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Plan of the Lecture

1. Review Lecture |

1.1 Asymptotic spectral distributions of random matrices.

1.2 Free asymptotics and free convolution of measures.

2. Free and Matrix-valued Brownian Motions.
3. Dyson Brownian Motion and its Measure-valued Process.

4. Functional Limit Theorems for Traces

4.1 Law of large numbers.

4.2 Central limit theorem.

5. Wishart process and Marchenko-Pastur Law.

6. Towards Lecture 3
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. Ensembles of Gaussian random matrices

» Ensemble: Z = (Z,), Z, is n X n matrix with random entries.
» t > 0, Symmetric (GOE(t)) or Hermitian (GUE(t)) nx n
random matrix with independent Gaussian entries:
Zy = (Zn(jv k))
Zn(j k) = Zn(k,j) ~ N(O, 1), j # k,
Zn(j.j) ~ N(0,21).
» Distribution of Z, is invariant under orthogonal conjugations.
> Density of eigenvalues of A, 1, ..., App of Zp:

Pntsohnn (XL oo Xn) = kn LHexp<— > L]‘[\XJ_XH]_

» Nondiagonal RM: eigenvalues are strongly dependent due to
Vandermont determinant: x = (xq, ..., x,) € C”

A(x) = det <{ka_1};,k—1> —TT (5 —x)-

j<k
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|. Wigner law
Wigner (Ann Math. 1955, 1957, 1958)
» Eugene Wigner: Beginning of RMT with dimension n — oo.

» A heavy nucleus is a liquid drop composed of many particles
with unknown strong interactions,

» so a random matrix would be a possible model for the
Hamiltonian of a heavy nucleus.

» Which random matrix should be used?

» Ap1 < ... < Ap, eigenvalues of scaled GOE: X, = Z,/+/n.
» Empirical spectral distribution (ESD):

- L
Ftn(X) = ; Z I{Anngx}'
j=1

» Asymptotic spectral distribution (ASD): Ft, converges, as
n — oo, to semicircle distribution on (—2/t,2/t)

1
we(x) = — V4t —x2,  |x| <2Vt

27



|. Simulation of Wigner law

Eigenvalue density of a 1000x1000 symmetric random matrix
0.35 T T T T T

-3 -2 ] 0 1 2 3
Histogram of the empirical eigenvalue density and its theoretical limit



|. Universality of Wigner law.
Wigner (Ann Math. 1955, 1957, 1958)

Theorem
t>0.Vfe Cp(R)ande >0,
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Wigner (Ann Math. 1955, 1957, 1958)

Theorem
t>0.Vfe Cp(R)ande >0,

Jim P (‘/f(x)dl/—'\f,,(x) —/f(x)wt(dx) > £> —o0.

weldx) = we(x)dx = o V‘”_X 1 o 2ve (x

» Universality. Law holds for Wigner random matrices:
. . 1 (Zik, fj<k
Xn(k,j) = Xa(j, k) = —=<
n( v./) n(Jv ) ﬁ{ij If_j:k
{Zjk};<k+{Yj};>1 independent sequences of i.i.d. r.v.
EZi» =EY; = O,IEZf2 =1
» Convergence of extreme eigenvalues as n — o

P(Apn — 2Vt) =P(A,1 — —2Vt) = 1.
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|dea of a proof of Wigner theorem

» Basic observation

_ = 1 1
() = [ XF(x) = (A4 A = (XD,

m(t) = E(in (1) = -E(tr(XF))

v

Moments of semicircle distribution are myx41(t) =0 &

2Vt
mok(t) = 1/ x?k\/at — x2dx = 1 (2k) tk.

21T J 2% k+1\ k

v

Use method of moments to show that m, — my, Vk > 1.
n—oo

v

Catalan numbers

1 /2k
_ k> 1.
Ck k+1<k>’ =



. Review: Asymptotically free random matrices

» For an ensemble of Hermitian random matrices X = (X;)p>1
define " expectation” T as the linear functional 7, (t(l) = 1)

T(X) = lim S [tr(X)] .

n—oo N

» Hermitian ensembles X; & X, are asymptotically free (AF) if
V re Z, & polynomials p;(-), gi(+), 1 < i < r with

T(pi(X1)) = 7(qi(X2)) =0,
we have
T(p1(X1)q1(X2)...pr(X1)gr(X2)) = 0.

> Examples:
» If X1 and Xy are independent Wigner ensembles, they are AF.

» If X1 and X are independent GOE(t), they are AF.



| Review: classical and free convolutions

» Fourier transform of probability measure u on R

i(s) :/ eu(dx), seSs.
R
» Cauchy transform of u

1
Gy(z):/IRZ_Xy(dx), z€C/R.

» Classical cumulant transform
cu(s) = logji(s), secR.
» Free cumulant transform

Cu(z) = zGPfl(z) -1, zeT,



|. Review: classical and free convolutions

v

Classical convolution 1 * po is defined by

Cuyxpo (5) = Cuy (5) + Cuyp (S)

v

If X1 & X, are classical independent random variables with
distributions p1 & 2, X1 + Xz has distribution i1 * po.

v

Free convolution p1 H yo is defined by

C]'{IEB]/Q (Z) — C]"l (Z) + CM(Z), Z € ]._']41 ﬁ ].—‘;142

v

If X1 & X2 AF ensembles of random matrices with ASD 1
and po, then the ASD of X; + Xy is 1 H po.



|. Free convolution of Wigners

Towards the free Brownian motion

» Semicircle distribution W, ;2 on (m — 20, m+ 20) centered
atm

1
27102

Wino2(X) = 5——31/402 — (x = M)2Lim_25 mi20] (¥).

» Free cumulant transform:

w (2)=mz+ o272,

» H-convolution of Wigner distributions is a Wigner distribution:
=w

W, 2 BHw

my,02 my,03 mi+mo,02+03

» Of special interest: free Brownian motion

Wi = Wo ¢, t 2 0.



[l. Free Brownian motion

» [aw of Free Brownian motion

1
Wt(dX) = % 42 _X1[72\/E,2\/E](X)dx‘

» Free cumulant transform
Cw,(2) = t2°,

> In law:
> Wo = (50
» "Stationary increments”: distribution w;_g depends on t — s.
» "Independent increments”: 0 < t; < t

Wit —tg H Wit = Wt,.

» Realization for free Brownian motion?
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II. Matrix Brownian motion
> n X n symmetric matrix valued Brownian motion
Bn(t) = (by(t)),t =0,
{bij(t)}tzo ,1 < i <j < n, independent 1-dim. Brownian
motions with bjj(t) ~ N(0,14 Jj).
» V't >0 (By(t))n>1is a GOE of parameter t > 0.

» {Bn(t)},>q has stationary and independent increments.

> For0:t0<t1<t2<...<tp:

1. (By(tk — tk—1))n>1, k =1, ..., p are independent GOE.
2. ASD of (ﬁBn(tk — t)_1))n>1 08 Wi, k=1....,n.
3. (Bn(tk — tk—1))n>1, k =1, ..., p are asymptotically free.

» 0<s<t
Wi s Hws = wy.

> ({Bn(t)}¢>0)n>1 is realization of free Brownian motion.



lI1. Dyson-Brownian process

» Fix n> 0, and consider n X n Hermitiam matrix Brownian
motion B(t ): (bj(t)), t >0,
Re(bjj(t)) ~ Im(b;(t)) ~ N(O, t(1+d5)/ (2n)),
Re(bjj(t )) Im(b;(t)), 1 < i <j < nindependent.

> (Ana(t), -+, Apn(t)), t >0, eigenvalues process of B,(t/n).

Theorem
(Dyson, 1962) Consider Hermitian matrix Brownian motion. There
exist n independent 1-dimensional standard Brownian motions

B (8), ..., B (t) such that if Ap1(0) < -+ < Apn(0) as.

. B . 1 (n) 1 ‘ 1
Ani(8) = Ani(0) + b (8) + r/ T (5) — Ami(5)

n .

» Brownian part plus noncollinding part.
» R%valued SDE with non smooth drift.
» For now on we consider Hermitian matrix Brownian motion.
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I1l. The associated measure valued processes
Cabanal-Duvillard and Guionnet(01), PA and Tudor (07)

» Dyson measure valued process

1 n

u = Fin() = ) 6y, t20,

Jj=1

» Notation: If f is u-integrable function

oty = [ Flon(dx).

» Functional Law of large numbers: V f € Cp(IR)

P ( lim  sup Wﬁ”), f> — (wy, f)‘ - 0)

n—0 gy T

» VT >0

sup Apn(t) 23 2VT, inf_Anq(t) 23
0<t<T n—oo OStST n—oo

=1.

—2V'T.



I1l. The associated measure valued processes
Cabanal-Duvillard and Guionnet (01), PA and Tudor (07)

Notation: C (R4, P(IR)) continuous functions from R — P(R),
with topology of uniform convergence on compact intervals of R .

Theorem
If llén) — 0o, the family (;45”)) o of measure valued-processes
t

converges weakly in C (R, P(]I()) to unique continuous
probability-measure valued function such thatV f € C2(R)

) = £0)+ 5 [as [ =T (@ an).

Moreover, s = wy, t > 0.



l1l. Key tools for the proof

» m,(t) r-moment of w¢ and Cauchy transform G; = — Gy,.
» Foreachr>2and t >0

r r—2 .t
m,(t) = 5 -Z(:)/o m,—o_j(s)mj(s)ds.

> (W¢),~q is characterized by its Cauchy transforms being
unique solution of

aGt(Z) aGt(Z)
Jt dz
Go(z)z—%, zeCh,

= G¢(2) , t>0

G(z) € C* for z € CT & limy_oo 17 |Ge(in)| < 00V t > 0.
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lI. Asymptotic Fluctuations

Smooth vs. non smooth interacting SDE

» Consider
Vi =n (" —w). (1)

> Interacting SDE with both smooth drift & diffusion
(n)

coefficients. If 1,/ is empirical measure:

» McKean (67): yi”) converges in probability to ji¢, which is the
distribution of a SDE.
> Fluctuations

S = 2" = o). 2)

» Hitsuda and Mitoma (86): St(") converges weakly to a
Gaussian process in the dual of a nuclear Fréchet space.
(Kallianpur & PA (88), Kallianpur & Xiong (95)).

> Interacting SDEs with non smooth drift coefficient arise
naturally in the study of eigenvalue processes of matrix-valued
stochastic processes [Bru (89), Rogers & Shi (93), Chan (97),
Konig & O “Connell (01), Katori & Tanemura (04)].
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lI. Asymptotic Fluctuations

Central limit theorem for Dyson measure valued process
eV ().
» Main problem: w;,t > 0, does not govern a SDE equation,
but rather the free Brownian motion.

» Israelson (01), Bender (09): Y,(t) converges weakly to a
Gaussian process in the dual of a nuclear Fréchet space.

» PA & Tudor (07): Propagation of chaos & fluctuations of
traces processes ({Mp p(t)},~q.n > 1), p >0, given by the
semimartingales -

Map(t) = Ttx([Ba(0)) = [ xPpi"(dx) =

n

and fluctuations of moments processes

V() = [ xY{(d3) = 0 (M p(6) — myl0).



I\VV. Asymptotics for traces processes

Almost sure and k mean convergence

» The martingales,p > 0& n>1,

Xnp(t) ~ 32 Z/ nj( pdb( )( ).t >0,

have increasing processes

(Xnp), = /M,,g,, s)ds, t > 0.



I\VV. Asymptotics for traces processes

Almost sure and k mean convergence

» The martingales,p > 0& n>1,
1 &t n
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I\VV. Asymptotics for traces processes

Almost sure and k mean convergence

» The martingales,p > 0& n>1,
n)
Xnp(t) = n3/22/ nj( pdb (s).t>0,
have increasing processes

(Xop), :n2/ M 2p(s)ds, t > 0.

» The following relations hold forn > 1,r > 1and t >0
r—2 .t
’
Mn,r(t) = Mnr(o) +an,r—1<t> + 5 Z/O Mn,r72fj(5)Mn,j(5)d5
j=0

» Under conditions on M? 2p(O)

sup  [Mp2p(t) — map(t)] 22,0 as n — oo,
0<t<T

E sup |[Mpop(t) — mgp(t)|2k — 0 as n— oo.
0<t<T
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V. Asymptotics of associated martingales
PA & Tudor (07)

Rnp(t) = nXnp(t) = \% i/ot [Anj(s)]P db}”)(s), t>0,p>0

» Rpp converges weakly in C(Ry,R), as n — oo, to a centered
Gaussian martingale R, with covariance function

E (Ra(s) 1)) =, 2y (670"

and increasing process
Cp

t
<Rp>t = /0 m2p(5)d5 = mtp—i_l.



V. Asymptotics of associated martingales
PA & Tudor (07)

Rnp(t) = nXnp(t) = \/15 i/ot [Anj(s)]P db}”)(s), t>0,p>0

> R, p converges weakly in C(IR+,]R), as n — oo, to a centered
Gaussian martingale R, with covariance function
E (Ro()Ro(t)) = —2= (s A £)P ™
P P p+ 1
and increasing process
(Rp), = /tmz (s)ds = i1.““’“.
p+1

» Limiting process R, is #5=-self-similar Gaussian process with
independent increments

1 ort o,
R,,(t):c,;/ s2dbs,
0




IV. CLT for traces processes
Israelson (01), PA & Tudor (07)

> Under assumptions on V25(0), V,, , converges weakly in
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+. A mu(s)Zp-3(s )] +Zp2(s)} ds + pRy-1(t).
> Alternative expression for Z:

t
Z,(t) = ap_1(t) — p /0 e P(t=5)5, 1 (s)ds.

ap(t) = V() p—l—l/ {2[mp-1(s) + mp—2(s) Z1(s)
+oo+ mi(s)Zp—2(s)] + Zp-1(s) } ds + (p+ 1) Ry (1),



IV. CLT for traces processes
Israelson (01), PA & Tudor (07)

> Under assumptions on V25(0), V,, , converges weakly in
C(R4,R) to centered Gaussian process Z,, satisfying Zp = 0,

2o(t) 5 [ Zo(s)ds = V¥ +2 [ {2 (mp-as) + mp-a(5) (5
+... 4 mi(s)Zp-3(s )] + Zp—2(s)} ds + pRp-1(1).

> Alternative expression for Z:

t
Z,(t) = ap_1(t) — p /0 e P(t=5)5, 1 (s)ds.

ap(t) = V() p—l—l/ {2[mp-1(s) + mp—2(s) Z1(s)
+oo+ mi(s)Zp—2(s)] + Zp-1(s) } ds + (p+ 1) Ry (1),

» o measurable deterministic Volterra kernel K, such that

Z,(t) = /Ot K,(t, s)dbs.



V. Wishart process

> mn = L (B} o = { (W00) b
{Re (it (1)) }QO & {im (ki (1)) }tzo independent

unidimensional Brownian motions,
Re (blika (£)) ~ Im (Bl (£)) ~ N0, (1+63)/(28)).
> Laguerre or Wishart process: n X n—matrix-valued process
Lm,n(t) = By, o(t)Bmn(t), t > 0.
» Bru (89), Graczyk (11): For eigenvalue of Ly, ,(t)/(2n)

2 A (6 = A (1)

(m,n)
207 (1)
(m,n) - (m,n)
dA (t)= %dbj (t)
(m,n) (m,n)
A t)+A t
+})(m+ i (DF ())dt,1<j<n.

» PA & Tudor (09): Measure valued process & traces.



V. Brownian vs. Wishart case

» Which law plays the role of {w;},- for measure process

(mn) _ 1y
Ui = EJ;5/\§m,n)(t),tZO?



V. Brownian vs. Wishart case
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V. Brownian vs. Wishart case

» Which law plays the role of {w¢},., for measure process

(mn) _ 1§
l/[t — EJ;&/\j(m,n)(t),tZO’?

» Not the Free Poisson or Marchenko-Pastur law m., ¢ > 0,
fe(x)dx, c>1
dx) =
me(dx) {(1 —¢)p(dx) + fe(x)dx, c<1,

L) = 5y = 2) (b= )1, (%)
a= (1= VeP b= (1+Ve?

> Rather dilations {yc(t) = mcoh; '} he(x) = tx,

t>0"'

B ff(x)dx, c>1
pe(t)(dx) = { (1—c)do(dx) + fi(x)dx, c<1 '
Fi(x) = V/(x — at) (bt — x)

27tx

Liat,bt) (x).



V. Marchenko-Pastur law (1967)

Universality
» X =Xmxn=(Zjk:j=1.,nk=1..m) complex i.i.d.
E(Z1) =0, E(|Z11]?) = 1.
» W, = X*X is Wishart matrix if X has Gaussian entries.

> S, = %X*X, eigenvalues 0 < Ap1 < ... < A,, & ESD
~ 12
Fn(A) = - Y1, <x
j=1

> If n/m—c>0, F, converges weakly in probability to
Marchenko-Pastur (MP) distribution

me(dx) = fe(x)dx, if ¢>1
AT - 0)do(dx) + fo(x)dx,  if 0<c<1,

L) = 5y = @) (b= )L (x)
a= (1= Vo2, b=(1+VeP



V. Marchenko-Pastur law

1.

»

Applications: Large Dimensional RM (LDRM):

Data dimension of same magnitude order than sample size.
Bai & Silverstein (2010). Spectral Analysis of LDRM
Wireless communication, MIMO channels.

Couillet & Debbah (2011). RM Methods for Wireless Comm.

Towards next Monday lecture:

(Nt) o Poisson process of mean m, (u; )., i.i.d. random
vectors with uniform distribution on unit sphere of C".
n X n matrix compound Poisson process

N
*
Xt = Z Uj Uj.
Jj=1

Distribution of X; is invariant under unitary conjugations.
ASD of X;, when n/m — ¢, is MP with parameter c.

Open problem: Measure-valued process for X;?



V. Example: Communication Channel Capacity

Circularly symmetric complex Gaussian random matrices

A p x 1 complex random vector u has a Q-circularly symmetric
complex Gaussian distribution if

«_ 1] Re[Q] —Im[Q]
E[(u— E[u])(u—Efu])*] = 2 Im[Q] Re[Q]
.for some nonnegative definite Hermitian p x p matrix Q.

u = [Re(ur) + ilm(u1), ..., Re(up) + ilm(u,)]



V. Example: Communication Channel Capacity
A Model for MIMO antenna systems

> nr antennas at transmitter and ng antennas at receiver
» Linear vector channel with Gaussian noise
y=Hx+n
> x is the ny-dimensional input vector.
> y is the ng-dimensional output vector.
> n is the received Gaussian noise, zero mean and
*)

E (nn*) =1,,.
» The ng X nt random matrix H is the channel matrix.
» H = {hj} is a random matrix, it models the propagation

coefficients between each pair of trasmitter-receiver antennas.
» x,H and n are independent.



V. Example: Communication Channel Capacity
Raleigh fading channel
> hjj are i.i.d. complex random variables with mean zero and
variance one (Re(Zj) ~ N(0, 3) independent of
Im(Zi) ~ N(0, 1)).
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» Total power constraint P is the upper bound of the variance
[E||x||? of the amplitude of the input signal.



V. Example: Communication Channel Capacity
Raleigh fading channel
> hjj are i.i.d. complex random variables with mean zero and
variance one (Re(Zj) ~ N(0, 3) independent of
Im(Zjx) ~ N(0, 3)).
x has Q—circularly symmetric complex Gaussian distribution.

v

v

Signal to Noise Ratio

E||x||?/nT P
SNR = ———+—— = —.
]E||I1H2/HR ntr

v

Total power constraint P is the upper bound of the variance
[E||x||? of the amplitude of the input signal.

Channel capacity is the maximum data rate which can be
transmitted reliably over a channel (Shannon (1948)).

v



V. Example: Communication Channel Capacity
Raleigh fading channel

> hjj are i.i.d. complex random variables with mean zero and
variance one (Re(Zy) ~ N(0, 1) independent of
Im(Zy) ~ N(0, 3)).
» x has Q—circularly symmetric complex Gaussian distribution.
» Signal to Noise Ratio
_E|x|?/nr P

SNR= —(——-+-—-— = —.
]E||I1H2/HR ntr

» Total power constraint P is the upper bound of the variance

[E||x||? of the amplitude of the input signal.

» Channel capacity is the maximum data rate which can be
transmitted reliably over a channel (Shannon (1948)).

» The capacity of this MIMO system channel is

C(ng,nt) = mgxIEH [log, det (I, + HQH")]
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Raleigh fading channel

» Maximum capacity when Q = SNRI,,
P
C(ng,nt) =Eq [Iogz det <I,,R + nHH*)]
T

» C(ng,nt) in terms of ESD F,, of the random covariance
L HH*
ng
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V. Example: Communication Channel Capacity
Raleigh fading channel

» Maximum capacity when Q = SNRI,,
P
C(ng,nt) =Eq [Iogz det (I,,R + nHH*)]
T

» C(ng,nt) in terms of ESD F,, of the random covariance
L HH*
ng

C(ng,nt) = /0 logs <1 + Z':Px> nrRAdFpg ().

» By Marchenko-Pastur theorem, if ng/nt+ — c,

b

C(”S'”T) - / log, (1 + cPx) dpc(x) = K(c, P).
R a

» For fixed P

C(ng,nt) ~ ngK(c, P).

» Increase capacity with more transmitter and receiver antennas
without increasing the total power constraint P.
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