Random Matrices and Eigenvalues Process

Free Probability, Random Matrices and Infinite Divisibility

Victor Pérez-Abreu
Center for Research in Mathematics CIMAT Guanajuato, Mexico

Probability Seminar
Department of Mathematics
University of Tennessee
Knoxville, TN, April 16, 2012

Plan of the Lecture

1. Review Lecture I
1.1 Asymptotic spectral distributions of random matrices.
1.2 Free asymptotics and free convolution of measures.
2. Free and Matrix-valued Brownian Motions.
3. Dyson Brownian Motion and its Measure-valued Process.
4. Functional Limit Theorems for Traces
4.1 Law of large numbers.
4.2 Central limit theorem.
5. Wishart process and Marchenko-Pastur Law.
6. Towards Lecture 3

I. Ensembles of Gaussian random matrices

- Ensemble: $\mathbf{Z}=\left(Z_{n}\right), Z_{n}$ is $n \times n$ matrix with random entries.

I. Ensembles of Gaussian random matrices

- Ensemble: $\mathbf{Z}=\left(Z_{n}\right), Z_{n}$ is $n \times n$ matrix with random entries.
- $t>0$, Symmetric $(\operatorname{GOE}(t))$ or Hermitian $(\operatorname{GUE}(t)) n \times n$ random matrix with independent Gaussian entries:

$$
\begin{aligned}
Z_{n} & =\left(Z_{n}(j, k)\right) \\
Z_{n}(j, k) & =Z_{n}(k, j) \sim N(0, t), \quad j \neq k \\
Z_{n}(j, j) & \sim N(0,2 t)
\end{aligned}
$$

I. Ensembles of Gaussian random matrices

- Ensemble: $\mathbf{Z}=\left(Z_{n}\right), Z_{n}$ is $n \times n$ matrix with random entries.
- $t>0$, Symmetric $(\operatorname{GOE}(t))$ or Hermitian $(\operatorname{GUE}(t)) n \times n$ random matrix with independent Gaussian entries:

$$
\begin{aligned}
Z_{n} & =\left(Z_{n}(j, k)\right) \\
Z_{n}(j, k) & =Z_{n}(k, j) \sim N(0, t), \quad j \neq k \\
Z_{n}(j, j) & \sim N(0,2 t)
\end{aligned}
$$

- Distribution of Z_{n} is invariant under orthogonal conjugations.

I. Ensembles of Gaussian random matrices

- Ensemble: $\mathbf{Z}=\left(Z_{n}\right), Z_{n}$ is $n \times n$ matrix with random entries.
- $t>0$, Symmetric $(\operatorname{GOE}(t))$ or Hermitian $(\operatorname{GUE}(t)) n \times n$ random matrix with independent Gaussian entries:

$$
\begin{aligned}
Z_{n} & =\left(Z_{n}(j, k)\right) \\
Z_{n}(j, k) & =Z_{n}(k, j) \sim N(0, t), \quad j \neq k \\
Z_{n}(j, j) & \sim N(0,2 t)
\end{aligned}
$$

- Distribution of Z_{n} is invariant under orthogonal conjugations.
- Density of eigenvalues of $\lambda_{n, 1}, \ldots, \lambda_{n, n}$ of Z_{n} :

$$
f_{\lambda_{n, 1}, \ldots, \lambda_{n, n}}\left(x_{1}, \ldots, x_{n}\right)=k_{n}\left[\prod_{j=1}^{n} \exp \left(-\frac{1}{4 t} x_{j}^{2}\right)\right]\left[\prod_{j<k}\left|x_{j}-x_{k}\right|\right] .
$$

I. Ensembles of Gaussian random matrices

- Ensemble: $\mathbf{Z}=\left(Z_{n}\right), Z_{n}$ is $n \times n$ matrix with random entries.
- $t>0$, Symmetric $(\operatorname{GOE}(t))$ or Hermitian $(\operatorname{GUE}(t)) n \times n$ random matrix with independent Gaussian entries:

$$
\begin{aligned}
Z_{n} & =\left(Z_{n}(j, k)\right) \\
Z_{n}(j, k) & =Z_{n}(k, j) \sim N(0, t), \quad j \neq k \\
Z_{n}(j, j) & \sim N(0,2 t)
\end{aligned}
$$

- Distribution of Z_{n} is invariant under orthogonal conjugations.
- Density of eigenvalues of $\lambda_{n, 1}, \ldots, \lambda_{n, n}$ of Z_{n} :

$$
f_{\lambda_{n, 1}, \ldots, \lambda_{n, n}}\left(x_{1}, \ldots, x_{n}\right)=k_{n}\left[\prod_{j=1}^{n} \exp \left(-\frac{1}{4 t} x_{j}^{2}\right)\right]\left[\prod_{j<k}\left|x_{j}-x_{k}\right|\right] .
$$

- Nondiagonal RM: eigenvalues are strongly dependent due to Vandermont determinant: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$

$$
\Delta(x)=\operatorname{det}\left(\left\{x_{j}^{k-1}\right\}_{j, k=1}^{n}\right)=\prod_{j<k}\left(x_{j}-x_{k}\right)
$$

I. Wigner law

Wigner (Ann Math. 1955, 1957, 1958)

- Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.

I. Wigner law

Wigner (Ann Math. 1955, 1957, 1958)

- Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.
- A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,

I. Wigner law

Wigner (Ann Math. 1955, 1957, 1958)

- Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.
- A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,
- so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.

I. Wigner law

Wigner (Ann Math. 1955, 1957, 1958)

- Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.
- A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,
- so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
- Which random matrix should be used?

I. Wigner law

Wigner (Ann Math. 1955, 1957, 1958)

- Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.
- A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,
- so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
- Which random matrix should be used?
- $\lambda_{n, 1} \leq \ldots \leq \lambda_{n, n}$ eigenvalues of scaled GOE: $X_{n}=Z_{n} / \sqrt{n}$.

I. Wigner law

Wigner (Ann Math. 1955, 1957, 1958)

- Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.
- A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,
- so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
- Which random matrix should be used?
- $\lambda_{n, 1} \leq \ldots \leq \lambda_{n, n}$ eigenvalues of scaled GOE: $X_{n}=Z_{n} / \sqrt{n}$.
- Empirical spectral distribution (ESD):

$$
\widehat{F}_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{\lambda_{n, j} \leq x\right\}} .
$$

I. Wigner law

Wigner (Ann Math. 1955, 1957, 1958)

- Eugene Wigner: Beginning of RMT with dimension $n \rightarrow \infty$.
- A heavy nucleus is a liquid drop composed of many particles with unknown strong interactions,
- so a random matrix would be a possible model for the Hamiltonian of a heavy nucleus.
- Which random matrix should be used?
- $\lambda_{n, 1} \leq \ldots \leq \lambda_{n, n}$ eigenvalues of scaled GOE: $X_{n}=Z_{n} / \sqrt{n}$.
- Empirical spectral distribution (ESD):

$$
\widehat{F}_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{\lambda_{n, j} \leq x\right\}} .
$$

- Asymptotic spectral distribution (ASD): \widehat{F}_{n} converges, as $n \rightarrow \infty$, to semicircle distribution on $(-2 \sqrt{t}, 2 \sqrt{t})$

$$
w_{t}(x)=\frac{1}{2 \pi} \sqrt{4 t-x^{2}}, \quad|x| \leq 2 \sqrt{t}
$$

I. Simulation of Wigner law

Eigenvalue density of a $\mathbf{1 0 0 0 \times 1 0 0 0}$ symmetric random matrix

I. Universality of Wigner law.

Wigner (Ann Math. 1955, 1957, 1958)

Theorem

$$
t>0 . \forall f \in C_{b}(\mathbb{R}) \text { and } \epsilon>0,
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\int f(x) \mathrm{d} \widehat{F}_{n}(x)-\int f(x) \mathrm{w}_{t}(\mathrm{~d} x)\right|>\varepsilon\right)=0 . \\
& \mathrm{w}_{t}(\mathrm{~d} x)=w_{t}(x) \mathrm{d} x=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathbf{1}_{[-2 \sqrt{t}, 2 \sqrt{t}]}(x) \mathrm{d} x .
\end{aligned}
$$

- Universality. Law holds for Wigner random matrices:

$$
X_{n}(k, j)=X_{n}(j, k)=\frac{1}{\sqrt{n}} \begin{cases}Z_{j, k}, & \text { if } j<k \\ Y_{j}, & \text { if } j=k\end{cases}
$$

$\left\{Z_{j, k}\right\}_{j \leq k},\left\{Y_{j}\right\}_{j \geq 1}$ independent sequences of i.i.d. r.v. $\mathbb{E} Z_{1,2}=\mathbb{E} Y_{1}=0, \mathbb{E} Z_{1,2}^{2}=1$.

I. Universality of Wigner law.

Wigner (Ann Math. 1955, 1957, 1958)

Theorem

$$
t>0 . \forall f \in C_{b}(\mathbb{R}) \text { and } \epsilon>0 \text {, }
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\int f(x) \mathrm{d} \widehat{F}_{n}(x)-\int f(x) \mathrm{w}_{t}(\mathrm{~d} x)\right|>\varepsilon\right)=0 . \\
& \mathrm{w}_{t}(\mathrm{~d} x)=w_{t}(x) \mathrm{d} x=\frac{1}{2 \pi} \sqrt{4 t-x^{2}} \mathbf{1}_{[-2 \sqrt{t}, 2 \sqrt{t}]}(x) \mathrm{d} x .
\end{aligned}
$$

- Universality. Law holds for Wigner random matrices:

$$
X_{n}(k, j)=X_{n}(j, k)=\frac{1}{\sqrt{n}} \begin{cases}Z_{j, k}, & \text { if } j<k \\ Y_{j}, & \text { if } j=k\end{cases}
$$

$\left\{Z_{j, k}\right\}_{j \leq k},\left\{Y_{j}\right\}_{j \geq 1}$ independent sequences of i.i.d. r.v.
$\mathbb{E} Z_{1,2}=\mathbb{E} Y_{1}=0, \mathbb{E} Z_{1,2}^{2}=1$.

- Convergence of extreme eigenvalues as $n \rightarrow \infty$

$$
\mathbb{P}\left(\lambda_{n, n} \rightarrow 2 \sqrt{t}\right)=\mathbb{P}\left(\lambda_{n, 1} \rightarrow-2 \sqrt{t}\right)=1 .
$$

Idea of a proof of Wigner theorem

- Basic observation

$$
\widehat{m}_{k}(t)=\int x^{k} \widehat{F}_{n}(x)=\frac{1}{n}\left(\lambda_{n, 1}^{k}+\ldots+\lambda_{n, n}^{k}\right)=\frac{1}{n} \operatorname{tr}\left(X_{n}^{k}\right) .
$$

Idea of a proof of Wigner theorem

- Basic observation

$$
\begin{gathered}
\widehat{m}_{k}(t)=\int x^{k} \widehat{F}_{n}(x)=\frac{1}{n}\left(\lambda_{n, 1}^{k}+\ldots+\lambda_{n, n}^{k}\right)=\frac{1}{n} \operatorname{tr}\left(X_{n}^{k}\right) \\
\bar{m}_{k}(t)=\mathbb{E}\left(\widehat{m}_{k}(t)\right)=\frac{1}{n} \mathbb{E}\left(\operatorname{tr}\left(X_{n}^{k}\right)\right)
\end{gathered}
$$

Idea of a proof of Wigner theorem

- Basic observation

$$
\begin{gathered}
\widehat{m}_{k}(t)=\int x^{k} \widehat{F}_{n}(x)=\frac{1}{n}\left(\lambda_{n, 1}^{k}+\ldots+\lambda_{n, n}^{k}\right)=\frac{1}{n} \operatorname{tr}\left(X_{n}^{k}\right) \\
\bar{m}_{k}(t)=\mathbb{E}\left(\widehat{m}_{k}(t)\right)=\frac{1}{n} \mathbb{E}\left(\operatorname{tr}\left(X_{n}^{k}\right)\right)
\end{gathered}
$$

- Moments of semicircle distribution are $m_{2 k+1}(t)=0$ \&

$$
m_{2 k}(t)=\frac{1}{2 \pi} \int_{-2 \sqrt{t}}^{2 \sqrt{t}} x^{2 k} \sqrt{4 t-x^{2}} \mathrm{~d} x=\frac{1}{k+1}\binom{2 k}{k} t^{k} .
$$

Idea of a proof of Wigner theorem

- Basic observation

$$
\begin{gathered}
\widehat{m}_{k}(t)=\int x^{k} \widehat{F}_{n}(x)=\frac{1}{n}\left(\lambda_{n, 1}^{k}+\ldots+\lambda_{n, n}^{k}\right)=\frac{1}{n} \operatorname{tr}\left(X_{n}^{k}\right) . \\
\bar{m}_{k}(t)=\mathbb{E}\left(\widehat{m}_{k}(t)\right)=\frac{1}{n} \mathbb{E}\left(\operatorname{tr}\left(X_{n}^{k}\right)\right) .
\end{gathered}
$$

- Moments of semicircle distribution are $m_{2 k+1}(t)=0$ \&

$$
m_{2 k}(t)=\frac{1}{2 \pi} \int_{-2 \sqrt{t}}^{2 \sqrt{t}} x^{2 k} \sqrt{4 t-x^{2}} \mathrm{~d} x=\frac{1}{k+1}\binom{2 k}{k} t^{k} .
$$

- Use method of moments to show that $\bar{m}_{k} \underset{n \rightarrow \infty}{\rightarrow} m_{k}, \forall k \geq 1$.

Idea of a proof of Wigner theorem

- Basic observation

$$
\begin{gathered}
\widehat{m}_{k}(t)=\int x^{k} \widehat{F}_{n}(x)=\frac{1}{n}\left(\lambda_{n, 1}^{k}+\ldots+\lambda_{n, n}^{k}\right)=\frac{1}{n} \operatorname{tr}\left(X_{n}^{k}\right) . \\
\bar{m}_{k}(t)=\mathbb{E}\left(\widehat{m}_{k}(t)\right)=\frac{1}{n} \mathbb{E}\left(\operatorname{tr}\left(X_{n}^{k}\right)\right) .
\end{gathered}
$$

- Moments of semicircle distribution are $m_{2 k+1}(t)=0$ \&

$$
m_{2 k}(t)=\frac{1}{2 \pi} \int_{-2 \sqrt{t}}^{2 \sqrt{t}} x^{2 k} \sqrt{4 t-x^{2}} \mathrm{~d} x=\frac{1}{k+1}\binom{2 k}{k} t^{k} .
$$

- Use method of moments to show that $\bar{m}_{k} \xrightarrow[n \rightarrow \infty]{ } m_{k}, \forall k \geq 1$.
- Catalan numbers

$$
C_{k}=\frac{1}{k+1}\binom{2 k}{k}, k \geq 1
$$

I. Review: Asymptotically free random matrices

- For an ensemble of Hermitian random matrices $\mathbf{X}=\left(X_{n}\right)_{n \geq 1}$ define "expectation" τ as the linear functional $\tau,(\tau(\mathbf{I})=1)$

$$
\tau(\mathbf{X})=\lim _{n \rightarrow \infty} \frac{1}{n} \mathbb{E}\left[\operatorname{tr}\left(X_{n}\right)\right] .
$$

- Hermitian ensembles $\mathbf{X}_{1} \& \mathbf{X}_{2}$ are asymptotically free (AF) if $\forall r \in Z_{+}$\& polynomials $p_{i}(\cdot), q_{i}(\cdot), 1 \leq i \leq r$ with

$$
\tau\left(p_{i}\left(\mathbf{X}_{1}\right)\right)=\tau\left(q_{i}\left(\mathbf{X}_{2}\right)\right)=0,
$$

we have

$$
\tau\left(p_{1}\left(\mathbf{X}_{1}\right) q_{1}\left(\mathbf{X}_{2}\right) \ldots p_{r}\left(\mathbf{X}_{1}\right) q_{r}\left(\mathbf{X}_{2}\right)\right)=0
$$

- Examples:
- If \mathbf{X}_{1} and \mathbf{X}_{2} are independent Wigner ensembles, they are AF.
- If \mathbf{X}_{1} and \mathbf{X}_{2} are independent $\operatorname{GOE}(t)$, they are AF.

I Review: classical and free convolutions

- Fourier transform of probability measure μ on \mathbb{R}

$$
\widehat{\mu}(s)=\int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{~d} x), \quad s \in S .
$$

- Cauchy transform of μ

$$
G_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{z-x} \mu(\mathrm{~d} x), \quad z \in \mathbb{C} / \mathbb{R}
$$

- Classical cumulant transform

$$
c_{\mu}(s)=\log \widehat{\mu}(s), \quad s \in \mathbb{R}
$$

- Free cumulant transform

$$
C_{\mu}(z)=z G_{\mu}^{-1}(z)-1, \quad z \in \Gamma_{\mu}
$$

I. Review: classical and free convolutions

- Classical convolution $\mu_{1} * \mu_{2}$ is defined by

$$
c_{\mu_{1} * \mu_{2}}(s)=c_{\mu_{1}}(s)+c_{\mu_{2}}(s)
$$

- If $X_{1} \& X_{2}$ are classical independent random variables with distributions $\mu_{1} \& \mu_{2}, X_{1}+X_{2}$ has distribution $\mu_{1} * \mu_{2}$.
- Free convolution $\mu_{1} \boxplus \mu_{2}$ is defined by

$$
C_{\mu_{1} \boxplus \mu_{2}}(z)=C_{\mu_{1}}(z)+C_{\mu_{2}}(z), \quad z \in \Gamma_{\mu_{1}} \cap \Gamma_{\mu_{2}} .
$$

- If $\mathbf{X}_{1} \& \mathbf{X}_{2}$ AF ensembles of random matrices with ASD μ_{1} and μ_{2}, then the ASD of $\mathbf{X}_{1}+\mathbf{X}_{2}$ is $\mu_{1} \boxplus \mu_{2}$.

I. Free convolution of Wigners

Towards the free Brownian motion

- Semicircle distribution $\mathrm{w}_{m, \sigma^{2}}$ on $(m-2 \sigma, m+2 \sigma)$ centered at m

$$
w_{m, \sigma^{2}}(x)=\frac{1}{2 \pi \sigma^{2}} \sqrt{4 \sigma^{2}-(x-m)^{2}} 1_{[m-2 \sigma, m+2 \sigma]}(x) .
$$

- Free cumulant transform:

$$
C_{\mathrm{w}_{m, \sigma^{2}}}(z)=m z+\sigma^{2} z^{2} .
$$

- \boxplus-convolution of Wigner distributions is a Wigner distribution:

$$
\mathrm{w}_{m_{1}, \sigma_{1}^{2}} \boxplus \mathrm{w}_{m_{2}, \sigma_{2}^{2}}=\mathrm{w}_{m_{1}+m_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}} .
$$

- Of special interest: free Brownian motion

$$
\mathrm{w}_{t}=\mathrm{w}_{0, t}, t \geq 0
$$

II. Free Brownian motion

- Law of Free Brownian motion

$$
\mathrm{w}_{t}(\mathrm{~d} x)=\frac{1}{2 \pi t} \sqrt{4 t^{2}-x} 1_{[-2 \sqrt{t}, 2 \sqrt{t}]}(x) \mathrm{d} x .
$$

- Free cumulant transform

$$
C_{\mathrm{w}_{t}}(z)=t z^{2}
$$

- In law:
- $\mathrm{w}_{0}=\delta_{0}$
- "Stationary increments": distribution w_{t-s} depends on $t-s$.
- "Independent increments": $0<t_{1}<t_{2}$

$$
\mathrm{w}_{t_{2}-t_{1}} \boxplus \mathrm{w}_{t_{1}}=\mathrm{w}_{t_{2}}
$$

- Realization for free Brownian motion?

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.
- $\left\{B_{n}(t)\right\}_{t \geq 0}$ has stationary and independent increments.

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.
- $\left\{B_{n}(t)\right\}_{t \geq 0}$ has stationary and independent increments.
- For $0=t_{0}<t_{1}<t_{2}<\ldots<t_{p}$:

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.
- $\left\{B_{n}(t)\right\}_{t \geq 0}$ has stationary and independent increments.
- For $0=t_{0}<t_{1}<t_{2}<\ldots<t_{p}$:

1. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are independent GOE.

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.
- $\left\{B_{n}(t)\right\}_{t \geq 0}$ has stationary and independent increments.
- For $0=t_{0}<t_{1}<t_{2}<\ldots<t_{p}$:

1. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are independent GOE.
2. ASD of $\left(\frac{1}{\sqrt{n}} B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}$ is $\mathrm{w}_{t_{k}-t_{k-1}}, k=1 \ldots, n$.

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.
- $\left\{B_{n}(t)\right\}_{t \geq 0}$ has stationary and independent increments.
- For $0=t_{0}<t_{1}<t_{2}<\ldots<t_{p}$:

1. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are independent GOE.
2. ASD of $\left(\frac{1}{\sqrt{n}} B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}$ is $\mathrm{w}_{t_{k}-t_{k-1}}, k=1 \ldots, n$.
3. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are asymptotically free.

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.
- $\left\{B_{n}(t)\right\}_{t \geq 0}$ has stationary and independent increments.
- For $0=t_{0}<t_{1}<t_{2}<\ldots<t_{p}$:

1. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are independent GOE.
2. ASD of $\left(\frac{1}{\sqrt{n}} B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}$ is $\mathrm{w}_{t_{k}-t_{k-1}}, k=1 \ldots, n$.
3. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are asymptotically free.

- $0<s<t$

$$
\mathrm{w}_{t-s} \boxplus \mathrm{w}_{s}=\mathrm{w}_{t}
$$

II. Matrix Brownian motion

- $n \times n$ symmetric matrix valued Brownian motion

$$
B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0
$$

$\left\{b_{i j}(t)\right\}_{t \geq 0}, 1 \leq i \leq j \leq n$, independent 1-dim. Brownian motions with $b_{i j}(t) \sim N\left(0,1+\delta_{i j}\right)$.

- $\forall t>0\left(B_{n}(t)\right)_{n \geq 1}$ is a GOE of parameter $t>0$.
- $\left\{B_{n}(t)\right\}_{t \geq 0}$ has stationary and independent increments.
- For $0=t_{0}<t_{1}<t_{2}<\ldots<t_{p}$:

1. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are independent GOE.
2. ASD of $\left(\frac{1}{\sqrt{n}} B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}$ is $\mathrm{w}_{t_{k}-t_{k-1}}, k=1 \ldots, n$.
3. $\left(B_{n}\left(t_{k}-t_{k-1}\right)\right)_{n \geq 1}, k=1, \ldots, p$ are asymptotically free.

- $0<s<t$

$$
\mathrm{w}_{t-s} \boxplus \mathrm{w}_{s}=\mathrm{w}_{t} .
$$

- $\left(\left\{B_{n}(t)\right\}_{t \geq 0}\right)_{n \geq 1}$ is realization of free Brownian motion.

III. Dyson-Brownian process

- Fix $n>0$, and consider $n \times n$ Hermitiam matrix Brownian motion $B_{n}(t)=\left(b_{i j}(t)\right), t \geq 0$, $\operatorname{Re}\left(b_{i j}(t)\right) \sim \operatorname{Im}\left(b_{i j}(t)\right) \sim N\left(0, t\left(1+\delta_{i j}\right) /(2 n)\right)$, $\operatorname{Re}\left(b_{i j}(t)\right), \operatorname{Im}\left(b_{i j}(t)\right), 1 \leq i \leq j \leq n$ independent.
- $\left(\lambda_{n, 1}(t), \cdots, \lambda_{n, n}(t)\right), t \geq 0$, eigenvalues process of $B_{n}(t / n)$.

Theorem

(Dyson, 1962) Consider Hermitian matrix Brownian motion. There exist n independent 1-dimensional standard Brownian motions $b_{1}^{(n)}(t), \ldots, b_{n}^{(n)}(t)$ such that if $\lambda_{n, 1}(0)<\cdots<\lambda_{n, n}(0)$ a.s.
$\lambda_{n, i}(t)=\lambda_{n, i}(0)+\frac{1}{\sqrt{n}} b_{i}^{(n)}(t)+\frac{1}{n} \sum_{j \neq i} \int_{0}^{t} \frac{1}{\lambda_{n, j}(s)-\lambda_{n, i}(s)} \mathrm{d} s$,

- Brownian part plus noncollinding part.
- \mathbb{R}^{d}-valued SDE with non smooth drift.
- For now on we consider Hermitian matrix Brownian motion.

III. The associated measure valued processes

Cabanal-Duvillard and Guionnet(01), PA and Tudor (07)

- Dyson measure valued process

$$
\mu_{t}^{(n)}=\widehat{F}_{n}^{t}(x)=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{n, j}(t)}, \quad t \geq 0 .
$$

III. The associated measure valued processes

Cabanal-Duvillard and Guionnet(01), PA and Tudor (07)

- Dyson measure valued process

$$
\mu_{t}^{(n)}=\widehat{F}_{n}^{t}(x)=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{n, j}(t)}, \quad t \geq 0 .
$$

- Notation: If f is μ-integrable function

$$
\langle\mu, f\rangle=\int f(x) \mu(\mathrm{d} x)
$$

III. The associated measure valued processes

Cabanal-Duvillard and Guionnet(01), PA and Tudor (07)

- Dyson measure valued process

$$
\mu_{t}^{(n)}=\widehat{F}_{n}^{t}(x)=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{n, j}(t)}, \quad t \geq 0 .
$$

- Notation: If f is μ-integrable function

$$
\langle\mu, f\rangle=\int f(x) \mu(\mathrm{d} x)
$$

- Functional Law of large numbers: $\forall f \in C_{b}(\mathbb{R})$

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left|\left\langle\mu_{t}^{(n)}, f\right\rangle-\left\langle\mathrm{w}_{t}, f\right\rangle\right|=0\right)=1
$$

III. The associated measure valued processes

Cabanal-Duvillard and Guionnet(01), PA and Tudor (07)

- Dyson measure valued process

$$
\mu_{t}^{(n)}=\widehat{F}_{n}(x)=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{n, j}(t)}, \quad t \geq 0
$$

- Notation: If f is μ-integrable function

$$
\langle\mu, f\rangle=\int f(x) \mu(\mathrm{d} x)
$$

- Functional Law of large numbers: $\forall f \in C_{b}(\mathbb{R})$

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left|\left\langle\mu_{t}^{(n)}, f\right\rangle-\left\langle\mathrm{w}_{t}, f\right\rangle\right|=0\right)=1 .
$$

- $\forall T>0$

$$
\sup _{0 \leq t \leq T} \lambda_{n, n}(t) \underset{n \rightarrow \infty}{\text { a.s. }} 2 \sqrt{T}, \inf _{0 \leq t \leq T} \lambda_{n, 1}(t) \underset{n \rightarrow \infty}{\underset{n}{\text { a.s. }}}-2 \sqrt{T} .
$$

III. The associated measure valued processes

Cabanal-Duvillard and Guionnet (01), PA and Tudor (07)

Notation: $C\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{R})\right)$ continuous functions from $\mathbb{R}_{+} \rightarrow \mathcal{P}(\mathbb{R})$, with topology of uniform convergence on compact intervals of \mathbb{R}_{+}.

Theorem
If $\mu_{0}^{(n)} \rightarrow \delta_{0}$, the family $\left(\mu_{t}^{(n)}\right)_{t \geq 0}$ of measure valued-processes converges weakly in $C\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{R})\right)$ to unique continuous probability-measure valued function such that $\forall f \in C_{b}^{2}(\mathbb{R})$

$$
\left\langle\mu_{t}, f\right\rangle=f(0)+\frac{1}{2} \int_{0}^{t} \mathrm{~d} s \int_{\mathbb{R}^{2}} \frac{f^{\prime}(x)-f^{\prime}(y)}{x-y} \mu_{s}(\mathrm{~d} x) \mu_{s}(\mathrm{~d} y)
$$

Moreover, $\mu_{t}=\mathrm{w}_{t}, t \geq 0$.

III. Key tools for the proof

- $m_{r}(t) r$-moment of w_{t} and Cauchy transform $G_{t}=-G_{\mathrm{w}_{t}}$.
- For each $r \geq 2$ and $t>0$

$$
m_{r}(t)=\frac{r}{2} \sum_{j=0}^{r-2} \int_{0}^{t} m_{r-2-j}(s) m_{j}(s) \mathrm{d} s
$$

- $\left(\mathrm{w}_{t}\right)_{t \geq 0}$ is characterized by its Cauchy transforms being unique solution of

$$
\begin{aligned}
\frac{\partial G_{t}(z)}{\partial t} & =G_{t}(z) \frac{\partial G_{t}(z)}{\partial z}, \quad t>0 \\
G_{0}(z) & =-\frac{1}{z}, \quad z \in \mathbb{C}^{+}
\end{aligned}
$$

$$
G_{t}(z) \in \mathbb{C}^{+} \text {for } z \in \mathbb{C}^{+} \& \lim _{\eta \rightarrow \infty} \eta\left|G_{t}(i \eta)\right|<\infty \forall t>0
$$

III. Asymptotic Fluctuations

Smooth vs. non smooth interacting SDE

- Consider

$$
\begin{equation*}
Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right) . \tag{1}
\end{equation*}
$$

III. Asymptotic Fluctuations

Smooth vs. non smooth interacting SDE

- Consider

$$
\begin{equation*}
Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right) . \tag{1}
\end{equation*}
$$

- Interacting SDE with both smooth drift \& diffusion coefficients. If $\mu_{t}^{(n)}$ is empirical measure:

III. Asymptotic Fluctuations

Smooth vs. non smooth interacting SDE

- Consider

$$
\begin{equation*}
Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right) . \tag{1}
\end{equation*}
$$

- Interacting SDE with both smooth drift \& diffusion coefficients. If $\mu_{t}^{(n)}$ is empirical measure:
- McKean (67): $\mu_{t}^{(n)}$ converges in probability to μ_{t}, which is the distribution of a SDE.

III. Asymptotic Fluctuations

Smooth vs. non smooth interacting SDE

- Consider

$$
\begin{equation*}
Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right) . \tag{1}
\end{equation*}
$$

- Interacting SDE with both smooth drift \& diffusion coefficients. If $\mu_{t}^{(n)}$ is empirical measure:
- McKean (67): $\mu_{t}^{(n)}$ converges in probability to μ_{t}, which is the distribution of a SDE.
- Fluctuations

$$
\begin{equation*}
S_{t}^{(n)}=n^{1 / 2}\left(\mu_{t}^{(n)}-\mu_{t}\right) \tag{2}
\end{equation*}
$$

III. Asymptotic Fluctuations

Smooth vs. non smooth interacting SDE

- Consider

$$
\begin{equation*}
Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right) . \tag{1}
\end{equation*}
$$

- Interacting SDE with both smooth drift \& diffusion coefficients. If $\mu_{t}^{(n)}$ is empirical measure:
- McKean (67): $\mu_{t}^{(n)}$ converges in probability to μ_{t}, which is the distribution of a SDE.
- Fluctuations

$$
\begin{equation*}
S_{t}^{(n)}=n^{1 / 2}\left(\mu_{t}^{(n)}-\mu_{t}\right) \tag{2}
\end{equation*}
$$

- Hitsuda and Mitoma (86): $S_{t}^{(n)}$ converges weakly to a Gaussian process in the dual of a nuclear Fréchet space. (Kallianpur \& PA (88), Kallianpur \& Xiong (95)).

III. Asymptotic Fluctuations

Smooth vs. non smooth interacting SDE

- Consider

$$
\begin{equation*}
Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right) . \tag{1}
\end{equation*}
$$

- Interacting SDE with both smooth drift \& diffusion coefficients. If $\mu_{t}^{(n)}$ is empirical measure:
- McKean (67): $\mu_{t}^{(n)}$ converges in probability to μ_{t}, which is the distribution of a SDE.
- Fluctuations

$$
\begin{equation*}
S_{t}^{(n)}=n^{1 / 2}\left(\mu_{t}^{(n)}-\mu_{t}\right) . \tag{2}
\end{equation*}
$$

- Hitsuda and Mitoma (86): $S_{t}^{(n)}$ converges weakly to a Gaussian process in the dual of a nuclear Fréchet space. (Kallianpur \& PA (88), Kallianpur \& Xiong (95)).
- Interacting SDEs with non smooth drift coefficient arise naturally in the study of eigenvalue processes of matrix-valued stochastic processes [Bru (89), Rogers \& Shi (93), Chan (97), Konig \& O'Connell (01), Katori \& Tanemura (04)].

III. Asymptotic Fluctuations

Central limit theorem for Dyson measure valued process

$$
Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right) .
$$

III. Asymptotic Fluctuations

Central limit theorem for Dyson measure valued process
$Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right)$.

- Main problem: $w_{t}, t \geq 0$, does not govern a SDE equation, but rather the free Brownian motion.

III. Asymptotic Fluctuations

Central limit theorem for Dyson measure valued process
$-Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right)$.

- Main problem: $w_{t}, t \geq 0$, does not govern a SDE equation, but rather the free Brownian motion.
- Israelson (01), Bender (09): $Y_{n}(t)$ converges weakly to a Gaussian process in the dual of a nuclear Fréchet space.

III. Asymptotic Fluctuations

Central limit theorem for Dyson measure valued process
$Y_{t}^{(n)}=n\left(\mu_{t}^{(n)}-\mathrm{w}_{t}\right)$.

- Main problem: $w_{t}, t \geq 0$, does not govern a SDE equation, but rather the free Brownian motion.
- Israelson (01), Bender (09): $Y_{n}(t)$ converges weakly to a Gaussian process in the dual of a nuclear Fréchet space.
- PA \& Tudor (07): Propagation of chaos \& fluctuations of traces processes $\left(\left\{M_{n, p}(t)\right\}_{t \geq 0}, n \geq 1\right), p \geq 0$, given by the semimartingales

$$
M_{n, p}(t)=\frac{1}{n} \operatorname{tr}\left(\left[B_{n}(t)\right]^{p}\right)=\int_{\mathbb{R}} x^{p} \mu_{t}^{(n)}(\mathrm{d} x)=\frac{1}{n} \sum_{j=1}^{n}\left[\lambda_{n, j}(t)\right]^{p}
$$

and fluctuations of moments processes

$$
V_{n, p}(t)=\int x^{p} Y_{t}^{(n)}(\mathrm{d} x)=n\left(M_{n, p}(t)-m_{p}(t)\right)
$$

IV. Asymptotics for traces processes

Almost sure and k mean convergence

- The martingales, $p \geq 0 \& n \geq 1$,

$$
X_{n, p}(t)=\frac{1}{n^{3 / 2}} \sum_{j=1}^{n} \int_{0}^{t}\left[\lambda_{n, j}(s)\right]^{p} \mathrm{~d} b_{j}^{(n)}(s), t \geq 0
$$

have increasing processes

$$
\left\langle X_{n, p}\right\rangle_{t}=\frac{1}{n^{2}} \int_{0}^{t} M_{n, 2 p}(s) \mathrm{d} s, t \geq 0
$$

IV. Asymptotics for traces processes

Almost sure and k mean convergence

- The martingales, $p \geq 0 \& n \geq 1$,

$$
X_{n, p}(t)=\frac{1}{n^{3 / 2}} \sum_{j=1}^{n} \int_{0}^{t}\left[\lambda_{n, j}(s)\right]^{p} \mathrm{~d} b_{j}^{(n)}(s), t \geq 0
$$

have increasing processes

$$
\left\langle X_{n, p}\right\rangle_{t}=\frac{1}{n^{2}} \int_{0}^{t} M_{n, 2 p}(s) \mathrm{d} s, t \geq 0
$$

- The following relations hold for $n \geq 1, r \geq 1$ and $t \geq 0$

$$
M_{n, r}(t)=M_{n, r}(0)+r X_{n, r-1}(t)+\frac{r}{2} \sum_{j=0}^{r-2} \int_{0}^{t} M_{n, r-2-j}(s) M_{n, j}(s) \mathrm{d} s
$$

IV. Asymptotics for traces processes

Almost sure and k mean convergence

- The martingales, $p \geq 0 \& n \geq 1$,

$$
X_{n, p}(t)=\frac{1}{n^{3 / 2}} \sum_{j=1}^{n} \int_{0}^{t}\left[\lambda_{n, j}(s)\right]^{p} \mathrm{~d} b_{j}^{(n)}(s), t \geq 0
$$

have increasing processes

$$
\left\langle X_{n, p}\right\rangle_{t}=\frac{1}{n^{2}} \int_{0}^{t} M_{n, 2 p}(s) \mathrm{d} s, t \geq 0
$$

- The following relations hold for $n \geq 1, r \geq 1$ and $t \geq 0$

$$
M_{n, r}(t)=M_{n, r}(0)+r X_{n, r-1}(t)+\frac{r}{2} \sum_{j=0}^{r-2} \int_{0}^{t} M_{n, r-2-j}(s) M_{n, j}(s) \mathrm{d} s
$$

- Under conditions on $M_{n, 2 p}^{2 k}(0)$,

$$
\begin{gathered}
\sup _{0 \leq t \leq T}\left|M_{n, 2 p}(t)-m_{2 p}(t)\right| \xrightarrow{\text { a.s. }} 0 \text { as } n \rightarrow \infty, \\
\mathbb{E} \sup _{0 \leq t \leq T}\left|M_{n, 2 p}(t)-m_{2 p}(t)\right|^{2 k} \longrightarrow 0 \text { as } n \rightarrow \infty .
\end{gathered}
$$

IV. Asymptotics of associated martingales

PA \& Tudor (07)

$$
R_{n, p}(t)=n X_{n, p}(t)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \int_{0}^{t}\left[\lambda_{n, j}(s)\right]^{p} \mathrm{~d} b_{j}^{(n)}(s), \quad t \geq 0, p \geq 0
$$

IV. Asymptotics of associated martingales

PA \& Tudor (07)

$$
R_{n, p}(t)=n X_{n, p}(t)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \int_{0}^{t}\left[\lambda_{n, j}(s)\right]^{p} \mathrm{~d} b_{j}^{(n)}(s), \quad t \geq 0, p \geq 0
$$

- $R_{n, p}$ converges weakly in $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$, as $n \rightarrow \infty$, to a centered Gaussian martingale R_{p} with covariance function

$$
E\left(R_{p}(s) R_{p}(t)\right)=\frac{C_{p}}{p+1}(s \wedge t)^{p+1}
$$

and increasing process

$$
\left\langle R_{p}\right\rangle_{t}=\int_{0}^{t} m_{2 p}(s) \mathrm{d} s=\frac{C_{p}}{p+1} t^{p+1}
$$

IV. Asymptotics of associated martingales

PA \& Tudor (07)

$$
R_{n, p}(t)=n X_{n, p}(t)=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} \int_{0}^{t}\left[\lambda_{n, j}(s)\right]^{p} \mathrm{~d} b_{j}^{(n)}(s), \quad t \geq 0, p \geq 0
$$

- $R_{n, p}$ converges weakly in $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$, as $n \rightarrow \infty$, to a centered Gaussian martingale R_{p} with covariance function

$$
E\left(R_{p}(s) R_{p}(t)\right)=\frac{C_{p}}{p+1}(s \wedge t)^{p+1}
$$

and increasing process

$$
\left\langle R_{p}\right\rangle_{t}=\int_{0}^{t} m_{2 p}(s) \mathrm{d} s=\frac{C_{p}}{p+1} t^{p+1}
$$

- Limiting process R_{p} is $\frac{p+1}{2}$-self-similar Gaussian process with independent increments

$$
R_{p}(t)=C_{p}^{\frac{1}{2}} \int_{0}^{t} s^{\frac{p}{2}} \mathrm{~d} b_{s}
$$

IV. CLT for traces processes

Israelson (01), PA \& Tudor (07)

- Under assumptions on $V_{n, p}^{2 k}(0), V_{n, p}$ converges weakly in $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$ to centered Gaussian process Z_{p} satisfying $Z_{0}=0$,

$$
\begin{aligned}
Z_{p}(t) & +p \int_{0}^{t} Z_{p}(s) \mathrm{d} s=V_{p}^{(0)}+\frac{p}{2} \int_{0}^{t}\left\{2 \left[m_{p-2}(s)+m_{p-3}(s) Z_{1}(s)\right.\right. \\
& \left.\left.+\ldots+m_{1}(s) Z_{p-3}(s)\right]+Z_{p-2}(s)\right\} \mathrm{d} s+p R_{p-1}(t)
\end{aligned}
$$

IV. CLT for traces processes

Israelson (01), PA \& Tudor (07)

- Under assumptions on $V_{n, p}^{2 k}(0), V_{n, p}$ converges weakly in $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$ to centered Gaussian process Z_{p} satisfying $Z_{0}=0$,

$$
\begin{aligned}
Z_{p}(t) & +p \int_{0}^{t} Z_{p}(s) \mathrm{d} s=V_{p}^{(0)}+\frac{p}{2} \int_{0}^{t}\left\{2 \left[m_{p-2}(s)+m_{p-3}(s) Z_{1}(s)\right.\right. \\
& \left.\left.+\ldots+m_{1}(s) Z_{p-3}(s)\right]+Z_{p-2}(s)\right\} \mathrm{d} s+p R_{p-1}(t)
\end{aligned}
$$

- Alternative expression for Z_{p} :

$$
\begin{gathered}
Z_{p}(t)=a_{p-1}(t)-p \int_{0}^{t} e^{-p(t-s)} a_{p-1}(s) \mathrm{d} s \\
a_{p}(t)=V_{p}^{(0)}+\frac{p+1}{2} \int_{0}^{t}\left\{2 \left[m_{p-1}(s)+m_{p-2}(s) Z_{1}(s)\right.\right. \\
\left.\left.+\ldots+m_{1}(s) Z_{p-2}(s)\right]+Z_{p-1}(s)\right\} d s+(p+1) R_{p}(t),
\end{gathered}
$$

IV. CLT for traces processes

Israelson (01), PA \& Tudor (07)

- Under assumptions on $V_{n, p}^{2 k}(0), V_{n, p}$ converges weakly in $C\left(\mathbb{R}_{+}, \mathbb{R}\right)$ to centered Gaussian process Z_{p} satisfying $Z_{0}=0$,

$$
\begin{aligned}
Z_{p}(t) & +p \int_{0}^{t} Z_{p}(s) \mathrm{d} s=V_{p}^{(0)}+\frac{p}{2} \int_{0}^{t}\left\{2 \left[m_{p-2}(s)+m_{p-3}(s) Z_{1}(s)\right.\right. \\
& \left.\left.+\ldots+m_{1}(s) Z_{p-3}(s)\right]+Z_{p-2}(s)\right\} \mathrm{d} s+p R_{p-1}(t)
\end{aligned}
$$

- Alternative expression for Z_{p} :

$$
\begin{gathered}
Z_{p}(t)=a_{p-1}(t)-p \int_{0}^{t} e^{-p(t-s)} a_{p-1}(s) \mathrm{d} s \\
a_{p}(t)= \\
+V_{p}^{(0)}+\frac{p+1}{2} \int_{0}^{t}\left\{2 \left[m_{p-1}(s)+m_{p-2}(s) Z_{1}(s)\right.\right. \\
\left.\left.+m_{1}(s) Z_{p-2}(s)\right]+Z_{p-1}(s)\right\} d s+(p+1) R_{p}(t)
\end{gathered}
$$

- \exists measurable deterministic Volterra kernel K_{p} such that

$$
Z_{p}(t)=\int_{0}^{t} K_{p}(t, s) d b_{s}
$$

V. Wishart process

- $m, n \geq 1,\left\{B_{m, n}(t)\right\}_{t \geq 0}=\left\{\left(b_{m, n}^{j, k}(t)\right)_{1 \leq j \leq m, 1 \leq k \leq n}\right\}_{t \geq 0}$, $\left\{\operatorname{Re}\left(b_{m, n}^{j, k}(t)\right)\right\}_{t \geq 0} \&\left\{\operatorname{Im}\left(b_{m, n}^{j, k}(t)\right)\right\}_{t \geq 0}$ independent unidimensional Brownian motions, $\operatorname{Re}\left(b_{m, n}^{j, k}(t)\right) \sim \operatorname{Im}\left(b_{m, n}^{j, k}(t)\right) \sim N\left(0,\left(1+\delta_{j k}\right) /(2 t)\right)$.
- Laguerre or Wishart process: $n \times n$-matrix-valued process

$$
L_{m, n}(t)=B_{m, n}^{*}(t) B_{m, n}(t), t \geq 0
$$

- Bru (89), Graczyk (11): For eigenvalue of $L_{m, n}(t) /(2 n)$

$$
\begin{gathered}
\mathrm{d} \lambda_{j}^{(m, n)}(t)=\sqrt{\frac{2 \lambda_{j}^{(m, n)}(t)}{n}} \mathrm{~d} b_{j}^{(m, n)}(t) \\
+\frac{1}{n}\left(m+\sum_{k \neq j} \frac{\lambda_{j}^{(m, n)}(t)+\lambda_{k}^{(m, n)}(t)}{\lambda_{j}^{(m, n)}(t)-\lambda_{k}^{(m, n)}(t)}\right) \mathrm{d} t, 1 \leq j \leq n .
\end{gathered}
$$

- PA \& Tudor (09): Measure valued process \& traces.

V. Brownian vs. Wishart case

- Which law plays the role of $\left\{\mathrm{w}_{t}\right\}_{t \geq 0}$ for measure process

$$
\mu_{t}^{(m, n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}^{(m, n)}(t)}, t \geq 0 ?
$$

V. Brownian vs. Wishart case

- Which law plays the role of $\left\{\mathrm{w}_{t}\right\}_{t \geq 0}$ for measure process

$$
\mu_{t}^{(m, n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}^{(m, n)}(t)}, t \geq 0 ?
$$

- Not the Free Poisson or Marchenko-Pastur law $\mathrm{m}_{c}, c>0$,

$$
\begin{aligned}
\mathrm{m}_{c}(\mathrm{~d} x) & = \begin{cases}f_{c}(x) \mathrm{d} x, & c \geq 1 \\
(1-c) \delta_{0}(\mathrm{~d} x)+f_{c}(x) \mathrm{d} x, & c<1,\end{cases} \\
f_{c}(x) & =\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a, b]}(x) \\
a & =(1-\sqrt{c})^{2}, \quad b=(1+\sqrt{c})^{2} .
\end{aligned}
$$

V. Brownian vs. Wishart case

- Which law plays the role of $\left\{\mathrm{w}_{t}\right\}_{t \geq 0}$ for measure process

$$
\mu_{t}^{(m, n)}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}^{(m, n)}(t)}, t \geq 0 ?
$$

- Not the Free Poisson or Marchenko-Pastur law $\mathrm{m}_{c}, c>0$,

$$
\begin{aligned}
\mathrm{m}_{c}(\mathrm{~d} x) & = \begin{cases}f_{c}(x) \mathrm{d} x, & c \geq 1 \\
(1-c) \delta_{0}(\mathrm{~d} x)+f_{c}(x) \mathrm{d} x, & c<1\end{cases} \\
f_{c}(x) & =\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a, b]}(x) \\
a & =(1-\sqrt{c})^{2}, \quad b=(1+\sqrt{c})^{2}
\end{aligned}
$$

- Rather dilations $\left\{\mu_{c}(t)=\mathrm{m}_{c} \circ h_{t}^{-1}\right\}_{t \geq 0}, h_{t}(x)=t x$,

$$
\begin{aligned}
\mu_{c}(t)(d x) & =\left\{\begin{array}{cc}
f_{c}^{t}(x) \mathrm{d} x, & c \geq 1 \\
(1-c) \delta_{0}(d x)+f_{c}^{t}(x) \mathrm{d} x, & c<1
\end{array},\right. \\
f_{c}^{t}(x) & =\frac{\sqrt{(x-a t)(b t-x)}}{2 \pi t x} 1_{(a t, b t)}(x) .
\end{aligned}
$$

V. Marchenko-Pastur law (1967)

Universality

- $X=X_{m \times n}=\left(Z_{j, k}: j=1, . . n, k=1, \ldots, m\right)$ complex i.i.d.
$\mathbb{E}\left(Z_{1,1}\right)=0, \mathbb{E}\left(\left|Z_{1,1}\right|^{2}\right)=1$.
- $W_{n}=X^{*} X$ is Wishart matrix if X has Gaussian entries.
- $S_{n}=\frac{1}{n} X^{*} X$, eigenvalues $0 \leq \lambda_{n, 1} \leq \ldots \leq \lambda_{n, n}$ \& ESD

$$
\widehat{F}_{n}(\lambda)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{1}_{\left\{\lambda_{n, j} \leq x\right\}} .
$$

- If $n / m \rightarrow c>0, \widehat{F}_{n}$ converges weakly in probability to Marchenko-Pastur (MP) distribution

$$
\begin{gathered}
\mathrm{m}_{c}(\mathrm{~d} x)=\left\{\begin{array}{cl}
f_{c}(x) \mathrm{d} x, & \text { if } c \geq 1 \\
(1-c) \delta_{0}(\mathrm{~d} x)+f_{c}(x) \mathrm{d} x, & \text { if } 0<c<1,
\end{array}\right. \\
f_{c}(x)=\frac{c}{2 \pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a, b]}(x) \\
a=(1-\sqrt{c})^{2}, \quad b=(1+\sqrt{c})^{2}
\end{gathered}
$$

V. Marchenko-Pastur law

1. Applications: Large Dimensional RM (LDRM):

- Data dimension of same magnitude order than sample size. Bai \& Silverstein (2010). Spectral Analysis of LDRM
- Wireless communication, MIMO channels. Couillet \& Debbah (2011). RM Methods for Wireless Comm.

2. Towards next Monday lecture:

- $\left(N_{t}\right)_{t \geq 0}$ Poisson process of mean $m,\left(u_{j}\right)_{j \geq 1}$ i.i.d. random vectors with uniform distribution on unit sphere of \mathbb{C}^{n}.
- $n \times n$ matrix compound Poisson process

$$
X_{t}=\sum_{j=1}^{N_{t}} u_{j}^{*} u_{j}
$$

- Distribution of X_{t} is invariant under unitary conjugations.
- ASD of X_{t}, when $n / m \rightarrow c$, is MP with parameter c.

3. Open problem: Measure-valued process for X_{t} ?

V. Example: Communication Channel Capacity

Circularly symmetric complex Gaussian random matrices

A $p \times 1$ complex random vector \mathbf{u} has a Q-circularly symmetric complex Gaussian distribution if

$$
\mathbb{E}\left[(\mathbf{u}-\mathbb{E}[\mathbf{u}])(\mathbf{u}-\mathbb{E}[\mathbf{u}])^{*}\right]=\frac{1}{2}\left[\begin{array}{cc}
\operatorname{Re}[Q] & -\operatorname{Im}[Q] \\
\operatorname{Im}[Q] & \operatorname{Re}[Q]
\end{array}\right],
$$

for some nonnegative definite Hermitian $p \times p$ matrix Q.

$$
\mathbf{u}=\left[\operatorname{Re}\left(u_{1}\right)+i \operatorname{Im}\left(u_{1}\right), \ldots, \operatorname{Re}\left(u_{p}\right)+i \operatorname{Im}\left(u_{p}\right)\right]^{\top} .
$$

V. Example: Communication Channel Capacity

A Model for MIMO antenna systems

- n_{T} antennas at transmitter and n_{R} antennas at receiver
- Linear vector channel with Gaussian noise

$$
\mathbf{y}=\mathbf{H x}+\mathbf{n}
$$

- \mathbf{x} is the n_{T}-dimensional input vector.
- \mathbf{y} is the n_{R}-dimensional output vector.
- \mathbf{n} is the received Gaussian noise, zero mean and $\mathbb{E}\left(\mathbf{n n}^{*}\right)=\mathrm{I}_{n_{T}}$.
- The $n_{R} \times n_{T}$ random matrix \mathbf{H} is the channel matrix.
- $\mathbf{H}=\left\{h_{j k}\right\}$ is a random matrix, it models the propagation coefficients between each pair of trasmitter-receiver antennas.
- \mathbf{x}, \mathbf{H} and \mathbf{n} are independent.

V. Example: Communication Channel Capacity

Raleigh fading channel

- $h_{j k}$ are i.i.d. complex random variables with mean zero and variance one $\left(\operatorname{Re}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right.$ independent of $\left.\operatorname{lm}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right)$.

V. Example: Communication Channel Capacity

Raleigh fading channel

- $h_{j k}$ are i.i.d. complex random variables with mean zero and variance one $\left(\operatorname{Re}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right.$ independent of $\left.\operatorname{lm}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right)$.
- \mathbf{x} has Q-circularly symmetric complex Gaussian distribution.

V. Example: Communication Channel Capacity

Raleigh fading channel

- $h_{j k}$ are i.i.d. complex random variables with mean zero and variance one $\left(\operatorname{Re}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right.$ independent of $\left.\operatorname{Im}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right)$.
- \mathbf{x} has Q-circularly symmetric complex Gaussian distribution.
- Signal to Noise Ratio

$$
S N R=\frac{\mathbb{E}\|\mathbf{x}\|^{2} / n_{T}}{\mathbb{E}\|\mathbf{n}\|^{2} / n_{R}}=\frac{P}{n_{T}} .
$$

V. Example: Communication Channel Capacity

Raleigh fading channel

- $h_{j k}$ are i.i.d. complex random variables with mean zero and variance one $\left(\operatorname{Re}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right.$ independent of $\left.\operatorname{Im}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right)$.
- x has Q-circularly symmetric complex Gaussian distribution.
- Signal to Noise Ratio

$$
S N R=\frac{\mathbb{E}\|\mathbf{x}\|^{2} / n_{T}}{\mathbb{E}\|\mathbf{n}\|^{2} / n_{R}}=\frac{P}{n_{T}} .
$$

- Total power constraint P is the upper bound of the variance $\mathbb{E}\|\mathbf{x}\|^{2}$ of the amplitude of the input signal.

V. Example: Communication Channel Capacity

Raleigh fading channel

- $h_{j k}$ are i.i.d. complex random variables with mean zero and variance one $\left(\operatorname{Re}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right.$ independent of $\left.\operatorname{Im}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right)$.
- \mathbf{x} has Q-circularly symmetric complex Gaussian distribution.
- Signal to Noise Ratio

$$
S N R=\frac{\mathbb{E}\|\mathbf{x}\|^{2} / n_{T}}{\mathbb{E}\|\mathbf{n}\|^{2} / n_{R}}=\frac{P}{n_{T}} .
$$

- Total power constraint P is the upper bound of the variance $\mathbb{E}\|\mathbf{x}\|^{2}$ of the amplitude of the input signal.
- Channel capacity is the maximum data rate which can be transmitted reliably over a channel (Shannon (1948)).

V. Example: Communication Channel Capacity

Raleigh fading channel

- $h_{j k}$ are i.i.d. complex random variables with mean zero and variance one $\left(\operatorname{Re}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right.$ independent of $\left.\operatorname{lm}\left(Z_{j k}\right) \sim N\left(0, \frac{1}{2}\right)\right)$.
- \mathbf{x} has Q-circularly symmetric complex Gaussian distribution.
- Signal to Noise Ratio

$$
S N R=\frac{\mathbb{E}\|\mathbf{x}\|^{2} / n_{T}}{\mathbb{E}\|\mathbf{n}\|^{2} / n_{R}}=\frac{P}{n_{T}} .
$$

- Total power constraint P is the upper bound of the variance $\mathbb{E}\|\mathbf{x}\|^{2}$ of the amplitude of the input signal.
- Channel capacity is the maximum data rate which can be transmitted reliably over a channel (Shannon (1948)).
- The capacity of this MIMO system channel is

$$
C\left(n_{R}, n_{T}\right)=\max _{Q} \mathbb{E}_{\mathbf{H}}\left[\log _{2} \operatorname{det}\left(\mathrm{I}_{n_{R}}+\mathbf{H} Q \mathbf{H}^{*}\right)\right]
$$

V. Example: Communication Channel Capacity

Raleigh fading channel

- Maximum capacity when $Q=S N R \mathrm{I}_{n_{T}}$

$$
C\left(n_{R}, n_{T}\right)=\mathbb{E}_{\mathbf{H}}\left[\log _{2} \operatorname{det}\left(\mathrm{I}_{n_{R}}+\frac{P}{n_{T}} \mathbf{H} \mathbf{H}^{*}\right)\right]
$$

V. Example: Communication Channel Capacity

Raleigh fading channel

- Maximum capacity when $Q=S N R \mathrm{I}_{n_{T}}$

$$
C\left(n_{R}, n_{T}\right)=\mathbb{E}_{\mathbf{H}}\left[\log _{2} \operatorname{det}\left(\mathrm{I}_{n_{R}}+\frac{P}{n_{T}} \mathbf{H} \mathbf{H}^{*}\right)\right]
$$

- $C\left(n_{R}, n_{T}\right)$ in terms of ESD $\widehat{F}_{n_{R}}$ of the random covariance $\frac{1}{n_{R}} \mathbf{H H}^{*}$

$$
C\left(n_{R}, n_{T}\right)=\int_{0}^{\infty} \log _{2}\left(1+\frac{n_{R}}{n_{T}} P x\right) n_{R} \mathrm{~d} \widehat{F}_{n_{R}}(x)
$$

V. Example: Communication Channel Capacity

Raleigh fading channel

- Maximum capacity when $Q=S N R \mathrm{I}_{n_{T}}$

$$
C\left(n_{R}, n_{T}\right)=\mathbb{E}_{\mathbf{H}}\left[\log _{2} \operatorname{det}\left(\mathrm{I}_{n_{R}}+\frac{P}{n_{T}} \mathbf{H} \mathbf{H}^{*}\right)\right]
$$

- $C\left(n_{R}, n_{T}\right)$ in terms of ESD $\widehat{F}_{n_{R}}$ of the random covariance $\frac{1}{n_{R}} \mathbf{H H}^{*}$

$$
C\left(n_{R}, n_{T}\right)=\int_{0}^{\infty} \log _{2}\left(1+\frac{n_{R}}{n_{T}} P x\right) n_{R} \mathrm{~d} \widehat{F}_{n_{R}}(x)
$$

- By Marchenko-Pastur theorem, if $n_{R} / n_{T} \rightarrow c$,

$$
\frac{C\left(n_{R}, n_{T}\right)}{n_{R}} \rightarrow \int_{a}^{b} \log _{2}(1+c P x) \mathrm{d} \mu_{c}(x)=K(c, P) .
$$

V. Example: Communication Channel Capacity

Raleigh fading channel

- Maximum capacity when $Q=S N R \mathrm{I}_{n_{T}}$

$$
C\left(n_{R}, n_{T}\right)=\mathbb{E}_{\mathbf{H}}\left[\log _{2} \operatorname{det}\left(\mathrm{I}_{n_{R}}+\frac{P}{n_{T}} \mathbf{H} \mathbf{H}^{*}\right)\right]
$$

- $C\left(n_{R}, n_{T}\right)$ in terms of ESD $\widehat{F}_{n_{R}}$ of the random covariance $\frac{1}{n_{R}} \mathbf{H H}^{*}$

$$
C\left(n_{R}, n_{T}\right)=\int_{0}^{\infty} \log _{2}\left(1+\frac{n_{R}}{n_{T}} P x\right) n_{R} \mathrm{~d} \widehat{F}_{n_{R}}(x)
$$

- By Marchenko-Pastur theorem, if $n_{R} / n_{T} \rightarrow c$,

$$
\frac{C\left(n_{R}, n_{T}\right)}{n_{R}} \rightarrow \int_{a}^{b} \log _{2}(1+c P x) \mathrm{d} \mu_{c}(x)=K(c, P) .
$$

- For fixed P

$$
C\left(n_{R}, n_{T}\right) \sim n_{R} K(c, P)
$$

V. Example: Communication Channel Capacity

Raleigh fading channel

- Maximum capacity when $Q=S N R \mathrm{I}_{n_{T}}$

$$
C\left(n_{R}, n_{T}\right)=\mathbb{E}_{\mathbf{H}}\left[\log _{2} \operatorname{det}\left(\mathrm{I}_{n_{R}}+\frac{P}{n_{T}} \mathbf{H} \mathbf{H}^{*}\right)\right]
$$

- $C\left(n_{R}, n_{T}\right)$ in terms of ESD $\widehat{F}_{n_{R}}$ of the random covariance $\frac{1}{n_{R}} \mathbf{H H}^{*}$

$$
C\left(n_{R}, n_{T}\right)=\int_{0}^{\infty} \log _{2}\left(1+\frac{n_{R}}{n_{T}} P x\right) n_{R} \mathrm{~d} \widehat{F}_{n_{R}}(x)
$$

- By Marchenko-Pastur theorem, if $n_{R} / n_{T} \rightarrow c$,

$$
\frac{C\left(n_{R}, n_{T}\right)}{n_{R}} \rightarrow \int_{a}^{b} \log _{2}(1+c P x) \mathrm{d} \mu_{c}(x)=K(c, P) .
$$

- For fixed P

$$
C\left(n_{R}, n_{T}\right) \sim n_{R} K(c, P)
$$

- Increase capacity with more transmitter and receiver antennas without increasing the total power constraint P.

囯 Arnold，L．：On the asymptotic distribution of the eigenvalues of random matrices，J．Math．Anal．Appl． 20 （1967），262－268．
囯 Bai Z．D．：Methodology in spectral analysis of large dimensional random matrices，Statistica Sinica 9 （1999）， 611－677．
围 Bai Z．D．，Yin Y．Q．：Necessary and sufficient conditions for the almost sure convergence of the largest eigenvalue of a Wigner matrix，Ann．Probab． 16 （1988），1729－17401294．

圊 Bender M．：Global fluctuations in general β Dyson Brownian motion，Stoch．Proc．Appl．（2009）．

嗇 Bru M．F．：Diffusions of perturbed principal component analysis，J．Multivariate Anal． 29 （1989），127－136．

目 Cépa E．，Lepingle D．：Diffusing particles with electrostatic repulsion，Probab．Theory Relat．Fields 107 （1997），429－449．

R Chan T.: The Wigner semicircle law and eigenvalues of matrix-valued diffusions, Probab. Theory Relat. Fields 93 (1992), 249-272.

Dyson F.J.: A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys. 3 (1962), 1191-1198.

图 Hitsuda H., Mitoma I.: Tightness problem and stochastic evolution equations arising from fluctuation phenomena for interacting diffusions, J. Multivariate Anal. 19 (1986), 311-328.
圊 Israelson S.: Asymptotic fluctuations of a particle system with singular interaction, Stoch. Process. Appl. 93 (2001), 25-56.
Rallianpur, G., Perez-Abreu, V.: Stochastic evolution equations driven by nuclear space valued martingales, Appl. Math. Optim. 17 (1988), 237-272.
(Katori, M., Tanemura, K.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems, J. Math. Phys. 45 (2004), 3058-3085.
（i．McKean H．P．：Propagation of chaos for a class of nonlinear parabolic equations，in：Lecture Series in Differential Equations 2，pp 177－193．Van Nostrand Math．Studies 19. New York， 1967.

围 Mitoma I．：An ∞－dimensional inhomogeneous Langevin equation，J．Funct．Anal． 61 （1985），342－359．

围 Pérez－Abreu，V．Tudor，C．（2007）：Functional limit theorems for trace processes in a Dyson Brownian motion．Comm． Stochast．Anal．1，415－428．

囯 Pérez－Abreu，V．Tudor，C．（2009）：On traces of Laguerre processes．Elect．J．Probab．
Rogers L．C．G．，Shi Z．：Interacting Brownian particles and the Wigner law，Probab．Theory Relat．Fields 95 （1993），555－570．

围 Sznitman A．S．：A fluctuation result for nonlinear diffusions，in： Infinite Dimensional Analysis．S．Albeverio（Ed．），pp 145－160． Pitman，Boston， 1985.

居 Sznitman A．S．：Topics in propagation of chaosein：Ecole d＇Eté

