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Plan of the Lecture

1. Review Lecture I and II.

1.1 Gaussian random matrices and Wigner law.
1.2 Free central limit theorem.
1.3 Random matrices models for Marchenko-Pastur law.

2. In�nitely Divisible Random Matrices.

3. Free In�nite Divisibility.

3.1 Free cumulant transform and in�nite divisibility.
3.2 Main features and characterization.
3.3 In search of examples.

4. BP-Bijection between classical and free in�nite divisibility.

5. Random Matrices Approach to the BP-Bijection.

5.1 General results.

5.2 Concrete realizations.



I. Wigner law for a Gaussian Unitary Ensemble (GUE)

I GUE: Z = (Zn)n�1, Zn is n� n Hermitian random matrix

Zn = (Z
i ,j
n )1�i ,j�n, Z j ,in = Z

i ,j
n ,

Re
�
Z j ,in
�
� Im

�
Z j ,in
�
� N(0, (1+ δij )/2),

Re
�
Z j ,in
�
, Im

�
Z j ,in
�
, 1 � i � j � n independent r.v.

I Distribution of Zn is invariant under unitary transformations.

I If λn,1, ...,λn,n are eigenvalues of Zn, ESD is

bFn(x) = 1

n

n

∑
j=1

1fλn,j�xg.

I ASD: bFn converges, as n! ∞, to semicircle distribution

w(x)dx =
1

2π

p
4� x21jx j�2dx .

I Similar to GOE and universal under appropriate conditions.





I. Free Central Limit Theorem
Semicircle law as the free Gaussian

I Free independence was de�ned in Lecture 1 for elements of a
noncommutative probability space.

I Asymptotic free independence was also de�ned for ensembles
of random matrices with asymptotic spectral distributions.

I Let X1,X2,... be a sequence of freely independent random
variables with the same distribution with all moments, zero
mean and variance one. Then the distribution of

Zn =
1p
n
(X1 + ...+Xn)

converges in distribution to the semicircle distribution.

I Free Gaussian distribution: the semicircle distribution plays
in free probability the role Gaussian distribution does in
classical probability.



I. Marchenko-Pastur law for covariance matrices
I Xn = Xp�n = (Zj ,k : j = 1, .., p, k = 1, ..., n) complex i.i.d.
under second moment assumptions.

I Wn = X �nXn is Wishart random matrix if

Re (Zj ,k) � Im (Zj ,k) � N(0, (1+ δjk)/2).

I Distribution of Wn is invariant under unitary conjugations.

I Covariance matrix Sn =
1
nX

�
nXn, with ESD bFn of nonnegative

eigenvalues λn,1, ...,λn,n of Sn.

I If p/n! c > 0, bFn converges to MP distribution
mc(dx) =

�
fc(x)dx , if c � 1

(1� c)δ0(dx) + fc(x)dx , if 0 < c < 1,

fc(x) =
c

2πx

q
(x � a)(b� x)1[a,b](x)

a = (1�
p
c)2, b = (1+

p
c)2.



I. MP Law for a non covariance random matrix
Cavanal-Duvillard (2006)

I (Nt)t�0 Poisson distribution with mean p.

I (uj )j�1 a sequence of i.i.d. random vectors with uniform
distribution on the unit sphere of Cn.

I Consider the n� n compound Poisson random matrix

Mn =
N

∑
j=1

u�j uj .

I Distributions of Mn is invariant under unitary conjugations.

I ASD of M = (Mn), when p/n! c , is MP distribution mc .

I As random matrices, Mn is in�nitely divisible, but the Wishart
random matrix Wn is not.
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I. Covariance vs. Covariation process
I Covariance matrix

Sn = X
�
nXn.

I Compound Poisson n� n random matrix

Mn =
N

∑
j=1

u�j uj .

I Distribution of Mn and Wishart Wn are invariant under
unitary conjugations and have mc as their same ASD.

I Mn comes from a quadratic variation process

Mn(t) = [X
�,X ](t) = ∑

s<t

(∆X (s))� ∆X (s) =
Nt

∑
j=1

u�j uj

X (t) =
Nt

∑
j=1

uj , Mn = [X
�,X ](1).

I The Wishart process Wn(t) is a covariance process.
I Mn(t) is an in�nitely divisible process, but Wn(t) is not.





II. In�nitely divisible random matrices

I Md space of d � d matrices (real or complex entries).

I A random matrix M in Md is In�nitely Divisible (ID) i� 8
n � 1 9n i.i.d. random matrices M1, ...,Mn in Md such that

M1 + ...+Mn
L
= M.

I Gaussian random matrices in GOE and GUE are ID.

I Wishart random matrix is not ID.

I Compound Poisson matrix process Mn = ∑N
j=1 u

�
j uj is ID.

I Open problem: ASD for ensembles of Hermitian unitary
invariant in�nitely divisible random matrices.

I Partial answer today (due to Benaych-Georges (05) and
Cavanal-Duvillard (05)) and more.
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II. Why in�nitely divisible random matrices?
Applied and theoretical reasons

1. Stochastic modelling (�xed dimension):

I There exists a matrix L�evy process (Mt)t�0 such that

M1
L
= M.

I Multivariate �nancial modelling via L�evy and non Gaussian
Ornstein-Uhlenbeck matrix processes: Barndor�-Nielsen &
Stelzer (09, 11), Pigorsch & Stelzer (09), Stelzer (10).

I ID random matrix models alternative to Wishart random
matrix: Barndor�-Nielsen & PA (08), PA & Stelzer (12).

2. Today: (asymptotic spectral distribution)

I Random matrices approach to the relation between classical
and free in�nite divisibility.

I Benaych-Georges (05), Cabanal-Duvillard (05), PA & Sakuma
(08), Molina & Rocha-Arteaga (12), joint work in progress
with Molina & Rocha-Arteaga.



III. But before: Free in�nite divisibility
Analytic tools similar to classical probability

I Fourier transform of probability measure µ on R

bµ(s) = Z
R

eisxµ(dx), s 2 R,

I Cauchy transform of µ

Gµ(z) =
Z

R

1

z � x µ(dx), z 2 C/R.

I Classical cumulant transform

cµ(s) = log bµ(s), s 2 R.

I Free cumulant transform

Cµ(z) = zG
�1
µ (z)� 1, z 2 Γµ



III. Classical and free convolutions

I Classical convolution µ1 � µ2 is de�ned by

cµ1�µ2(s) = cµ1(s) + cµ2(s).

I X1 & X2 classical independent r.v. µi = L(Xi ),

µ1 � µ2 = L (X1 + X2)

I Free convolution µ1� µ2 is de�ned by

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z), z 2 Γµ1 \ Γµ2 .

I X1 & X2 free independent, µi = L(Xi ),

µ1� µ2 = L (X1 +X2)

I Also in Lecture 1 free multiplicative convolution µ1� µ2.



III. More on the free cumulant transform
I Reciprocal of Cauchy transform G µ(z) = 1/Gµ(z).

I Bercovici & Voiculescu (93): Right inverse G�1µ of G µ exists
in Γ = [α>0Γα,βα

, where

Γα,β = fz = x + iy : y > β, x < αyg , α > 0, β > 0.

I Voiculescu transform

φµ(z) = G
�1
µ (z)� z , z 2 Γµ

α,β.

I Barndor�-Nielsen & Thorbj�rnsen (06): Free cumulant

Cµ(z) = zφµ(
1

z
) = zG�1µ (

1

z
)� 1.

I φµ & Cµ linearize free additive convolution:

φµ1�µ2(z) = φµ1(z) + φµ2(z), z 2 Γµ1
α1,β1

\ Γµ2
α2,β2

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z),
1

z
2 Γµ1

α1,β1
\ Γµ2

α2,β2
.



III. More on the free cumulant transform
I Reciprocal of Cauchy transform G µ(z) = 1/Gµ(z).

I Bercovici & Voiculescu (93): Right inverse G�1µ of G µ exists
in Γ = [α>0Γα,βα

, where

Γα,β = fz = x + iy : y > β, x < αyg , α > 0, β > 0.

I Voiculescu transform

φµ(z) = G
�1
µ (z)� z , z 2 Γµ

α,β.

I Barndor�-Nielsen & Thorbj�rnsen (06): Free cumulant

Cµ(z) = zφµ(
1

z
) = zG�1µ (

1

z
)� 1.

I φµ & Cµ linearize free additive convolution:

φµ1�µ2(z) = φµ1(z) + φµ2(z), z 2 Γµ1
α1,β1

\ Γµ2
α2,β2

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z),
1

z
2 Γµ1

α1,β1
\ Γµ2

α2,β2
.



III. More on the free cumulant transform
I Reciprocal of Cauchy transform G µ(z) = 1/Gµ(z).

I Bercovici & Voiculescu (93): Right inverse G�1µ of G µ exists
in Γ = [α>0Γα,βα

, where

Γα,β = fz = x + iy : y > β, x < αyg , α > 0, β > 0.

I Voiculescu transform

φµ(z) = G
�1
µ (z)� z , z 2 Γµ

α,β.

I Barndor�-Nielsen & Thorbj�rnsen (06): Free cumulant

Cµ(z) = zφµ(
1

z
) = zG�1µ (

1

z
)� 1.

I φµ & Cµ linearize free additive convolution:

φµ1�µ2(z) = φµ1(z) + φµ2(z), z 2 Γµ1
α1,β1

\ Γµ2
α2,β2

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z),
1

z
2 Γµ1

α1,β1
\ Γµ2

α2,β2
.



III. More on the free cumulant transform
I Reciprocal of Cauchy transform G µ(z) = 1/Gµ(z).

I Bercovici & Voiculescu (93): Right inverse G�1µ of G µ exists
in Γ = [α>0Γα,βα

, where

Γα,β = fz = x + iy : y > β, x < αyg , α > 0, β > 0.

I Voiculescu transform

φµ(z) = G
�1
µ (z)� z , z 2 Γµ

α,β.

I Barndor�-Nielsen & Thorbj�rnsen (06): Free cumulant

Cµ(z) = zφµ(
1

z
) = zG�1µ (

1

z
)� 1.

I φµ & Cµ linearize free additive convolution:

φµ1�µ2(z) = φµ1(z) + φµ2(z), z 2 Γµ1
α1,β1

\ Γµ2
α2,β2

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z),
1

z
2 Γµ1

α1,β1
\ Γµ2

α2,β2
.



III. More on the free cumulant transform
I Reciprocal of Cauchy transform G µ(z) = 1/Gµ(z).

I Bercovici & Voiculescu (93): Right inverse G�1µ of G µ exists
in Γ = [α>0Γα,βα

, where

Γα,β = fz = x + iy : y > β, x < αyg , α > 0, β > 0.

I Voiculescu transform

φµ(z) = G
�1
µ (z)� z , z 2 Γµ

α,β.

I Barndor�-Nielsen & Thorbj�rnsen (06): Free cumulant

Cµ(z) = zφµ(
1

z
) = zG�1µ (

1

z
)� 1.

I φµ & Cµ linearize free additive convolution:

φµ1�µ2(z) = φµ1(z) + φµ2(z), z 2 Γµ1
α1,β1

\ Γµ2
α2,β2

Cµ1�µ2(z) = Cµ1(z) + Cµ2(z),
1

z
2 Γµ1

α1,β1
\ Γµ2

α2,β2
.



III. Free in�nite divisibility

I Let µ be a probability distribution on R (µ 2 P(R)).
I µ is in�nitely divisible w.r.t. ? i� 8n � 1, 9 µ1/n 2 P(R),

µ = µ1/n ? µ1/n ? � � � ? µ1/n.

I µ is in�nitely divisible w.r.t. � i� 8n � 1, 9 µ1/n 2 P(R),

µ = µ1/n � µ1/n � � � �� µ1/n.

I Notation: I� (I �) class of all free (classical) ID distributions.

I Problems:

1. Characterization of I�, criteria, examples.
2. In particular, characterize the class I� similar to I �.
3. Search for examples.
4. Relations between I� and I �.

I Two approaches: Combinatorial and analytic.



III. Free in�nite divisibility: Combinatorial approach
Not today: Nica and Speicher (2006)

I Only for distributions µ with compact support,

mn(µ) =
Z
xnµ(dx), n � 1.

I Classical cumulants (kn(µ))n�1

cµ(s) =
∞

∑
n=1

kn(µ)s
n = log dµ(s) = log ∞

∑
n=0

mn(µ)

n!
sn

!
,

mn(µ) = ∑
π2P(n)

kπ(µ).

I Free cumulants (κn(µ))n�1

Cµ(z) =
∞

∑
n=1

κn(µ)z
n,

mn(µ) = ∑
π2NC (n)

kπ(µ).



III. Examples of free ID distributions

I Semicircle distribution wm,σ2 on (m� 2σ,m2σ)

wm,σ2(dx) =
1

2πσ2

q
4σ2 � (x �m)21[m�2σ,m+2σ](x)dx .

Cwm,σ2
(z) = mz + σ2z .

wm1+m2,σ21+σ22
= wm1,σ21

�wm2,σ22
.

κ1 = m, κ2 = σ2, κn = 0, n � 3

I Marchenko-Pastur distribution mc of parameter c > 0

Cmc (z) =
cz

1� z ,

mc1+c2 = mc1 �mc2 ,

κn = c , n � 1.
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III. Examples of free ID distributions

Example

Cauchy distribution of parameter θ > 0

cθ(dx) =
1

π

θ

θ2 + x2
1x2Rdx

Cauchy transform

Gcθ
(z) =

1

z + θi

Free cumulant transform

Ccθ
(z) = �iθz

�-convolution of Cauchy distributions is a Cauchy distribution

cθ1 � cθ2 = cθ1+θ2 .



III. Free in�nite divisibility: Analytic approach
Bercovici & Voiculescu (93)

I The following three statements are equivalent:

1. µ 2 I�.
2. φµ has an analytic extension C+ ! C� [R.

3. There exists a 2 R & �nite measure σ on R such that

φµ(z) = a+
Z

R

1+ tz

z � t σ(dx), z 2 C+.

I Facts:

I If µn 2 I�, n � 1, and µn ) µ, then µ 2 I�.
I If µ 2 I�, µ has at most one atom.

I A non trivial discrete distribution is not in I�.

I If I� 3 µ 6= δx , then for n su�ciently large µ�n has no atoms.

I Proofs based on Pick-Nevanlinna theory of analytic functions.
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1+ tz
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I Facts:
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III. Not free in�nitely divisible distribution

Examples

Arcsine distribution

a(dx) =
1

π
p
1� x2

1(�1,1)(x)dx

is not free in�nitely divisible:

(i) Its Voiculescu transform is not analytic:

φa(z) =
p
z2 + 4� z

(ii) But also, from Lecture 1, a = b� b with

b(dx) =
1

2

�
δf�1g(dx) + δf1g(dx)

	
.

and b is not free in�nitely divisible.



III. Classical and free in�nite divisibility
L�evy-Khintchine representations

I Classical L-K: µ 2 I �

cµ(s) = ηs� 1
2
as2+

Z
R

�
eisx � 1� sx1[�1,1](x)

�
ρ(dx), s 2 R.

I Free L-K: ν 2 I�

Cν(z)=ηz+az2+
Z

R

�
1

1� xz�1�xz1[�1,1](x)
�

ρ(dx), z 2 C�.

I In both cases (η, a, ρ) is a unique L�evy triplet: η 2 R, a � 0,
ρ(f0g) = 0 and Z

R
min(1, x2)ρ(dx) < ∞.



IV. Relation between classical and free in�nite divisibility
Bercovici, Pata (Biane), Ann. Math. (1999)

I Classical L�evy-Khintchine representation for µ 2 I �

cµ(s) = ηs � 1
2
as2 +

Z
R

�
e isx � 1� sx1[�1,1](x)

�
ρ(dx).

I Free L�evy-Khintchine representation for ν 2 I�

Cν(z) = ηz + az2 +
Z

R

�
1

1� xz � 1� xz1[�1,1](x)
�

ρ(dx).

I Bercovici-Pata bijection: Λ : I � ! I�, Λ(µ) = ν

I � � µ � (η, a, ρ)$ Λ(µ) � (η, a, ρ)

I Λ preserves convolutions (and weak convergence)

Λ(µ1 � µ2) = Λ(µ1)�Λ(µ2)



IV. Image of classical ID distributions under BP bijection

I Free Gaussian: For classical Gaussian distribution γm,σ2 ,

wm,σ2 = Λ(γm,σ2)

is Wigner distribution on (m� 2σ,m+ 2σ) with

Cwη,σ2
(z) = mz + σ2z2.

I Free Poisson: For classical Poisson distribution pc , c > 0,

mc = Λ(pc)

is the M-P distribution with

Cmc (z) =
cz

1� z =
Z

R

�
1

1� xz � 1
�
cδ1(dx).

I Belinschi, Bozejko, Lehner & Speicher (11): γm,σ2 is free ID.

I Open problems: γm,σ2 = Λ(?) and what is its L�evy measure?.
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IV. Image of classical ID distributions under BP bijection

I Free compound Poisson distributions fσ 2 P(R),λ > 0g

CP� = fΛ(µ); µ is classical CPg , i.e.

cµ(t) = λ
Z

R

�
eitx � 1

�
σ(dx),

CΛ(µ)(z) = λ
Z

R

�
1

1� xz � 1
�

σ(dx).

I Free Cauchy: Λ(cλ) = cλ for the Cauchy distribution

cλ(dx) =
1

π

λ

λ2 + x2
dx

with free cumulant transform Cλ(z) = �iλz .
I Free stable (Bercovici, Pata, Biane, (99))

S� = fΛ(µ); µ is classical stableg .



IV. Image of classical ID distributions under BP bijection

I Free GGC (PA-Sakuma (08))

GGC (�) = fΛ(µ); µ is GGC (�)g .

I Free subordinators (Arizmendi, Hasebe, Sakuma (11))

I�+ = fΛ(µ); µ is I �+g ,

I �+ class of classical ID distributions with support on [0,∞)

cµ(t) = itη0 +
Z

R+

�
eitx � 1

�
ρ(dx),

CΛ(µ)(z) = izη0 +
Z

R+

�
1

1� xz � 1
�

ρ(dx),Z
R+

min(1, x)ρ(dx) < ∞, η0 � 0, ρ(�∞, 0] = 0.



IV. Search for new examples of free ID distributions
Arizmendi, Barndor�-Nielsen & PA (2009)

I Special symmetric Beta distribution

βs(dx) =
1

2π
jx j�1/2 (2� jx j)1/2dx , jx j < 2

I Cauchy transform

Gβs (z) = �
1

2

r
1�

q
z�2(z2 � 4)

I Free additive cumulant transform is Cβs (z) =
p
z2 + 1� 1.

I βs is free ID with triplet (0, 0, a), a is arcsine on (�1, 1)
I For A1,A2, ..., i.i.d. with distribution a & independent of
standard Poisson r.v. N

βs = Λ(
N

∑
j=1

Aj ).

I Interpretation as multiplicative convolution βs = m1� a.



IV. Search for new examples of free ID distributions
Motivated by the symmetric Beta distribution

I Important facts from the last example:

I βs has Cauchy transform

Gβs (z) = �
1

2

r
1�

q
z�2(z2 � 4).

I Free in�nite divisibility of βs = m1 � a

I Arizmendi & Hasebe (11):

G α
s,r (z) = �r1/α

 
1� (1� s(� 1

z )
α)1/r

s

!1/α

r > 0, 0 < α � 2, s 2 Cnf0g.

µα
s,2 = m1� aα

s/4 is free ID,

I aα
s/4 is stable with respect to monotone convolution, where the

arcsine law a14/4 = a plays the role of Gaussian distribution.



IV. Search for new examples of free ID distributions
Type W distributions

I PA & Sakuma (12): Multiplicative convolutions with the
Wigner, σ 2 P(R+)

µ = σ�w

I Is free in�nitely divisible i�

σ� σ 2 Λ(I �+).

I For any σ 2 P(R+)

µ2 = σ� σ�m1 2 Λ(I �+).

I Arizmendi, Hasebe & Sakuma (11):

σ 2 Λ(I �+)) σ� σ 2 Λ(I �+),

σ 2 Λ(I �+)) σ�t 2 Λ(I �+), t � 1.



IV. A remarkable semigroup
Belinschi & Nica (08)

I

Bt(µ) =
�

µ�(1+t)
�] 1

1+t
, t � 0,

] is Boolean convolution.
I

Bt(µ1� µ2) = Bt(µ1)�Bt(µ2).

I Free divisibility indicator

ϕ(µ) = sup ft � 0 : µ 2 Bt(P(R))g .

I There exists ν 2 P(R) such that

ϕBt (µ)(ν) = µ.

I µ is free in�nitely divisible distribution i� ϕ(µ) � 1.
I Divisibility indicator for free multiplicative convolution
(Arizmendi & Hasebe (12)).











V. Random matrix approach to BP bijection

I Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP):
For µ 2 I � there is an ensemble of unitary invariant random
matrices (Md )d�1, such that with probability one its ESD

converges in distribution to Λ(µ) 2 I�.

I Some properties and questions:

I Md is in�nitely divisible in the space of matrices Md .

I The existence of (Md )d�1 is not constructive.

I How are the random matrix (Md )d�1 realized?

I How are the corresponding matrix L�evy processes fMd (t)gt�0
realized?

I The jump ∆Md (t) = Md (t)�Md (t�) has rank one!
I Open problem: ∆Md (t) has rank k � 2.
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V. Concrete realization for RM models to BP bijection
I Cavanal-Duvillard (05):

I If µ is Gaussian, Zd GUE independent of g
L
= N(0, 1)

Md =
1p
d + 1

(Zd + dg Id )

I If µ is Poisson with parameter c > 0

Md =
N

∑
k=1

u�kuk

I Molina & Rocha-Arteaga (12): If for some 1-dim L�evy process
fXtgt�0 and for a non random function h : R+ ! R

µ = L
�Z ∞

0
h(t)dXt

�
,

then, there exists a d � d matrix L�evy process Xt such that

Md
L
=
Z ∞

0
h(t)dXt .

I PA-Sakuma (08): Xt ,Xt 1-dim and matrix Gamma processes.
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V. Matrix L�evy processes for BP bijection
Molina, PA, Rocha-Arteaga:

I How is the matrix L�evy process Md (t) realized?

I Simple case: µ CP(ν,ψ), ν p.m. on R, ψ 2 R

M1(t) = tψ+
Nt

∑
j=1

Rj

Nt PP independent of (Rj )j�1, i.i.d, L(Rj ) = ν.

I Λ(µ) = ν�m1, free multiplicative convolution, m1 is MP.

I For each d � 2

Md (t) = ψtId +
Nt

∑
j=1

Rju
�
j uj

(uj )j�1 independent d-vectors uniform on unit sphere of Cd ,
independent of (Nt) and (Rj )j�1.
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V. Matrix L�evy processes for BP bijection
Molina, PA, Rocha-Arteaga:

I

Md (t) = ψtId +
Nt

∑
j=1

Rju
�
j uj

I Realization as quadratic covariation Md (t) = [Xd ,Yd ]t :
I fXd (t)gt�0 , fYd (t)gt�0 are Cd -L�evy processes

Xd (t) =
q
jψjBt +

Nt

∑
j=1

q
jRj juj , t � 0,

Yd (t) = sign(ψ)
q
jψjBt +

Nt

∑
j=1

sign (Rj )
q
jRj juj , t � 0,

fBtg is Cd -Brownian motion independent of (Rj ), (uj ), fNtg.



V. Matrix L�evy processes for BP bijection
Molina, PA, Rocha-Arteaga:

I

Md (t) = ψtId +
Nt

∑
j=1

Rju
�
j uj

I Realization as quadratic covariation Md (t) = [Xd ,Yd ]t :

I fXd (t)gt�0 , fYd (t)gt�0 are Cd -L�evy processes

Xd (t) =
q
jψjBt +

Nt

∑
j=1

q
jRj juj , t � 0,

Yd (t) = sign(ψ)
q
jψjBt +

Nt

∑
j=1

sign (Rj )
q
jRj juj , t � 0,

fBtg is Cd -Brownian motion independent of (Rj ), (uj ), fNtg.
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V. Open problems

I Lecture 2: Matrix Brownian motion Bn(t) = (bij (t)), t � 0
I (λ1(t), � � �,λn(t)) eigenvalues process of Bn(t).
I Dyson-Brownian motion: 9n n independent 1-dim Brownian

motions b
(n)
1 , ..., b

(n)
n such that if λn,1(0) < � � � < λn,n(0)

λn,i (t) = λn,i (0) + b
(n)
i (t) + ∑

j 6=i

Z t
0

1

λn,j (s)� λn,i (s)
ds.

I Corresponding measure valued process

µ
(n)
t =

1

n

n

∑
j=1

δλn,j (t),

converges weakly in C (R+P(R)) to fwt , t � 0g .

I Open problems:

I Dyson process associated to the matrix L�evy process Md (t)?
I Asymptotics for corresponding measure valued process?



V. Open problems

I Lecture 2: Matrix Brownian motion Bn(t) = (bij (t)), t � 0
I (λ1(t), � � �,λn(t)) eigenvalues process of Bn(t).
I Dyson-Brownian motion: 9n n independent 1-dim Brownian

motions b
(n)
1 , ..., b

(n)
n such that if λn,1(0) < � � � < λn,n(0)

λn,i (t) = λn,i (0) + b
(n)
i (t) + ∑

j 6=i

Z t
0

1

λn,j (s)� λn,i (s)
ds.

I Corresponding measure valued process

µ
(n)
t =

1

n

n

∑
j=1

δλn,j (t),

converges weakly in C (R+P(R)) to fwt , t � 0g .

I Open problems:

I Dyson process associated to the matrix L�evy process Md (t)?

I Asymptotics for corresponding measure valued process?



V. Open problems

I Lecture 2: Matrix Brownian motion Bn(t) = (bij (t)), t � 0
I (λ1(t), � � �,λn(t)) eigenvalues process of Bn(t).
I Dyson-Brownian motion: 9n n independent 1-dim Brownian

motions b
(n)
1 , ..., b

(n)
n such that if λn,1(0) < � � � < λn,n(0)

λn,i (t) = λn,i (0) + b
(n)
i (t) + ∑

j 6=i

Z t
0

1

λn,j (s)� λn,i (s)
ds.

I Corresponding measure valued process

µ
(n)
t =

1

n

n

∑
j=1

δλn,j (t),

converges weakly in C (R+P(R)) to fwt , t � 0g .

I Open problems:

I Dyson process associated to the matrix L�evy process Md (t)?
I Asymptotics for corresponding measure valued process?



References for free ID: analytic approach
I H. Bercovici & D. Voiculescu (1993). Free convolution of
measures with unbounded supports. Indiana Univ. Math. J.

I O. Arizmendi, O.E. Barndor�-Nielsen & VPA (2009). On free
and classical type G distributions. Rev. Braz. Probab. Statist.

I Belinschi S. & A. Nica (2008). A remarkable semigroup with
respect to multiplicative convolution. Adv. Math.

I VPA & Sakuma Noriyoshi (2008). Free generalized gamma
convolutions. Elect. Comm. Probab.

I O. Arizmendi and VPA (2010). On the non-classical in�nite
divisibility of power semicircle distributions. COSA..

I VPA & Sakuma Noriyoshi (2012). Free multiplicative
convolutions of free multiplicative mixtures of the Wigner
distribution. J. Theoretical Probab.

I O. Arizmendi, T. Hasebe & N. Sakuma (2011). On free
regular in�nitely divisible distributions. arXiv:1201.0311.

I O. Arizmendi & Hasebe (2011). On a class of explicit
Cauchy-Stieltjes transforms related to monotone stable and
free Poisson laws. Bernoulli.



References for Bercovici-Pata bijection

I H. Bercovici & V. Pata with an appendix by P. Biane (1999).
Stable laws and domains of attraction in free probability
theory. Ann. Math.

I O. E. Barndor�-Nielsen & S. Thorbj�rnsen (2004). A
connection between free and classical in�nite divisibility. Inf.
Dim. Anal. Quantum Probab.

I O. E. Barndor�-Nielsen and S. Thorbj�rnsen (2006). Classical
and free in�nite divisibility and L�evy processes. LNM 1866.

I F. Benaych-Georges, F. (2005). Classical and free i.d.
distributions and random matrices. Ann. Probab.

I T. Cabanal-Duvillard (2005): A matrix representation of the
Bercovici-Pata bijection. Electron. J. Probab.

I A. Dominguez & A. Rocha Arteaga (2012). Random matrix
models of stochastic integral type for free in�nitely divisible
distributions. Period. Math. Hung.



References for free multiplicative convolutions

I D. Voiculescu (1987). Multiplication of certain
non-commuting random variables. J. Operator Theory.

I H. Bercovici & D. Voiculescu (1993). Free convolution of
measures with unbounded supports. Indiana Univ. Math. J.

I H. Bercovici & J.C. Wang (2008). Limit theorems for free
multiplicative convolutions. Trans. Amer. Math. Soc.

I N. Raj Rao & R. Speicher (2007). Multiplication of free
random variables and the S-transform: The case of vanishing
mean. Elect. Comm. Probab.

I O. Arizmendi & VPA (2009). The S-transform of symmetric
probability measures with unbounded supports. Proc. Amer.
Math. Soc.



References for L�evy matrix modelling

I O.E. Barndor�-Nielsen & VPA (2008). Matrix subordinators
and related Upsilon transformations. Theory Probab. Appl.

I O.E. Barndor�-Nielsen & R. Stelzer (2011). The multivariate
supOU stochastic volatility model. Math. Finance.

I O.E. Barndor�-Nielsen & R. Stelzer (2011): Multivariate
supOU processes. Ann. Appl. Probab.

I VPA & R. Stelzer (2012). A class of ID multivariate and
matrix Gamma distributions and cone-valued GGC.

I C. Pigorsch & R. Stelzer (2009). A multivariate
Ornstein-Uhlenbeck type stochastic volatility model.

I R. Stelzer (2010). Multivariate COGARCH(1, 1) processes.
Bernoulli.



Matrix covariation
I If X ,Y are Mp�r -semimartingales

[X ,Y ] := ([X ,Y ]t)t�0

[X ,Y ]ijt =
q

∑
k=1

[xik , ykj ]t .

I In general,

[X ,Y ]t = X0Y0 + [X
c ,Y c ]t + ∑

s�t
(∆Xs) (∆Ys) ,

[X c ,Y c ]ijt := ∑q

k=1
[xik , ykj ]

c
t .

I If continuous part is zero

[X ,Y ]t = X0Y0 + ∑
s�t
(∆Xs) (∆Ys) .

I It holds

XtYt =
Z t

0
Xs�dYs +

Z t

0
dXsYs� + [X ,Y ]t .



In�nitely divisible random matrices
L�evy-Khintchine representation

I Random matrix M is ID i� its Fourier transform
Eeitr(Θ�M) = exp(ψ(Θ)) has Laplace exponent

ψ(Θ) = itr(Θ�Ψ )� 1
2

tr (Θ�AΘ�)

+
Z

Md

 
eitr(Θ�ξ) � 1� i

tr(Θ�ξ)

1+ kξk2

!
ν(dξ),

I Ψ 2 Md
I A : Md ! Md positive symmetric operator
I ν L�evy measure on Md , ν(f0g) = 0 andZ

Md

(kxk2 ^ 1)ν(dx) < ∞.

I The triplet (A, ν,Ψ) is unique.
I Scalar product tr (AB�), norm kAk = [tr (AA�)]1/2 .


