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Plan of the Lecture

1. Review Lecture I

1.1 Asymptotic spectral distributions of random matrices.

1.2 Free asymptotics and free convolution of measures.

2. Free and Matrix-valued Brownian Motions.

3. Dyson Brownian Motion and its Measure-valued Process.

4. Functional Limit Theorems for Traces

4.1 Law of large numbers.

4.2 Central limit theorem.

5. Wishart process and Marchenko-Pastur Law.

6. Towards Lecture 3



I. Ensembles of Gaussian random matrices
I Ensemble: Z = (Zn), Zn is n� n matrix with random entries.

I t > 0, Symmetric (GOE(t)) or Hermitian (GUE(t)) n� n
random matrix with independent Gaussian entries:

Zn = (Zn(j , k))

Zn(j , k) = Zn(k, j) � N(0, t), j 6= k,
Zn(j , j) � N(0, 2t).

I Distribution of Zn is invariant under orthogonal conjugations.

I Density of eigenvalues of λn,1, ...,λn,n of Zn:

fλn,1,...,λn,n(x1, ..., xn) = kn

"
n

∏
j=1

exp

�
� 1

4t
x2j

�# "
∏
j<k

jxj � xk j
#
.

I Nondiagonal RM: eigenvalues are strongly dependent due to
Vandermont determinant: x = (x1, ..., xn) 2 Cn

∆(x) = det
�n
xk�1j

on
j ,k=1

�
= ∏

j<k

(xj � xk) .
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I. Wigner law
Wigner (Ann Math. 1955, 1957, 1958)

I Eugene Wigner: Beginning of RMT with dimension n! ∞.

I A heavy nucleus is a liquid drop composed of many particles
with unknown strong interactions,

I so a random matrix would be a possible model for the
Hamiltonian of a heavy nucleus.

I Which random matrix should be used?

I λn,1 � ... � λn,n eigenvalues of scaled GOE: Xn = Zn/
p
n.

I Empirical spectral distribution (ESD):

cF tn(x) = 1

n

n

∑
j=1

1fλn,j�xg.

I Asymptotic spectral distribution (ASD): cF tn converges, as
n! ∞, to semicircle distribution on (�2

p
t, 2
p
t)

wt(x) =
1

2π

p
4t � x2, jx j � 2

p
t.
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I. Simulation of Wigner law



I. Universality of Wigner law.
Wigner (Ann Math. 1955, 1957, 1958)

Theorem
t > 0. 8 f 2 Cb(R) and ε > 0,

lim
n!∞

P

�����Z f (x)dcF tn(x)� Z f (x)wt(dx)
���� > ε

�
= 0.

wt(dx) = wt(x)dx =
1

2π

p
4t � x21[�2pt,2pt](x)dx .

I Universality. Law holds for Wigner random matrices:

Xn(k, j) = Xn(j , k) =
1p
n

�
Zj ,k , if j < k

Yj , if j = k

fZj ,kgj�k , fYjgj�1 independent sequences of i.i.d. r.v.
EZ1,2 = EY1 = 0,EZ 21,2 = 1.

I Convergence of extreme eigenvalues as n! ∞

P(λn,n ! 2
p
t) = P(λn,1 ! �2

p
t) = 1.
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Idea of a proof of Wigner theorem

I Basic observation

bmk(t) = Z
xkcF tn(x) = 1

n
(λkn,1 + ...+ λkn,n) =

1

n
tr(X kn ).

I

mk(t) = E(bmk(t)) = 1

n
E(tr(X kn )).

I Moments of semicircle distribution are m2k+1(t) = 0 &

m2k(t) =
1

2π

Z 2
p
t

�2
p
t
x2k
p
4t � x2dx = 1

k + 1

�
2k

k

�
tk .

I Use method of moments to show that mk !
n!∞

mk , 8k � 1.

I Catalan numbers

Ck =
1

k + 1

�
2k

k

�
, k � 1.
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I. Review: Asymptotically free random matrices

I For an ensemble of Hermitian random matrices X = (Xn)n�1
de�ne "expectation" τ as the linear functional τ, (τ(I) = 1)

τ(X) = lim
n!∞

1

n
E [tr(Xn)] .

I Hermitian ensembles X1 & X2 are asymptotically free (AF) if
8 r 2 Z+ & polynomials pi (�), qi (�), 1 � i � r with

τ(pi (X1)) = τ(qi (X2)) = 0,

we have

τ(p1(X1)q1(X2)...pr (X1)qr (X2)) = 0.

I Examples:

I If X1 and X2 are independent Wigner ensembles, they are AF.

I If X1 and X2 are independent GOE(t), they are AF.



I Review: classical and free convolutions

I Fourier transform of probability measure µ on R

bµ(s) = Z
R

eisxµ(dx), s 2 S .

I Cauchy transform of µ

Gµ(z) =
Z

R

1

z � x µ(dx), z 2 C/R.

I Classical cumulant transform

cµ(s) = log bµ(s), s 2 R.

I Free cumulant transform

Cµ(z) = zG
�1
µ (z)� 1, z 2 Γµ



I. Review: classical and free convolutions

I Classical convolution µ1 � µ2 is de�ned by

cµ1�µ2(s) = cµ1(s) + cµ2(s).

I If X1 & X2 are classical independent random variables with
distributions µ1 & µ2, X1 + X2 has distribution µ1 � µ2.

I Free convolution µ1� µ2 is de�ned by

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z), z 2 Γµ1 \ Γµ2 .

I If X1 & X2 AF ensembles of random matrices with ASD µ1
and µ2, then the ASD of X1 +X2 is µ1� µ2.



I. Free convolution of Wigners
Towards the free Brownian motion

I Semicircle distribution wm,σ2 on (m� 2σ,m+ 2σ) centered
at m

wm,σ2(x) =
1

2πσ2

q
4σ2 � (x �m)21[m�2σ,m+2σ](x).

I Free cumulant transform:

Cwm,σ2
(z) = mz + σ2z2.

I �-convolution of Wigner distributions is a Wigner distribution:

wm1,σ21
�wm2,σ22

= wm1+m2,σ21+σ22
.

I Of special interest: free Brownian motion

wt = w0,t , t � 0.



II. Free Brownian motion

I Law of Free Brownian motion

wt(dx) =
1

2πt

p
4t2 � x1[�2pt,2pt](x)dx .

I Free cumulant transform

Cwt (z) = tz
2.

I In law:

I w0 = δ0
I "Stationary increments": distribution wt�s depends on t � s.
I "Independent increments": 0 < t1 < t2

wt2�t1 �wt1 = wt2 .

I Realization for free Brownian motion?



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.

I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.

I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.

2. ASD of ( 1p
n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



II. Matrix Brownian motion
I n� n symmetric matrix valued Brownian motion

Bn(t) = (bij (t)), t � 0,

fbij (t)gt�0 , 1 � i � j � n, independent 1-dim. Brownian
motions with bij (t) � N(0, 1+ δij ).

I 8 t > 0 (Bn(t))n�1 is a GOE of parameter t > 0.
I fBn(t)gt�0 has stationary and independent increments.
I For 0 = t0 < t1 < t2 < ... < tp:

1. (Bn(tk � tk�1))n�1, k = 1, ..., p are independent GOE.
2. ASD of ( 1p

n
Bn(tk � tk�1))n�1 is wtk�tk�1 , k = 1...., n.

3. (Bn(tk � tk�1))n�1, k = 1, ..., p are asymptotically free.

I 0 < s < t
wt�s �ws = wt .

I (fBn(t)gt�0)n�1 is realization of free Brownian motion.



III. Dyson-Brownian process
I Fix n > 0, and consider n� n Hermitiam matrix Brownian
motion Bn(t) = (bij (t)), t � 0,
Re(bij (t)) � Im(bij (t)) � N(0, t(1+ δij )/ (2n)),
Re(bij (t)), Im(bij (t)), 1 � i � j � n independent.

I (λn,1(t), � � �,λn,n(t)), t � 0, eigenvalues process of Bn(t/n).

Theorem
(Dyson, 1962) Consider Hermitian matrix Brownian motion. There
exist n independent 1-dimensional standard Brownian motions

b
(n)
1 (t), ..., b

(n)
n (t) such that if λn,1(0) < � � � < λn,n(0) a.s.

λn,i (t) = λn,i (0) +
1p
n
b
(n)
i (t) +

1

n ∑
j 6=i

Z t

0

1

λn,j (s)� λn,i (s)
ds,

I Brownian part plus noncollinding part.
I Rd -valued SDE with non smooth drift.
I For now on we consider Hermitian matrix Brownian motion.



III. The associated measure valued processes
Cabanal-Duvillard and Guionnet(01), PA and Tudor (07)

I Dyson measure valued process

µ
(n)
t = cF tn(x) = 1

n

n

∑
j=1

δλn,j (t), t � 0.

I Notation: If f is µ-integrable function

hµ, f i =
Z
f (x)µ(dx).

I Functional Law of large numbers: 8 f 2 Cb(R)

P

�
lim
n!∞

sup
0�t�T

���Dµ
(n)
t , f

E
� hwt , f i

��� = 0� = 1.
I 8T > 0

sup
0�t�T

λn,n(t)
a.s.!
n!∞

2
p
T , inf

0�t�T
λn,1(t)

a.s.!
n!∞

�2
p
T .
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III. The associated measure valued processes
Cabanal-Duvillard and Guionnet (01), PA and Tudor (07)

Notation: C (R+,P(R)) continuous functions from R+ ! P(R),
with topology of uniform convergence on compact intervals of R+.

Theorem
If µ

(n)
0 ! δ0, the family

�
µ
(n)
t

�
t�0

of measure valued-processes

converges weakly in C (R+,P(R)) to unique continuous
probability-measure valued function such that 8 f 2 C 2b (R)

hµt , f i = f (0) +
1

2

Z t

0
ds
Z

R2

f 0(x)� f 0(y)
x � y µs(dx)µs(dy).

Moreover, µt = wt , t � 0.



III. Key tools for the proof

I mr (t) r -moment of wt and Cauchy transform Gt = �Gwt .

I For each r � 2 and t > 0

mr (t) =
r

2

r�2
∑
j=0

Z t

0
mr�2�j (s)mj (s)ds.

I (wt)t�0 is characterized by its Cauchy transforms being
unique solution of

∂Gt(z)

∂t
= Gt(z)

∂Gt(z)

∂z
, t > 0

G0(z) = �
1

z
, z 2 C+,

Gt(z) 2 C+ for z 2 C+ & limη!∞ η jGt(iη)j < ∞ 8 t > 0.



III. Asymptotic Fluctuations
Smooth vs. non smooth interacting SDE

I Consider
Y
(n)
t = n

�
µ
(n)
t �wt

�
. (1)

I Interacting SDE with both smooth drift & di�usion

coe�cients. If µ
(n)
t is empirical measure:

I McKean (67): µ
(n)
t converges in probability to µt , which is the

distribution of a SDE.
I Fluctuations

S
(n)
t = n1/2(µ

(n)
t � µt). (2)

I Hitsuda and Mitoma (86): S
(n)
t converges weakly to a

Gaussian process in the dual of a nuclear Fr�echet space.
(Kallianpur & PA (88), Kallianpur & Xiong (95)).

I Interacting SDEs with non smooth drift coe�cient arise
naturally in the study of eigenvalue processes of matrix-valued
stochastic processes [Bru (89), Rogers & Shi (93), Chan (97),
Konig & O�Connell (01), Katori & Tanemura (04)].
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III. Asymptotic Fluctuations
Central limit theorem for Dyson measure valued process

I Y
(n)
t = n

�
µ
(n)
t �wt

�
.

I Main problem: wt ,t � 0, does not govern a SDE equation,
but rather the free Brownian motion.

I Israelson (01), Bender (09): Yn(t) converges weakly to a
Gaussian process in the dual of a nuclear Fr�echet space.

I PA & Tudor (07): Propagation of chaos & uctuations of
traces processes (fMn,p(t)gt�0 , n � 1), p � 0, given by the
semimartingales

Mn,p(t) =
1

n
tr([Bn(t)]

p) =
Z

R
xpµ

(n)
t (dx) =

1

n

n

∑
j=1

[λn,j (t)]
p

and uctuations of moments processes

Vn,p(t) =
Z
xpY

(n)
t (dx) = n (Mn,p(t)�mp(t)) .
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IV. Asymptotics for traces processes
Almost sure and k mean convergence

I The martingales, p � 0 & n � 1,

Xn,p(t) =
1

n3/2

n

∑
j=1

Z t

0
[λn,j (s)]

p db(n)j (s), t � 0,

have increasing processes

hXn,pit =
1

n2

Z t

0
Mn,2p(s)ds, t � 0.

I The following relations hold for n � 1, r � 1 and t � 0

Mn,r (t) = Mn,r (0)+ rXn,r�1(t)+
r

2

r�2
∑
j=0

Z t

0
Mn,r�2�j (s)Mn,j (s)ds

I Under conditions on M2k
n,2p(0),

sup
0�t�T

jMn,2p(t)�m2p(t)j a.s.�! 0 as n! ∞,

E sup
0�t�T

jMn,2p(t)�m2p(t)j2k �! 0 as n! ∞.
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IV. Asymptotics of associated martingales
PA & Tudor (07)

I

Rn,p(t) = nXn,p(t) =
1p
n

n

∑
j=1

Z t

0
[λn,j (s)]

p db(n)j (s), t � 0, p � 0.

I Rn,p converges weakly in C (R+,R), as n! ∞, to a centered
Gaussian martingale Rp with covariance function

E (Rp(s)Rp(t)) =
Cp
p + 1

(s ^ t)p+1

and increasing process

hRpit =
Z t

0
m2p(s)ds =

Cp
p + 1

tp+1.

I Limiting process Rp is
p+1
2 -self-similar Gaussian process with

independent increments

Rp(t) = C
1
2
p

Z t

0
s
p
2 dbs ,
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IV. CLT for traces processes
Israelson (01), PA & Tudor (07)

I Under assumptions on V 2kn,p(0), Vn,p converges weakly in
C (R+,R) to centered Gaussian process Zp satisfying Z0 = 0,

Zp(t)+p
Z t

0
Zp(s)ds = V

(0)
p +

p

2

Z t

0
f2 [mp�2(s) +mp�3(s)Z1(s)

+...+m1(s)Zp�3(s)] + Zp�2(s)gds + pRp�1(t).

I Alternative expression for Zp:

Zp(t) = ap�1(t)� p
Z t

0
e�p(t�s)ap�1(s)ds.

ap(t) = V
(0)
p +

p + 1

2

Z t

0
f2 [mp�1(s) +mp�2(s)Z1(s)

+...+m1(s)Zp�2(s)] + Zp�1(s)g ds + (p + 1)Rp(t),
I 9 measurable deterministic Volterra kernel Kp such that

Zp(t) =
Z t

0
Kp(t, s)dbs .
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I 9 measurable deterministic Volterra kernel Kp such that

Zp(t) =
Z t

0
Kp(t, s)dbs .



IV. CLT for traces processes
Israelson (01), PA & Tudor (07)
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V. Wishart process

I m, n � 1, fBm,n(t)gt�0 =
��
bj ,km,n(t)

�
1�j�m,1�k�n

�
t�0
,n

Re
�
bj ,km,n (t)

�o
t�0

&
n
Im
�
bj ,km,n (t)

�o
t�0

independent

unidimensional Brownian motions,

Re
�
bj ,km,n (t)

�
� Im

�
bj ,km,n (t)

�
� N(0, (1+ δjk)/(2t)).

I Laguerre or Wishart process: n� n�matrix-valued process
Lm,n(t) = B

�
m,n(t)Bm,n(t), t � 0.

I Bru (89), Graczyk (11): For eigenvalue of Lm,n(t)/(2n)

dλ
(m,n)
j (t)=

s
2λ
(m,n)
j (t)

n
db(m,n)j (t)

+
1

n

0@m+ ∑
k 6=j

λ
(m,n)
j (t)+λ

(m,n)
k (t)

λ
(m,n)
j (t)�λ

(m,n)
k (t)

1Adt, 1 � j � n.

I PA & Tudor (09): Measure valued process & traces.



V. Brownian vs. Wishart case
I Which law plays the role of fwtgt�0 for measure process

µ
(m,n)
t =

1

n

n

∑
j=1

δ
λ
(m,n)
j (t)

, t � 0 ?

I Not the Free Poisson or Marchenko-Pastur law mc , c > 0,

mc(dx) =
�
fc(x)dx , c � 1
(1� c)δ0(dx) + fc(x)dx , c < 1,

fc(x) =
c

2πx

q
(x � a)(b� x)1[a,b](x)

a = (1�
p
c)2, b = (1+

p
c)2.

I Rather dilations
�

µc(t) = mc � h�1t
	
t�0 , ht(x) = tx ,

µc(t)(dx) =

�
f tc (x)dx , c � 1

(1� c) δ0(dx) + f tc (x)dx , c < 1
,

f tc (x) =

p
(x � at) (bt � x)

2πtx
1(at,bt)(x).
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V. Marchenko-Pastur law (1967)
Universality

I X = Xm�n = (Zj ,k : j = 1, .., n, k = 1, ...,m) complex i.i.d.
E(Z1,1) = 0,E( jZ1,1j2) = 1.

I Wn = X �X is Wishart matrix if X has Gaussian entries.

I Sn =
1
nX

�X , eigenvalues 0 � λn,1 � ... � λn,n & ESD

bFn(λ) = 1

n

n

∑
j=1

1fλn,j�xg.

I If n/m! c > 0, bFn converges weakly in probability to
Marchenko-Pastur (MP) distribution

mc(dx) =
�

fc(x)dx , if c � 1
(1� c)δ0(dx) + fc(x)dx , if 0 < c < 1,

fc(x) =
c

2πx

q
(x � a)(b� x)1[a,b](x)

a = (1�
p
c)2, b = (1+

p
c)2.



V. Marchenko-Pastur law

1. Applications: Large Dimensional RM (LDRM):

I Data dimension of same magnitude order than sample size.
Bai & Silverstein (2010). Spectral Analysis of LDRM

I Wireless communication, MIMO channels.
Couillet & Debbah (2011). RM Methods for Wireless Comm.

2. Towards next Monday lecture:

I (Nt)t�0 Poisson process of mean m, (uj )j�1 i.i.d. random
vectors with uniform distribution on unit sphere of Cn.

I n� n matrix compound Poisson process

Xt =
Nt

∑
j=1

u�j uj .

I Distribution of Xt is invariant under unitary conjugations.
I ASD of Xt , when n/m! c , is MP with parameter c .

3. Open problem: Measure-valued process for Xt?



V. Example: Communication Channel Capacity
Circularly symmetric complex Gaussian random matrices

A p � 1 complex random vector u has a Q-circularly symmetric
complex Gaussian distribution if

E[(u�E[u])(u�E[u])�] =
1

2

�
Re[Q ] � Im[Q ]
Im[Q ] Re[Q ]

�
,

.for some nonnegative de�nite Hermitian p � p matrix Q.

u = [Re(u1) + i Im(u1), ..., Re(up) + i Im(up)]
> .



V. Example: Communication Channel Capacity
A Model for MIMO antenna systems

I nT antennas at transmitter and nR antennas at receiver

I Linear vector channel with Gaussian noise

y = Hx+ n

I x is the nT -dimensional input vector.

I y is the nR -dimensional output vector.

I n is the received Gaussian noise, zero mean and
E (nn�) = InT .

I The nR � nT random matrix H is the channel matrix.

I H = fhjkg is a random matrix, it models the propagation
coe�cients between each pair of trasmitter-receiver antennas.

I x,H and n are independent.



V. Example: Communication Channel Capacity
Raleigh fading channel

I hjk are i.i.d. complex random variables with mean zero and
variance one (Re(Zjk) � N(0, 12 ) independent of
Im(Zjk) � N(0, 12 )).

I x has Q�circularly symmetric complex Gaussian distribution.
I Signal to Noise Ratio

SNR =
Ejjxjj2/nT
Ejjnjj2/nR

=
P

nT
.

I Total power constraint P is the upper bound of the variance
Ejjxjj2 of the amplitude of the input signal.

I Channel capacity is the maximum data rate which can be
transmitted reliably over a channel (Shannon (1948)).

I The capacity of this MIMO system channel is

C (nR , nT ) = max
Q

EH [log2 det (InR +HQH
�)]
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V. Example: Communication Channel Capacity
Raleigh fading channel

I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

�
log2 det

�
InR +

P

nT
HH�

��

I C (nR , nT ) in terms of ESD bFnR of the random covariance
1
nR
HH�

C (nR , nT ) =
Z ∞

0
log2

�
1+

nR
nT
Px

�
nRdbFnR (x).

I By Marchenko-Pastur theorem, if nR/nT ! c ,

C (nR , nT )

nR
!
Z b

a
log2 (1+ cPx)dµc(x) = K (c ,P).

I For �xed P
C (nR , nT ) � nRK (c ,P).

I Increase capacity with more transmitter and receiver antennas
without increasing the total power constraint P.
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