alpha_{1}, \beta_{1}}^{\mu_{1}} \cap \Gamma_{\alpha_{2}, \beta_{2}}^{\mu_{2}}
$$

or equivalently

$$
C_{\mu_{1} \boxplus \mu_{2}}(z)=C_{\mu_{1}}(z)+C_{\mu_{2}}(z) .
$$

- If $\mathbf{a}_{1} \& \mathbf{a}_{2}$ are free independent with distributions $\mu_{1} \& \mu_{2}$, then $\mu_{1} \boxplus \mu_{2}$ is the distribution of $\mathbf{a}_{1}+\mathbf{a}_{2}$.
- If $\left(X_{n}^{1}\right)_{n \geq 1},\left(X_{n}^{2}\right)_{n \geq 1}$ are asymptotically free random matrices with ASD $\mu_{1} \& \mu_{2}$, then $\left(X_{n}^{1}+X_{n}^{2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxplus \mu_{2}$.

IV. Example: free convolution of Wigners

Semicircle distribution $\mathrm{w}_{m, \sigma^{2}}$ on $(m-2 \sigma, m+2 \sigma)$ centered at m

$$
w_{m, \sigma^{2}}(x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-(x-m)^{2}} 1_{[m-2 \sigma, m+2 \sigma]}(x) .
$$

Cauchy transform:

$$
G_{\mathrm{w}_{m, \sigma^{2}}}(z)=\frac{1}{2 \sigma^{2}}\left(z-\sqrt{(z-m)^{2}-4 \sigma^{2}}\right)
$$

Free cumulant transform:

$$
C_{\mathrm{w}_{m, \sigma^{2}}}(z)=m z+\sigma^{2} z .
$$

\boxplus-convolution of Wigner distributions is a Wigner distribution:

$$
\mathrm{w}_{m_{1}, \sigma_{1}^{2}} \boxplus \mathrm{w}_{m_{2}, \sigma_{2}^{2}}=\mathrm{w}_{m_{1}+m_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}} .
$$

III. Free additive convolutions: Examples

Marchenko-Pastur distribution
$c>0$

$$
\mathrm{m}_{c}(\mathrm{~d} x)=(1-c)_{+} \delta_{0}+\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} 1_{[a, b]}(x) \mathrm{d} x
$$

Cauchy transform

$$
G_{\mathrm{m}_{c}}=\frac{1}{2}-\frac{\sqrt{(z-a)(z-b)}}{2 z}+\frac{1-c}{2 z}
$$

Free cumulant transform

$$
C_{\mathrm{m}_{c}}(z)=\frac{c z}{1-z} .
$$

田-convolution of MP distributions is a MP distribution:

$$
\mathrm{m}_{c_{1}} \boxplus \mathrm{~m}_{c_{2}}=\mathrm{m}_{c_{1}+c_{2}}
$$

III. Free additive convolutions: Examples

Cauchy distribution
$\sigma>0$, Cauchy distribution

$$
\mathrm{c}_{\sigma}(\mathrm{d} x)=\frac{1}{\pi} \frac{\sigma}{\sigma^{2}+x^{2}} \mathrm{~d} x
$$

Cauchy transform

$$
G_{\mathcal{c}_{\sigma}}(z)=\frac{1}{z+\sigma i}
$$

Free cumulant transform

$$
C_{\mathrm{C}_{\sigma}}(z)=-i \sigma z
$$

\boxplus-convolution of Cauchy distributions is a Cauchy distribution

$$
\mathrm{c}_{\sigma_{1}} \boxplus \mathrm{c}_{\sigma_{2}}=\mathrm{c}_{\sigma_{1}+\sigma_{2}} .
$$

III. Free additive convolutions: Examples

Pathological example
What is $\mathrm{b} \boxplus \mathrm{b}$ when b is symmetric Bernoulli distribution

$$
\mathrm{b}(\mathrm{~d} x)=\frac{1}{2}\left(\delta_{\{-1\}}(\mathrm{d} x)+\delta_{\{1\}}(\mathrm{d} x)\right) ?
$$

Cauchy transform:

$$
G_{b}(z)=\frac{z}{z^{2}-1} .
$$

Free cumulant transform:

$$
C_{\mathrm{b}}(z)=\frac{1}{2}\left(\sqrt{1+4 z^{2}}-1\right) .
$$

Then

$$
C_{\mathrm{b} \boxplus \mathrm{~b}}(z)=\sqrt{1+4 z^{2}}-1 .
$$

Solving for $\mu=\mathrm{b} \boxplus \mathrm{b}$

$$
G_{\mu}\left(\frac{1}{z}\left(C_{\mu}(z)+1\right)\right)=z
$$

III. Free additive convolutions: Examples

Pathological example
Solving for $b \boxplus b$

$$
\begin{gathered}
G_{\mathrm{b} \boxplus \mathrm{~b}}\left(\frac{1}{z}\left(\sqrt{1+4 z^{2}}\right)=z\right. \\
G_{\mathrm{b} \boxplus \mathrm{~b}}(z)=\frac{1}{\sqrt{z^{2}-4}},
\end{gathered}
$$

which is the Cauchy transform of the arcsine distribution

$$
\mathrm{a}(\mathrm{~d} x)=\frac{1}{\pi \sqrt{1-x^{2}}} 1_{(-1,1)}(x) \mathrm{d} x .
$$

Then

$$
\mathrm{b} \boxplus \mathrm{~b}=\mathrm{a} .
$$

Free additive convolution of atomic distributions may be absolutely continuous!

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C} .
$$

- $M_{\mu_{X}}$ characterizes μ_{X}.

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C} .
$$

- $M_{\mu_{X}}$ characterizes μ_{X}.
- Analytic rule to find distribution $\mu_{X Y}$

$$
M_{\mu_{X Y}}(z)=M_{\mu_{X}}(z) M_{\mu_{Y}}(z)
$$

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C} .
$$

- $M_{\mu_{X}}$ characterizes μ_{X}.
- Analytic rule to find distribution $\mu_{X Y}$

$$
M_{\mu_{X Y}}(z)=M_{\mu_{X}}(z) M_{\mu_{Y}}(z)
$$

- $\mu_{X Y}$ the classical multiplicative convolution of $\mu_{X} \& \mu_{Y}$

IV. Free multiplicative convolution

Classical multiplicative convolution of random variables

- Given independent classical r.v. $X>0, Y>0$, with distribution μ_{X}, μ_{Y}, what is the distribution $\mu_{X Y}$ of $X Y$?
- Analytic tool: Mellin transform

$$
M_{\mu_{X}}(z)=\mathbb{E}_{\mu_{X}}\left[X^{z-1}\right]=\int_{\mathbb{R}} x^{z-1} \mu_{X}(\mathrm{~d} x), \quad z \in \mathbb{C}
$$

- $M_{\mu_{X}}$ characterizes μ_{X}.
- Analytic rule to find distribution $\mu_{X Y}$

$$
M_{\mu_{X Y}}(z)=M_{\mu_{X}}(z) M_{\mu_{Y}}(z)
$$

- $\mu_{X Y}$ the classical multiplicative convolution of $\mu_{X} \& \mu_{Y}$
- Analogous in free probability?

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- Ψ_{μ}-transform of a general probability distribution μ on \mathbb{R}

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1
$$

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- Ψ_{μ}-transform of a general probability distribution μ on \mathbb{R}

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1 .
$$

- If μ has compact support and $m_{k}(\mu):=\int_{\mathbb{R}} t^{k} \mu(d t)$

$$
\begin{aligned}
& G_{\mu}(z)=z^{-1}+\sum_{k=1}^{\infty} m_{k}(\mu) z^{-k-1}, \quad|z|>r_{\mu} \\
& \Psi_{\mu}(z)=\sum_{k=1}^{\infty} m_{k}(\mu) z^{k}, \quad|z|<r_{\mu}
\end{aligned}
$$

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- Ψ_{μ}-transform of a general probability distribution μ on \mathbb{R}

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1 .
$$

- If μ has compact support and $m_{k}(\mu):=\int_{\mathbb{R}} t^{k} \mu(d t)$

$$
\begin{aligned}
& G_{\mu}(z)=z^{-1}+\sum_{k=1}^{\infty} m_{k}(\mu) z^{-k-1}, \quad|z|>r_{\mu} \\
& \Psi_{\mu}(z)=\sum_{k=1}^{\infty} m_{k}(\mu) z^{k}, \quad|z|<r_{\mu}
\end{aligned}
$$

- If $\mu \in \mathcal{P}^{+}, \exists \chi_{\mu}: \Psi_{\mu}\left(i \mathbb{C}_{+}\right) \rightarrow i \mathbb{C}_{+}$inverse of Ψ_{μ}.

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- Ψ_{μ}-transform of a general probability distribution μ on \mathbb{R}

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1 .
$$

- If μ has compact support and $m_{k}(\mu):=\int_{\mathbb{R}} t^{k} \mu(d t)$

$$
\begin{aligned}
& G_{\mu}(z)=z^{-1}+\sum_{k=1}^{\infty} m_{k}(\mu) z^{-k-1}, \quad|z|>r_{\mu} \\
& \Psi_{\mu}(z)=\sum_{k=1}^{\infty} m_{k}(\mu) z^{k}, \quad|z|<r_{\mu} .
\end{aligned}
$$

- If $\mu \in \mathcal{P}^{+}, \exists \chi_{\mu}: \Psi_{\mu}\left(i \mathbb{C}_{+}\right) \rightarrow i \mathbb{C}_{+}$inverse of Ψ_{μ}.
- The S-transform of μ is defined by

$$
S_{\mu}(z)=\chi(z) \frac{1+z}{z}
$$

IV. Free multiplicative convolution: The S-transform

For distributions with nonnegative support: Bercovici \& Voiculescu (93)

- Ψ_{μ}-transform of a general probability distribution μ on \mathbb{R}

$$
\Psi_{\mu}(z)=\frac{1}{z} G_{\mu}\left(\frac{1}{z}\right)-1 .
$$

- If μ has compact support and $m_{k}(\mu):=\int_{\mathbb{R}} t^{k} \mu(d t)$

$$
\begin{aligned}
& G_{\mu}(z)=z^{-1}+\sum_{k=1}^{\infty} m_{k}(\mu) z^{-k-1}, \quad|z|>r_{\mu} \\
& \Psi_{\mu}(z)=\sum_{k=1}^{\infty} m_{k}(\mu) z^{k}, \quad|z|<r_{\mu}
\end{aligned}
$$

- If $\mu \in \mathcal{P}^{+}, \exists \chi_{\mu}: \Psi_{\mu}\left(i \mathbb{C}_{+}\right) \rightarrow i \mathbb{C}_{+}$inverse of Ψ_{μ}.
- The S-transform of μ is defined by

$$
S_{\mu}(z)=\chi(z) \frac{1+z}{z}
$$

- For μ_{1}, μ_{2} in $\mathcal{P}^{+}\left(\neq \delta_{0}\right), \mu_{1} \boxtimes \mu_{2}$ is unique p.m. in \mathcal{P}^{+}

$$
S_{\mu_{1} \boxtimes \mu_{2}}(z)=S_{\mu_{1}}(z) S_{\mu_{2}}(z)
$$

IV. Free multiplicative convolution: The S-transform

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.

IV. Free multiplicative convolution: The S-transform

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.
- In studying $\mu_{1} \boxtimes \mu_{2}$ via $S_{\mu_{1} \boxtimes \mu_{2}}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.

IV. Free multiplicative convolution: The S-transform

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.
- In studying $\mu_{1} \boxtimes \mu_{2}$ via $S_{\mu_{1} \boxtimes \mu_{2}}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.
- Raj Rao \& Speicher (2007): Combinatorial approach, μ_{1}, μ_{2} have bounded support, $\mu_{1} \in \mathcal{P}^{+}, \mu_{1}$ zero mean.

IV. Free multiplicative convolution: The S-transform

- If $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ are asymptotically free nonnegative definite random matrices with ASD μ_{1} and μ_{2}, then the product $\left(X_{n}^{1 / 2} Y_{n} X_{n}^{1 / 2}\right)_{n \geq 1}$ has ASD $\mu_{1} \boxtimes \mu_{2}$.
- In studying $\mu_{1} \boxtimes \mu_{2}$ via $S_{\mu_{1} \boxtimes \mu_{2}}$ the main problem is that for general distributions Ψ_{μ} has not a unique inverse.
- Raj Rao \& Speicher (2007): Combinatorial approach, μ_{1}, μ_{2} have bounded support, $\mu_{1} \in \mathcal{P}^{+}, \mu_{1}$ zero mean.
- Arizmendi and PA (2008): Analytic approach, μ_{1}, μ_{2} with unbounded support, $\mu_{1} \in \mathcal{P}^{+}, \mu_{2}$ symmetric.

IV. Free multiplicative convolution: The S-transform

 For symmetric distributions: Arizmendi-PA (2009).- $\mu \in \mathcal{P}_{s}$ (symmetric p.m.), μ^{2} p.m. in \mathcal{P}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

IV. Free multiplicative convolution: The S-transform

 For symmetric distributions: Arizmendi-PA (2009).- $\mu \in \mathcal{P}_{s}$ (symmetric p.m.), μ^{2} p.m. in \mathcal{P}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

- If $\mu \neq \delta_{0}, \Psi_{\mu}$, there are disjoint sets H, \widetilde{H} in \mathbb{C}, Ψ_{μ} has unique inverses $\chi_{\mu}: \Psi_{\mu}(H) \rightarrow H$ and $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \rightarrow \widetilde{H}$.

IV. Free multiplicative convolution: The S-transform

For symmetric distributions: Arizmendi-PA (2009).

- $\mu \in \mathcal{P}_{s}$ (symmetric p.m.), μ^{2} p.m. in \mathcal{P}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

- If $\mu \neq \delta_{0}, \Psi_{\mu}$, there are disjoint sets H, \widetilde{H} in \mathbb{C}, Ψ_{μ} has unique inverses $\chi_{\mu}: \Psi_{\mu}(H) \rightarrow H$ and $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \rightarrow \widetilde{H}$.
- There are two S-transforms

$$
\begin{aligned}
& S_{\mu}(z)=\chi_{\mu}(z) \frac{1+z}{z} \text { and } \widetilde{S}_{\mu}(z)=\widetilde{\chi}_{\mu}(z) \frac{1+z}{z} \\
& S_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z) \text { and } \widetilde{S}_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z)
\end{aligned}
$$

IV. Free multiplicative convolution: The S-transform

For symmetric distributions: Arizmendi-PA (2009).

- $\mu \in \mathcal{P}_{s}$ (symmetric p.m.), μ^{2} p.m. in \mathcal{P}^{+}induced by $t \rightarrow t^{2}$,

$$
\begin{aligned}
G_{\mu}(z) & =z G_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+} \\
\Psi_{\mu}(z) & =\Psi_{\mu^{2}}\left(z^{2}\right), z \in \mathbb{C} \backslash \mathbb{R}_{+}
\end{aligned}
$$

- If $\mu \neq \delta_{0}, \Psi_{\mu}$, there are disjoint sets H, \widetilde{H} in \mathbb{C}, Ψ_{μ} has unique inverses $\chi_{\mu}: \Psi_{\mu}(H) \rightarrow H$ and $\widetilde{\chi}_{\mu}: \Psi_{\mu}(\widetilde{H}) \rightarrow \widetilde{H}$.
- There are two S-transforms

$$
\begin{aligned}
& S_{\mu}(z)=\chi_{\mu}(z) \frac{1+z}{z} \text { and } \widetilde{S}_{\mu}(z)=\widetilde{\chi}_{\mu}(z) \frac{1+z}{z} \\
& S_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z) \text { and } \widetilde{S}_{\mu}^{2}(z)=\frac{1+z}{z} S_{\mu^{2}}(z)
\end{aligned}
$$

- If μ_{1} in \mathcal{P}^{+}and μ_{2} in \mathcal{P}_{s}

$$
S_{\mu_{1} \boxtimes \mu_{2}}(z)=S_{\mu_{1}}(z) S_{\mu_{2}}(z)=S_{\mu_{1}}(z) \widetilde{S}_{\mu_{2}}(z)
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

IV. Examples of S-transforms

- w Wigner distribution on ($-2,2$)

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

- m_{c} Marchenko-Pastur distribution with parameter $c>0$

$$
S_{\mathrm{m}_{c}}(z)=\frac{1}{z+c}
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

- m_{c} Marchenko-Pastur distribution with parameter $c>0$

$$
S_{\mathrm{m}_{c}}(z)=\frac{1}{z+c}
$$

- bs symmetric Beta distribution $\operatorname{SM}(2 / 3,1 / 2)$

$$
S_{\mathrm{bs}}(z)=\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
$$

IV. Examples of S-transforms

- w Wigner distribution on $(-2,2)$

$$
S_{\mathrm{w}}(z)=\frac{1}{\sqrt{z}}
$$

- m_{c} Marchenko-Pastur distribution with parameter $c>0$

$$
S_{\mathrm{m}_{c}}(z)=\frac{1}{z+c}
$$

- bs symmetric Beta distribution $\operatorname{SM}(2 / 3,1 / 2)$

$$
S_{\mathrm{bs}}(z)=\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
$$

- a arcsine distribution

$$
S_{\mathrm{a}}(z)=\sqrt{\frac{z+2}{z}}
$$

IV. Examples of multiplicative convolutions

- $\mathrm{bs}=\mathrm{m}_{1} \otimes \mathrm{a}$

IV. Examples of multiplicative convolutions

- $\mathrm{bs}=\mathrm{m}_{1} \otimes \mathrm{a}$
- Proof:

$$
\begin{aligned}
S_{\mathrm{m}_{1}}(z) & =\frac{1}{z+1}, \quad S_{\mathrm{a}}(z)=\sqrt{\frac{z+2}{z}} \\
S_{\mathrm{bs}}(z) & =\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
\end{aligned}
$$

IV. Examples of multiplicative convolutions

- $\mathrm{bs}=\mathrm{m}_{1} \otimes \mathrm{a}$
- Proof:

$$
\begin{aligned}
S_{\mathrm{m}_{1}}(z) & =\frac{1}{z+1}, \quad S_{\mathrm{a}}(z)=\sqrt{\frac{z+2}{z}} \\
S_{\mathrm{bs}}(z) & =\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
\end{aligned}
$$

- $\mathrm{w}=\overline{\mathrm{m}}_{2} \boxtimes \mathrm{a}$, where $\overline{\mathrm{m}}_{2} \otimes \overline{\mathrm{~m}}_{2}=\mathrm{m}_{2}$

Proof:

$$
\begin{aligned}
S_{\overline{\mathrm{m}}_{2}}(z) & =\sqrt{\frac{1}{z+2}}, \\
S_{\mathrm{w}}(z) & =\sqrt{\frac{1}{z}}
\end{aligned}
$$

IV. Examples of multiplicative convolutions

- $\mathrm{bs}=\mathrm{m}_{1} \otimes \mathrm{a}$
- Proof:

$$
\begin{aligned}
S_{\mathrm{m}_{1}}(z) & =\frac{1}{z+1}, \quad S_{\mathrm{a}}(z)=\sqrt{\frac{z+2}{z}} \\
S_{\mathrm{bs}}(z) & =\frac{1}{z+1} \sqrt{\frac{z+2}{z}}
\end{aligned}
$$

- $\mathrm{w}=\overline{\mathrm{m}}_{2} \boxtimes \mathrm{a}$, where $\overline{\mathrm{m}}_{2} \otimes \overline{\mathrm{~m}}_{2}=\mathrm{m}_{2}$

Proof:

$$
\begin{aligned}
S_{\overline{\mathrm{m}}_{2}}(z) & =\sqrt{\frac{1}{z+2}}, \\
S_{\mathrm{w}}(z) & =\sqrt{\frac{1}{z}}
\end{aligned}
$$

- There is no $\lambda \in \mathcal{P}^{+}$such that $\mathrm{a}=\lambda \boxtimes \mathrm{w}$.

Overview Talks 2 and 3

- Talk 2: Random matrices.
- More on asymptotic spectrum of random matrices.
- Some applications.
- Dyson Brownian motion and other eigenvalues processes.
- Talk 3: Infinite divisibility (ID).
- Infinitely divisible random matrices.
- Free ID.
- A bijection between free and classical ID.
- Random matrices: bridge between classical \& free ID.

References

Free Probability, Random matrices and Asymptotic Freeness

- Voiculescu, D (1991). Limit Laws for random matrices and free products. Inventiones Mathematica 104, 201-220.
- H. Bercovici \& D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- Nica, A. \& R. Speicher (2006). Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Notes Series 335, Cambridge University Press, Cambridge.
- D. Voiculescu, J.K Dykema \& A. Nica (1992). Free Random Variables. American Mathematical Society.
- Hiai, F. \& D. Petz (2000). The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs 77, American Mathematical Society, Providence.
- G.W. Anderson, A. Guionnet and O- Zeitouni (2010). An Introduction to Random Matrices. Cambridge University Press. (Chapter 5).

References for free multiplicative convolutions

- D. Voiculescu (1987). Multiplication of certain non-commuting random variables. J. Operator Theory.
- H. Bercovici \& J.C. Wang (2008). Limit theorems for free multiplicative convolutions. Trans. Amer. Math. Soc.
- N. Raj Rao \& R. Speicher (2007). Multiplication of free random variables and the S-transform: The case of vanishing mean. Elect. Comm. Probab.
- O. Arizmendi \& VPA (2009). The S-transform of symmetric probability measures with unbounded supports. Proc. Amer. Math. Soc.
- O. Arizmendi, O.E. Barndorff-Nielsen \& VPA (2009). On free and classical type G distributions. Rev. Braz. Probab. Statist.
- VPA \& Sakuma Noriyoshi (2012). Free multiplicative convolutions of free multiplicative mixtures of the Wigner distribution. J. Theoretical Probab.

