# Random Matrices: A bridge between Classical and Free Infinite Divisibility

Free Probability, Random Matrices and Infinite Divisibility

Victor Pérez-Abreu Probability and Statistics Department Center for Research in Mathematics CIMAT Guanajuato, Mexico

> Probability Seminar Department of Mathematics University of Tennessee Knoxville, TN, April 23, 2012

## Plan of the Lecture

- 1. Review Lecture I and II.
  - 1.1 Gaussian random matrices and Wigner law.
  - 1.2 Free central limit theorem.
  - 1.3 Random matrices models for Marchenko-Pastur law.
- 2. Infinitely Divisible Random Matrices.
- 3. Free Infinite Divisibility.
  - 3.1 Free cumulant transform and infinite divisibility.
  - 3.2 Main features and characterization.
  - 3.3 In search of examples.
- 4. BP-Bijection between classical and free infinite divisibility.

- 5. Random Matrices Approach to the BP-Bijection.
  - 5.1 General results.
  - 5.2 Concrete realizations.

I. Wigner law for a Gaussian Unitary Ensemble (GUE)

► GUE:  $\mathbf{Z} = (Z_n)_{n \ge 1}$ ,  $Z_n$  is  $n \times n$  Hermitian random matrix

$$Z_n = (Z_n^{i,j})_{1 \le i,j \le n}, \quad Z_n^{j,i} = \overline{Z}_n^{i,j},$$

 $\operatorname{\mathsf{Re}}\left(Z_n^{j,i}
ight)\sim\operatorname{\mathsf{Im}}\left(Z_n^{j,i}
ight)\sim N(0,(1+\delta_{ij})/2),$ 

 ${\sf Re}\left(Z_n^{j,i}
ight)$  ,  ${\sf Im}\left(Z_n^{j,i}
ight)$  ,  $1\leq i\leq j\leq n$  independent r.v.

- Distribution of Z<sub>n</sub> is invariant under unitary transformations.
- If  $\lambda_{n,1}, ..., \lambda_{n,n}$  are eigenvalues of  $Z_n$ , ESD is

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_{n,j} \leq x\}}.$$

▶ ASD:  $\widehat{F}_n$  converges, as  $n \to \infty$ , to semicircle distribution

$$\mathbf{w}(x)\mathbf{d}x = \frac{1}{2\pi}\sqrt{4-x^2}\mathbf{1}_{|x|\leq 2}\mathbf{d}x.$$

► Similar to GOE and universal under appropriate conditions.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# I. Free Central Limit Theorem

Semicircle law as the free Gaussian

- Free independence was defined in Lecture 1 for elements of a noncommutative probability space.
- Asymptotic free independence was also defined for ensembles of random matrices with asymptotic spectral distributions.
- ► Let X<sub>1</sub>, X<sub>2</sub>,... be a sequence of freely independent random variables with the same distribution with all moments, zero mean and variance one. Then the distribution of

$$\mathbf{Z}_n = \frac{1}{\sqrt{n}} (\mathbf{X}_1 + \ldots + \mathbf{X}_n)$$

converges in distribution to the semicircle distribution.

Free Gaussian distribution: the semicircle distribution plays in free probability the role Gaussian distribution does in classical probability. I. Marchenko-Pastur law for covariance matrices

X<sub>n</sub> = X<sub>p×n</sub> = (Z<sub>j,k</sub> : j = 1, ..., p, k = 1, ..., n) complex i.i.d. under second moment assumptions.

•  $W_n = X_n^* X_n$  is Wishart random matrix if

$$\operatorname{Re}\left(Z_{j,k}\right) \sim \operatorname{Im}\left(Z_{j,k}\right) \sim N(0, (1+\delta_{jk})/2).$$

▶ Distribution of *W<sub>n</sub>* is invariant under unitary conjugations.

• Covariance matrix  $S_n = \frac{1}{n} X_n^* X_n$ , with ESD  $\hat{F}_n$  of nonnegative eigenvalues  $\lambda_{n,1}, ..., \lambda_{n,n}$  of  $S_n$ .

• If  $p/n \rightarrow c > 0$ ,  $\widehat{F}_n$  converges to MP distribution

$$\mathbf{m}_c(\mathbf{d}x) = \begin{cases} f_c(x)\mathbf{d}x, & \text{if } c \ge 1\\ (1-c)\delta_0(\mathbf{d}x) + f_c(x)\mathbf{d}x, & \text{if } 0 < c < 1, \end{cases}$$

$$f_{c}(x) = \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a,b]}(x)$$
  
$$a = (1-\sqrt{c})^{2}, \ b = (1+\sqrt{c})^{2}.$$

- $(N_t)_{t\geq 0}$  Poisson distribution with mean p.
- (u<sub>j</sub>)<sub>j≥1</sub> a sequence of i.i.d. random vectors with uniform distribution on the unit sphere of C<sup>n</sup>.
- Consider the  $n \times n$  compound Poisson random matrix

$$M_n = \sum_{j=1}^N u_j^* u_j.$$

・ロト・日本・モート モー うへぐ

- $(N_t)_{t\geq 0}$  Poisson distribution with mean p.
- (u<sub>j</sub>)<sub>j≥1</sub> a sequence of i.i.d. random vectors with uniform distribution on the unit sphere of C<sup>n</sup>.
- Consider the  $n \times n$  compound Poisson random matrix

$$M_n = \sum_{j=1}^N u_j^* u_j.$$

Distributions of M<sub>n</sub> is invariant under unitary conjugations.

- $(N_t)_{t\geq 0}$  Poisson distribution with mean p.
- (u<sub>j</sub>)<sub>j≥1</sub> a sequence of i.i.d. random vectors with uniform distribution on the unit sphere of C<sup>n</sup>.
- Consider the  $n \times n$  compound Poisson random matrix

$$M_n = \sum_{j=1}^N u_j^* u_j.$$

- Distributions of M<sub>n</sub> is invariant under unitary conjugations.
- ▶ ASD of  $\mathbf{M} = (M_n)$ , when  $p/n \rightarrow c$ , is MP distribution  $\mathbf{m}_c$ .

- $(N_t)_{t\geq 0}$  Poisson distribution with mean p.
- (u<sub>j</sub>)<sub>j≥1</sub> a sequence of i.i.d. random vectors with uniform distribution on the unit sphere of C<sup>n</sup>.
- Consider the  $n \times n$  compound Poisson random matrix

$$M_n = \sum_{j=1}^N u_j^* u_j.$$

- Distributions of M<sub>n</sub> is invariant under unitary conjugations.
- ▶ ASD of  $\mathbf{M} = (M_n)$ , when  $p/n \rightarrow c$ , is MP distribution  $\mathbf{m}_c$ .
- As random matrices, M<sub>n</sub> is infinitely divisible, but the Wishart random matrix W<sub>n</sub> is not.

## I. Covariance vs. Covariation process

Covariance matrix

$$S_n = X_n^* X_n.$$

Compound Poisson n × n random matrix

$$M_n = \sum_{j=1}^N u_j^* u_j.$$

- Distribution of M<sub>n</sub> and Wishart W<sub>n</sub> are invariant under unitary conjugations and have m<sub>c</sub> as their same ASD.
- *M<sub>n</sub>* comes from a quadratic variation process

$$M_n(t) = [X^*, X](t) = \sum_{s < t} (\Delta X(s))^* \Delta X(s) = \sum_{j=1}^{N_t} u_j^* u_j$$
$$X(t) = \sum_{j=1}^{N_t} u_j, \quad M_n = [X^*, X](1).$$

ж.

• The Wishart process  $W_n(t)$  is a covariance process.

•  $M_n(t)$  is an infinitely divisible process, but  $W_n(t)$  is not.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•  $\mathbb{M}_d$  space of  $d \times d$  matrices (real or complex entries).

(ロ)、(型)、(E)、(E)、 E) の(の)

- $\mathbb{M}_d$  space of  $d \times d$  matrices (real or complex entries).
- A random matrix M in M<sub>d</sub> is Infinitely Divisible (ID) iff ∀ n ≥ 1 ∃<sub>n</sub> i.i.d. random matrices M<sub>1</sub>,..., M<sub>n</sub> in M<sub>d</sub> such that

$$M_1 + \ldots + M_n \stackrel{\mathcal{L}}{=} M.$$

- $\mathbb{M}_d$  space of  $d \times d$  matrices (real or complex entries).
- A random matrix M in M<sub>d</sub> is Infinitely Divisible (ID) iff ∀ n ≥ 1 ∃<sub>n</sub> i.i.d. random matrices M<sub>1</sub>, ..., M<sub>n</sub> in M<sub>d</sub> such that

$$M_1 + \ldots + M_n \stackrel{\mathcal{L}}{=} M.$$

Gaussian random matrices in GOE and GUE are ID.

- $\mathbb{M}_d$  space of  $d \times d$  matrices (real or complex entries).
- A random matrix M in M<sub>d</sub> is Infinitely Divisible (ID) iff ∀ n ≥ 1 ∃<sub>n</sub> i.i.d. random matrices M<sub>1</sub>, ..., M<sub>n</sub> in M<sub>d</sub> such that

$$M_1 + \ldots + M_n \stackrel{\mathcal{L}}{=} M.$$

- Gaussian random matrices in GOE and GUE are ID.
- Wishart random matrix is not ID.

- $\mathbb{M}_d$  space of  $d \times d$  matrices (real or complex entries).
- A random matrix M in M<sub>d</sub> is Infinitely Divisible (ID) iff ∀ n ≥ 1 ∃<sub>n</sub> i.i.d. random matrices M<sub>1</sub>, ..., M<sub>n</sub> in M<sub>d</sub> such that

$$M_1 + \ldots + M_n \stackrel{\mathcal{L}}{=} M.$$

- Gaussian random matrices in GOE and GUE are ID.
- Wishart random matrix is not ID.
- Compound Poisson matrix process  $M_n = \sum_{j=1}^N u_j^* u_j$  is ID.

- $\mathbb{M}_d$  space of  $d \times d$  matrices (real or complex entries).
- A random matrix M in M<sub>d</sub> is Infinitely Divisible (ID) iff ∀ n ≥ 1 ∃<sub>n</sub> i.i.d. random matrices M<sub>1</sub>, ..., M<sub>n</sub> in M<sub>d</sub> such that

$$M_1 + \ldots + M_n \stackrel{\mathcal{L}}{=} M.$$

- Gaussian random matrices in GOE and GUE are ID.
- Wishart random matrix is not ID.
- Compound Poisson matrix process  $M_n = \sum_{j=1}^N u_j^* u_j$  is ID.
- Open problem: ASD for ensembles of Hermitian unitary invariant infinitely divisible random matrices.

- $\mathbb{M}_d$  space of  $d \times d$  matrices (real or complex entries).
- A random matrix M in M<sub>d</sub> is Infinitely Divisible (ID) iff ∀ n ≥ 1 ∃<sub>n</sub> i.i.d. random matrices M<sub>1</sub>, ..., M<sub>n</sub> in M<sub>d</sub> such that

$$M_1 + \ldots + M_n \stackrel{\mathcal{L}}{=} M.$$

- Gaussian random matrices in GOE and GUE are ID.
- Wishart random matrix is not ID.
- Compound Poisson matrix process  $M_n = \sum_{j=1}^N u_j^* u_j$  is ID.
- Open problem: ASD for ensembles of Hermitian unitary invariant infinitely divisible random matrices.
- Partial answer today (due to Benaych-Georges (05) and Cavanal-Duvillard (05)) and more.

Applied and theoretical reasons

- 1. Stochastic modelling (fixed dimension):
- ▶ There exists a matrix Lévy process  $(M_t)_{t>0}$  such that

$$M_1 \stackrel{\mathcal{L}}{=} M.$$

- Multivariate financial modelling via Lévy and non Gaussian Ornstein-Uhlenbeck matrix processes: Barndorff-Nielsen & Stelzer (09, 11), Pigorsch & Stelzer (09), Stelzer (10).
- ID random matrix models alternative to Wishart random matrix: Barndorff-Nielsen & PA (08), PA & Stelzer (12).
- 2. Today: (asymptotic spectral distribution)
- Random matrices approach to the relation between classical and free infinite divisibility.
- Benaych-Georges (05), Cabanal-Duvillard (05), PA & Sakuma (08), Molina & Rocha-Arteaga (12), joint work in progress with Molina & Rocha-Arteaga.

## III. But before: Free infinite divisibility

Analytic tools similar to classical probability

 $\blacktriangleright$  Fourier transform of probability measure  $\mu$  on  ${\mathbb R}$ 

$$\widehat{\mu}(s) = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i} s x} \mu(\mathrm{d} x)$$
,  $s \in \mathbb{R}$ ,

• Cauchy transform of  $\mu$ 

$$\mathcal{G}_{\mu}(z) = \int_{\mathbb{R}} rac{1}{z-x} \mu(\mathrm{d} x), \quad z \in \mathbb{C}/\mathbb{R}.$$

Classical cumulant transform

$$c_\mu(s) = \log \widehat{\mu}(s), \quad s \in \mathbb{R}.$$

#### Free cumulant transform

$$C_{\mu}(z) = zG_{\mu}^{-1}(z) - 1, \quad z \in \Gamma_{\mu}$$

## III. Classical and free convolutions

• Classical convolution  $\mu_1 * \mu_2$  is defined by

$$c_{\mu_1*\mu_2}(s) = c_{\mu_1}(s) + c_{\mu_2}(s).$$

•  $X_1$  &  $X_2$  classical independent r.v.  $\mu_i = \mathcal{L}(X_i)$ ,

$$\mu_1*\mu_2=\mathcal{L}\left(X_1+X_2\right)$$

• Free convolution  $\mu_1 \boxplus \mu_2$  is defined by

$$\mathcal{C}_{\mu_1\boxplus\mu_2}(z)=\mathcal{C}_{\mu_1}(z)+\mathcal{C}_{\mu_2}(z),\quad z\in\Gamma_{\mu_1}\cap\Gamma_{\mu_2}.$$

▶ X<sub>1</sub> & X<sub>2</sub> free independent,  $\mu_i = \mathcal{L}(\mathbf{X}_i)$ ,

$$\mu_1 \boxplus \mu_2 = \mathcal{L} \left( \mathbf{X}_1 + \mathbf{X}_2 \right)$$

► Also in Lecture 1 free *multiplicative* convolution  $\mu_1 \boxtimes \mu_2$ .

• Reciprocal of Cauchy transform  $\underline{G}_{\mu}(z) = 1/G_{\mu}(z)$ .

- Reciprocal of Cauchy transform  $\underline{G}_{\mu}(z) = 1/G_{\mu}(z)$ .
- ► Bercovici & Voiculescu (93): Right inverse  $\underline{G}_{\mu}^{-1}$  of  $\underline{G}_{\mu}$  exists in  $\Gamma = \cup_{\alpha>0}\Gamma_{\alpha,\beta_{\alpha}}$ , where

$$\Gamma_{lpha,eta} = \{z = x + iy : y > eta, \ x < lpha y\}$$
 ,  $lpha > 0, eta > 0$ .

・ロト・日本・モート モー うへぐ

- Reciprocal of Cauchy transform  $\underline{G}_{\mu}(z) = 1/G_{\mu}(z)$ .
- ► Bercovici & Voiculescu (93): Right inverse  $\underline{G}_{\mu}^{-1}$  of  $\underline{G}_{\mu}$  exists in  $\Gamma = \cup_{\alpha>0}\Gamma_{\alpha,\beta_{\alpha}}$ , where

$$\Gamma_{lpha,eta}=\{z=x+iy:y>eta,\,x ,  $lpha>0$  , $eta>0$  .$$

Voiculescu transform

$$\phi_{\mu}(z) = \underline{G}_{\mu}^{-1}(z) - z, \quad z \in \Gamma^{\mu}_{lpha,eta}.$$

- Reciprocal of Cauchy transform  $\underline{G}_{\mu}(z) = 1/G_{\mu}(z)$ .
- ► Bercovici & Voiculescu (93): Right inverse  $\underline{G}_{\mu}^{-1}$  of  $\underline{G}_{\mu}$  exists in  $\Gamma = \cup_{\alpha>0}\Gamma_{\alpha,\beta_{\alpha}}$ , where

$$\Gamma_{lpha,eta}=\{z=x+iy:y>eta$$
,  $x,  $lpha>0$ ,  $eta>0$ .$ 

Voiculescu transform

$$\phi_{\mu}(z) = \underline{G}_{\mu}^{-1}(z) - z, \quad z \in \Gamma^{\mu}_{\alpha,\beta}.$$

Barndorff-Nielsen & Thorbjørnsen (06): Free cumulant

$$C_{\mu}(z)=z\phi_{\mu}(rac{1}{z})=z\underline{G}_{\mu}^{-1}(rac{1}{z})-1.$$

- Reciprocal of Cauchy transform  $\underline{G}_{\mu}(z) = 1/G_{\mu}(z)$ .
- Bercovici & Voiculescu (93): Right inverse  $\underline{G}_{\mu}^{-1}$  of  $\underline{G}_{\mu}$  exists in  $\Gamma = \bigcup_{\alpha>0} \Gamma_{\alpha,\beta_{\alpha}}$ , where

$$\Gamma_{lpha,eta}=\{z=x+iy:y>eta,\,x ,  $lpha>0$  , $eta>0$  .$$

Voiculescu transform

$$\phi_{\mu}(z) = \underline{G}_{\mu}^{-1}(z) - z, \quad z \in \Gamma^{\mu}_{\alpha,\beta}.$$

Barndorff-Nielsen & Thorbjørnsen (06): Free cumulant

$$C_{\mu}(z)=z\phi_{\mu}(rac{1}{z})=z\underline{G}_{\mu}^{-1}(rac{1}{z})-1.$$

•  $\phi_{\mu}$  &  $C_{\mu}$  linearize free additive convolution:

$$\begin{split} \phi_{\mu_1\boxplus\mu_2}(z) &= \phi_{\mu_1}(z) + \phi_{\mu_2}(z), \quad z \in \Gamma^{\mu_1}_{\alpha_1,\beta_1} \cap \Gamma^{\mu_2}_{\alpha_2,\beta_2} \\ C_{\mu_1\boxplus\mu_2}(z) &= C_{\mu_1}(z) + C_{\mu_2}(z), \quad \frac{1}{z} \in \Gamma^{\mu_1}_{\alpha_1,\beta_1} \cap \Gamma^{\mu_2}_{\alpha_2,\beta_2}. \end{split}$$

## III. Free infinite divisibility

- Let  $\mu$  be a probability distribution on  $\mathbb{R}$   $(\mu \in \mathcal{P}(\mathbb{R}))$ .
- ▶  $\mu$  is infinitely divisible w.r.t.  $\star$  iff  $\forall n \geq 1$ ,  $\exists \mu_{1/n} \in \mathcal{P}(\mathbb{R})$ ,

$$\mu = \mu_{1/n} \star \mu_{1/n} \star \cdots \star \mu_{1/n}.$$

▶  $\mu$  is infinitely divisible w.r.t.  $\boxplus$  iff  $\forall n \ge 1$ ,  $\exists \mu_{1/n} \in \mathcal{P}(\mathbb{R})$ ,

$$\mu = \mu_{1/n} \boxplus \mu_{1/n} \boxplus \cdots \boxplus \mu_{1/n}$$

- ▶ Notation:  $I^{\boxplus}(I^*)$  class of all free (classical) ID distributions.
- Problems:
  - 1. Characterization of  $I^{\boxplus}$ , criteria, examples.
  - 2. In particular, characterize the class  $I^{\boxplus}$  similar to  $I^*$ .
  - 3. Search for examples.
  - 4. Relations between  $I^{\boxplus}$  and  $I^*$ .
- Two approaches: Combinatorial and analytic.

#### III. Free infinite divisibility: Combinatorial approach Not today: Nica and Speicher (2006)

• Only for distributions  $\mu$  with compact support,

$$m_n(\mu) = \int x^n \mu(\mathrm{d}x), \quad n \ge 1.$$

• Classical cumulants  $(k_n(\mu))_{n\geq 1}$ 

$$c_{\mu}(s) = \sum_{n=1}^{\infty} k_n(\mu) s^n = \log \widehat{\mu(s)} = \log \left( \sum_{n=0}^{\infty} \frac{m_n(\mu)}{n!} s^n \right),$$
$$m_n(\mu) = \sum_{\pi \in P(n)} k_{\pi}(\mu).$$

Free cumulants  $(\kappa_n(\mu))_{n\geq 1}$ 

$$C_{\mu}(z) = \sum_{n=1}^{\infty} \kappa_n(\mu) z^n,$$
  
$$m_n(\mu) = \sum_{\pi \in NC(n)} k_{\pi}(\mu).$$

## III. Examples of free ID distributions

Semicircle distribution 
$$w_{m,\sigma^2}$$
 on  $(m - 2\sigma, m2\sigma)$ 

$$\mathbf{w}_{m,\sigma^2}(\mathbf{d} x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} \mathbf{1}_{[m-2\sigma,m+2\sigma]}(x) \mathbf{d} x.$$

$$C_{w_{m,\sigma^{2}}}(z) = mz + \sigma^{2}z.$$

$$w_{m_{1}+m_{2},\sigma_{1}^{2}+\sigma_{2}^{2}} = w_{m_{1},\sigma_{1}^{2}} \boxplus w_{m_{2},\sigma_{2}^{2}}.$$

$$\kappa_{1} = m, \ \kappa_{2} = \sigma^{2}, \ \kappa_{n} = 0, \ n \ge 3$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

#### III. Examples of free ID distributions

Semicircle distribution 
$$w_{m,\sigma^2}$$
 on  $(m - 2\sigma, m2\sigma)$ 

$$\mathbf{w}_{m,\sigma^2}(\mathbf{d} x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} \mathbf{1}_{[m-2\sigma,m+2\sigma]}(x) \mathbf{d} x.$$

$$C_{\mathbf{w}_{m,\sigma^2}}(z) = mz + \sigma^2 z.$$
$$\mathbf{w}_{m_1+m_2,\sigma_1^2+\sigma_2^2} = \mathbf{w}_{m_1,\sigma_1^2} \boxplus \mathbf{w}_{m_2,\sigma_2^2}.$$
$$\kappa_1 = m, \ \kappa_2 = \sigma^2, \ \kappa_n = 0, \ n \ge 3$$

• Marchenko-Pastur distribution  $m_c$  of parameter c > 0

$$C_{m_c}(z) = \frac{cz}{1-z},$$
  

$$m_{c_1+c_2} = m_{c_1} \boxplus m_{c_2},$$
  

$$\kappa_n = c, \ n \ge 1.$$

## III. Examples of free ID distributions

#### Example

Cauchy distribution of parameter  $\theta > 0$ 

$$\mathbf{c}_{\theta}(\mathbf{d}x) = rac{1}{\pi} rac{ heta}{ heta^2 + x^2} \mathbf{1}_{x \in \mathbb{R}} \mathbf{d}x$$

Cauchy transform

$$G_{c_{ heta}}(z) = rac{1}{z+ heta i}$$

Free cumulant transform

$$C_{c_{\theta}}(z) = -i\theta z$$

⊞-convolution of Cauchy distributions is a Cauchy distribution

$$\mathbf{c}_{\theta_1} \boxplus \mathbf{c}_{\theta_2} = \mathbf{c}_{\theta_1 + \theta_2}.$$

► The following three statements are equivalent:

The following three statements are equivalent:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1.  $\mu \in I^{\boxplus}$ .

The following three statements are equivalent:

1. 
$$\mu \in I^{\boxplus}$$
.  
2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The following three statements are equivalent:
  - 1.  $\mu \in I^{\boxplus}$ .
  - 2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .
  - 3. There exists  $a \in \mathbb{R}$  & finite measure  $\sigma$  on  $\mathbb{R}$  such that

$$\phi_{\mu}(z) = a + \int_{\mathbb{R}} \frac{1+tz}{z-t} \sigma(\mathrm{d}x), \ z \in \mathbb{C}^+.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
- The following three statements are equivalent:
  - 1.  $\mu \in I^{\boxplus}$ .
  - 2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .
  - 3. There exists  $a \in \mathbb{R}$  & finite measure  $\sigma$  on  $\mathbb{R}$  such that

$$\phi_{\mu}(z) = a + \int_{\mathbb{R}} \frac{1+tz}{z-t} \sigma(\mathrm{d}x), \ z \in \mathbb{C}^+.$$

- The following three statements are equivalent:
  - 1.  $\mu \in I^{\boxplus}$ .
  - 2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .
  - 3. There exists  $a \in \mathbb{R}$  & finite measure  $\sigma$  on  $\mathbb{R}$  such that

$$\phi_{\mu}(z) = \mathbf{a} + \int_{\mathbb{R}} \frac{1+tz}{z-t} \sigma(\mathrm{d} x), \ z \in \mathbb{C}^+.$$

• If 
$$\mu_n \in I^{\boxplus}$$
,  $n \ge 1$ , and  $\mu_n \Rightarrow \mu$ , then  $\mu \in I^{\boxplus}$ .

- The following three statements are equivalent:
  - 1.  $\mu \in I^{\boxplus}$ .
  - 2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .
  - 3. There exists  $a \in \mathbb{R}$  & finite measure  $\sigma$  on  $\mathbb{R}$  such that

$$\phi_{\mu}(z) = a + \int_{\mathbb{R}} \frac{1+tz}{z-t} \sigma(\mathrm{d}x), \ z \in \mathbb{C}^+.$$

- If  $\mu_n \in I^{\boxplus}$ ,  $n \ge 1$ , and  $\mu_n \Rightarrow \mu$ , then  $\mu \in I^{\boxplus}$ .
- If  $\mu \in I^{\boxplus}$ ,  $\mu$  has at most one atom.

- The following three statements are equivalent:
  - 1.  $\mu \in I^{\boxplus}$ .
  - 2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .
  - 3. There exists  $a \in \mathbb{R}$  & finite measure  $\sigma$  on  $\mathbb{R}$  such that

$$\phi_{\mu}(z) = a + \int_{\mathbb{R}} \frac{1+tz}{z-t} \sigma(\mathrm{d}x), \ z \in \mathbb{C}^+.$$

- ▶ If  $\mu_n \in I^{\boxplus}$ ,  $n \ge 1$ , and  $\mu_n \Rightarrow \mu$ , then  $\mu \in I^{\boxplus}$ .
- If  $\mu \in I^{\boxplus}$ ,  $\mu$  has at most one atom.
- A non trivial discrete distribution is not in  $I^{\boxplus}$ .

- The following three statements are equivalent:
  - 1.  $\mu \in I^{\boxplus}$ .
  - 2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .
  - 3. There exists  $a \in \mathbb{R}$  & finite measure  $\sigma$  on  $\mathbb{R}$  such that

$$\phi_{\mu}(z) = a + \int_{\mathbb{R}} \frac{1+tz}{z-t} \sigma(\mathrm{d}x), \ z \in \mathbb{C}^+.$$

- ▶ If  $\mu_n \in I^{\boxplus}$ ,  $n \ge 1$ , and  $\mu_n \Rightarrow \mu$ , then  $\mu \in I^{\boxplus}$ .
- If  $\mu \in I^{\boxplus}$ ,  $\mu$  has at most one atom.
- A non trivial discrete distribution is not in  $I^{\boxplus}$ .
- If  $I^{\boxplus} \ni \mu \neq \delta_x$ , then for *n* sufficiently large  $\mu^{\boxplus n}$  has no atoms.

- The following three statements are equivalent:
  - 1.  $\mu \in I^{\boxplus}$ .
  - 2.  $\phi_{\mu}$  has an analytic extension  $\mathbb{C}^+ \to \mathbb{C}^- \cup \mathbb{R}$ .
  - 3. There exists  $a \in \mathbb{R}$  & finite measure  $\sigma$  on  $\mathbb{R}$  such that

$$\phi_{\mu}(z) = a + \int_{\mathbb{R}} \frac{1+tz}{z-t} \sigma(\mathrm{d}x), \ z \in \mathbb{C}^+.$$

Facts:

- ▶ If  $\mu_n \in I^{\boxplus}$ ,  $n \ge 1$ , and  $\mu_n \Rightarrow \mu$ , then  $\mu \in I^{\boxplus}$ .
- If  $\mu \in I^{\boxplus}$ ,  $\mu$  has at most one atom.
- A non trivial discrete distribution is not in I<sup>⊞</sup>.
- If  $I^{\boxplus} \ni \mu \neq \delta_x$ , then for *n* sufficiently large  $\mu^{\boxplus n}$  has no atoms.

Proofs based on Pick-Nevanlinna theory of analytic functions.

III. Not free infinitely divisible distribution

#### Examples

Arcsine distribution

$$a(dx) = \frac{1}{\pi\sqrt{1-x^2}} \mathbf{1}_{(-1,1)}(x) dx$$

is not free infinitely divisible:

(i) Its Voiculescu transform is not analytic:

$$\phi_{\rm a}(z) = \sqrt{z^2 + 4} - z$$

(ii) But also, from Lecture 1,  $a = b \boxplus b$  with

$$\mathbf{b}(\mathbf{d}x) = \frac{1}{2} \left\{ \delta_{\{-1\}}(\mathbf{d}x) + \delta_{\{1\}}(\mathbf{d}x) \right\}.$$

and b is not free infinitely divisible.

### III. Classical and free infinite divisibility

Lévy-Khintchine representations

• Classical L-K: 
$$\mu \in I^*$$

$$c_{\mu}(s) = \eta s - \frac{1}{2}as^{2} + \int_{\mathbb{R}} \left( e^{isx} - 1 - sx \mathbb{1}_{[-1,1]}(x) \right) \rho(dx), \ s \in \mathbb{R}.$$

Free L-K: 
$$\nu \in I^{\boxplus}$$
  

$$C_{\nu}(z) = \eta z + az^{2} + \int_{\mathbb{R}} \left( \frac{1}{1 - xz} - 1 - xz \mathbf{1}_{[-1,1]}(x) \right) \rho(\mathrm{d}x), \ z \in \mathbb{C}^{-}.$$

 In both cases (η, a, ρ) is a unique Lévy triplet: η ∈ ℝ, a ≥ 0, ρ({0}) = 0 and

$$\int_{\mathbb{R}} \min(1, x^2) \rho(\mathrm{d}x) < \infty.$$

IV. Relation between classical and free infinite divisibility Bercovici, Pata (Biane), Ann. Math. (1999)

▶ Classical Lévy-Khintchine representation for  $\mu \in I^*$ 

$$c_{\mu}(s) = \eta s - \frac{1}{2}as^{2} + \int_{\mathbb{R}} \left( e^{isx} - 1 - sx \mathbb{1}_{[-1,1]}(x) \right) \rho(\mathrm{d}x).$$

• Free Lévy-Khintchine representation for  $\nu \in I^{\boxplus}$ 

$$C_{\nu}(z) = \eta z + az^2 + \int_{\mathbb{R}} \left( \frac{1}{1 - xz} - 1 - xz \mathbf{1}_{[-1,1]}(x) \right) \rho(\mathrm{d}x).$$

► Bercovici-Pata bijection:  $\Lambda : I^* \to I^{\boxplus}, \Lambda(\mu) = \nu$  $I^* \; \ni \mu \sim (\eta, a, \rho) \leftrightarrow \Lambda(\mu) \sim (\eta, a, \rho)$ 

•  $\Lambda$  preserves convolutions (and weak convergence)  $\Lambda(\mu_1 * \mu_2) = \Lambda(\mu_1) \boxplus \Lambda(\mu_2)$ 

• Free Gaussian: For classical Gaussian distribution  $\gamma_{m,\sigma^2}$ ,

$$\mathbf{w}_{m,\sigma^2} = \Lambda(\gamma_{m,\sigma^2})$$

is Wigner distribution on  $(m-2\sigma,m+2\sigma)$  with

$$C_{W_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

• Free Gaussian: For classical Gaussian distribution  $\gamma_{m,\sigma^2}$ ,

$$\mathbf{w}_{m,\sigma^2} = \Lambda(\gamma_{m,\sigma^2})$$

is Wigner distribution on  $(m-2\sigma,m+2\sigma)$  with

$$C_{\mathrm{w}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

Free Poisson: For classical Poisson distribution  $p_c$ , c > 0,

$$\mathbf{m}_{c} = \Lambda(\mathbf{p}_{c})$$

is the M-P distribution with

$$C_{\mathrm{m}_{c}}(z) = rac{cz}{1-z} = \int_{\mathbb{R}} \left(rac{1}{1-xz} - 1
ight) c\delta_{1}(\mathrm{d}x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ● ●

• Free Gaussian: For classical Gaussian distribution  $\gamma_{m,\sigma^2}$ ,

$$\mathbf{w}_{m,\sigma^2} = \Lambda(\gamma_{m,\sigma^2})$$

is Wigner distribution on  $(m-2\sigma,m+2\sigma)$  with

$$C_{\mathrm{w}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

Free Poisson: For classical Poisson distribution  $p_c$ , c > 0,

$$\mathbf{m}_{c} = \Lambda(\mathbf{p}_{c})$$

is the M-P distribution with

$$C_{\mathrm{m}_{c}}(z) = rac{cz}{1-z} = \int_{\mathbb{R}} \left(rac{1}{1-xz} - 1
ight) c\delta_{1}(\mathrm{d}x).$$

▶ Belinschi, Bozejko, Lehner & Speicher (11):  $\gamma_{m,\sigma^2}$  is free ID.

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

• Free Gaussian: For classical Gaussian distribution  $\gamma_{m,\sigma^2}$ ,

$$\mathbf{w}_{m,\sigma^2} = \Lambda(\gamma_{m,\sigma^2})$$

is Wigner distribution on  $(m-2\sigma,m+2\sigma)$  with

$$C_{\mathrm{w}_{\eta,\sigma^2}}(z) = mz + \sigma^2 z^2.$$

Free Poisson: For classical Poisson distribution  $p_c$ , c > 0,

$$\mathbf{m}_{c} = \Lambda(\mathbf{p}_{c})$$

is the M-P distribution with

$$C_{\mathrm{m}_{c}}(z) = rac{cz}{1-z} = \int_{\mathbb{R}} \left(rac{1}{1-xz} - 1
ight) c\delta_{1}(\mathrm{d}x).$$

▶ Belinschi, Bozejko, Lehner & Speicher (11):  $\gamma_{m,\sigma^2}$  is free ID.

• Open problems:  $\gamma_{m,\sigma^2} = \Lambda(?)$  and what is its Lévy measure?.

• Free compound Poisson distributions  $\{\sigma \in \mathcal{P}(\mathbb{R}), \lambda > 0\}$ 

$$CP^{\boxplus} = \{\Lambda(\mu); \mu \text{ is classical } CP\}$$
, i.e.  
 $c_{\mu}(t) = \lambda \int_{\mathbb{R}} (e^{it}x - 1) \sigma(dx),$   
 $C_{\Lambda(\mu)}(z) = \lambda \int_{\mathbb{R}} \left(\frac{1}{1 - xz} - 1\right) \sigma(dx).$ 

▶ Free Cauchy:  $\Lambda(c_{\lambda}) = c_{\lambda}$  for the Cauchy distribution

$$c_{\lambda}(dx) = rac{1}{\pi}rac{\lambda}{\lambda^2 + x^2}dx$$

with free cumulant transform C<sub>λ</sub>(z) = −iλz.
Free stable (Bercovici, Pata, Biane, (99))

$$\mathcal{S}^{\boxplus} = \{\Lambda(\mu); \mu ext{ is classical stable}\}$$

Free GGC (PA-Sakuma (08))

$$GGC \ (\boxplus) = \{\Lambda(\mu); \mu \text{ is } GGC(*)\}.$$

Free subordinators (Arizmendi, Hasebe, Sakuma (11))

$$\mathit{I}^{\boxplus}_{+} = \{\Lambda(\mu); \mu ext{ is } \mathit{I}^{*}_{+}\}$$
 ,

 $I^*_+$  class of classical ID distributions with support on  $[0,\infty)$ 

$$\begin{split} c_{\mu}(t) &= it\eta_{0} + \int_{\mathbb{R}_{+}} \left( \mathrm{e}^{\mathrm{i}t}x - 1 \right) \rho(\mathrm{d}x), \\ C_{\Lambda(\mu)}(z) &= iz\eta_{0} + \int_{\mathbb{R}_{+}} \left( \frac{1}{1 - xz} - 1 \right) \rho(\mathrm{d}x), \\ \int_{\mathbb{R}_{+}} \min(1, x) \rho(\mathrm{d}x) < \infty, \ \eta_{0} \geq 0, \ \rho(-\infty, 0] = 0. \end{split}$$

IV. Search for new examples of free ID distributions Arizmendi, Barndorff-Nielsen & PA (2009)

Special symmetric Beta distribution

$$\beta_s(\mathrm{d}x) = rac{1}{2\pi} |x|^{-1/2} (2 - |x|)^{1/2} \mathrm{d}x, \quad |x| < 2$$

Cauchy transform

$$G_{eta_s}(z) = -rac{1}{2}\sqrt{1-\sqrt{z^{-2}(z^2-4)}}$$

- Free additive cumulant transform is  $C_{\beta_s}(z) = \sqrt{z^2 + 1} 1$ .
- ▶  $\beta_s$  is free ID with triplet (0, 0, a), a is arcsine on (-1, 1)
- For A<sub>1</sub>, A<sub>2</sub>, ..., i.i.d. with distribution a & independent of standard Poisson r.v. N

$$\beta_s = \Lambda(\sum_{j=1}^N A_j).$$

• Interpretation as multiplicative convolution  $\beta_s = m_1 \boxtimes a$ .

IV. Search for new examples of free ID distributions Motivated by the symmetric Beta distribution

- Important facts from the last example:
  - β<sub>s</sub> has Cauchy transform

$$G_{\beta_s}(z) = -\frac{1}{2}\sqrt{1-\sqrt{z^{-2}(z^2-4)}}.$$

• Free infinite divisibility of  $eta_{s} = \mathrm{m}_{1}oxtimes \mathrm{a}$ 

Arizmendi & Hasebe (11):

$$G^{\alpha}_{s,r}(z) = -r^{1/lpha} \left( rac{1 - (1 - s(-rac{1}{z})^{lpha})^{1/r}}{s} 
ight)^{1/lpha}$$

 $r > 0, 0 < \alpha \leq 2, s \in \mathbb{C} \setminus \{0\}.$ 

$$\mu^{lpha}_{s,2}=m_1oxtimes a^{lpha}_{s/4}$$
 is free ID,

►  $a_{s/4}^{\alpha}$  is stable with respect to monotone convolution, where the arcsine law  $a_{4/4}^{1} = a$  plays the role of Gaussian distribution.

# IV. Search for new examples of free ID distributions Type W distributions

▶ PA & Sakuma (12): Multiplicative convolutions with the Wigner,  $\sigma \in \mathcal{P}(\mathbb{R}_+)$ 

$$\mu = \sigma \boxtimes \mathbf{w}$$

Is free infinitely divisible iff

$$\sigma \boxtimes \sigma \in \Lambda(I_+^*).$$

▶ For any  $\sigma \in \mathcal{P}(\mathbb{R}_+)$ 

$$\mu^2 = \sigma \boxtimes \sigma \boxtimes \mathsf{m}_1 \in \Lambda(I_+^*).$$

Arizmendi, Hasebe & Sakuma (11):

$$\begin{split} \sigma &\in \Lambda(I_+^*) \Rightarrow \sigma \boxtimes \sigma \in \Lambda(I_+^*), \\ \sigma &\in \Lambda(I_+^*) \Rightarrow \sigma^{\boxtimes t} \in \Lambda(I_+^*), t \ge 1. \end{split}$$

### IV. A remarkable semigroup Belinschi & Nica (08)

$$\mathbb{B}_t(\mu) = \left(\mu^{\boxplus(1+t)}
ight)^{\uplusrac{1}{1+t}}$$
 ,  $t\geq 0$  ,

 $\exists$  is Boolean convolution.

$$\mathbb{B}_t(\mu_1 \boxtimes \mu_2) = \mathbb{B}_t(\mu_1) \boxtimes \mathbb{B}_t(\mu_2).$$

Free divisibility indicator

$$arphi(\mu) = \sup\left\{t \geq \mathsf{0}: \mu \in \mathbb{B}_t(\mathcal{P}(\mathbb{R}))
ight\}.$$

• There exists  $\nu \in \mathcal{P}(\mathbb{R})$  such that

$$\varphi_{\mathbb{B}_t(\mu)}(\nu) = \mu.$$

- $\mu$  is free infinitely divisible distribution iff  $\varphi(\mu) \ge 1$ .
- Divisibility indicator for free multiplicative convolution (Arizmendi & Hasebe (12)).

# 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ





 Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.

 Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.

Some properties and questions:

- Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.
- Some properties and questions:
  - $M_d$  is infinitely divisible in the space of matrices  $\mathbb{M}_d$ .

- Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.
- Some properties and questions:
  - $M_d$  is infinitely divisible in the space of matrices  $\mathbb{M}_d$ .

• The existence of  $(M_d)_{d>1}$  is not constructive.

- Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.
- Some properties and questions:
  - $M_d$  is infinitely divisible in the space of matrices  $\mathbb{M}_d$ .

- The existence of  $(M_d)_{d>1}$  is not constructive.
- How are the random matrix (M<sub>d</sub>)<sub>d>1</sub> realized?

- Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.
- Some properties and questions:
  - $M_d$  is infinitely divisible in the space of matrices  $\mathbb{M}_d$ .
  - The existence of  $(M_d)_{d>1}$  is not constructive.
  - ► How are the random matrix (M<sub>d</sub>)<sub>d>1</sub> realized?
  - ► How are the corresponding matrix Lévy processes {M<sub>d</sub>(t)}<sub>t≥0</sub> realized?

- Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.
- Some properties and questions:
  - $M_d$  is infinitely divisible in the space of matrices  $\mathbb{M}_d$ .
  - The existence of  $(M_d)_{d>1}$  is not constructive.
  - How are the random matrix (M<sub>d</sub>)<sub>d>1</sub> realized?
  - ► How are the corresponding matrix Lévy processes {M<sub>d</sub>(t)}<sub>t≥0</sub> realized?

• The jump  $\Delta M_d(t) = M_d(t) - M_d(t^-)$  has rank one!

- Benachy-Georges (05, AP), Cavanal-Duvillard (05, EJP): For μ ∈ I\* there is an ensemble of unitary invariant random matrices (M<sub>d</sub>)<sub>d≥1</sub>, such that with probability one its ESD converges in distribution to Λ(μ) ∈ I<sup>⊞</sup>.
- Some properties and questions:
  - $M_d$  is infinitely divisible in the space of matrices  $\mathbb{M}_d$ .
  - The existence of  $(M_d)_{d>1}$  is not constructive.
  - How are the random matrix (M<sub>d</sub>)<sub>d>1</sub> realized?
  - ► How are the corresponding matrix Lévy processes {M<sub>d</sub>(t)}<sub>t≥0</sub> realized?

- The jump  $\Delta M_d(t) = M_d(t) M_d(t^-)$  has rank one!
- Open problem:  $\Delta M_d(t)$  has rank  $k \ge 2$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Cavanal-Duvillard (05):

Cavanal-Duvillard (05):

• If  $\mu$  is Gaussian,  $Z_d$  GUE independent of  $g \stackrel{\mathcal{L}}{=} N(0, 1)$ 

$$M_d = \frac{1}{\sqrt{d+1}}(Z_d + dgI_d)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cavanal-Duvillard (05):

• If  $\mu$  is Gaussian,  $Z_d$  GUE independent of  $g \stackrel{\mathcal{L}}{=} N(0, 1)$ 

$$M_d = \frac{1}{\sqrt{d+1}}(Z_d + dgI_d)$$

• If  $\mu$  is Poisson with parameter c > 0

$$M_d = \sum_{k=1}^N u_k^* u_k$$

Cavanal-Duvillard (05):

• If  $\mu$  is Gaussian,  $Z_d$  GUE independent of  $g \stackrel{\mathcal{L}}{=} N(0, 1)$ 

$$M_d = \frac{1}{\sqrt{d+1}} (Z_d + dg \mathbf{I}_d)$$

• If  $\mu$  is Poisson with parameter c > 0

$$M_d = \sum_{k=1}^N u_k^* u_k$$

▶ Molina & Rocha-Arteaga (12): If for some 1-dim Lévy process  $\{X_t\}_{t\geq 0}$  and for a non random function  $h: \mathbb{R}_+ \to \mathbb{R}$ 

$$\mu = \mathcal{L}\left(\int_0^\infty h(t)\mathrm{d}X_t
ight)$$
 ,

then, there exists a  $d \times d$  matrix Lévy process  $X_t$  such that

$$M_d \stackrel{\mathcal{L}}{=} \int_0^\infty h(t) \mathrm{d}\mathbf{X}_t.$$

Cavanal-Duvillard (05):

• If  $\mu$  is Gaussian,  $Z_d$  GUE independent of  $g \stackrel{\mathcal{L}}{=} N(0, 1)$ 

$$M_d = \frac{1}{\sqrt{d+1}} (Z_d + dg \mathbf{I}_d)$$

• If  $\mu$  is Poisson with parameter c > 0

$$M_d = \sum_{k=1}^N u_k^* u_k$$

▶ Molina & Rocha-Arteaga (12): If for some 1-dim Lévy process  $\{X_t\}_{t\geq 0}$  and for a non random function  $h: \mathbb{R}_+ \to \mathbb{R}$ 

$$\mu = \mathcal{L}\left(\int_0^\infty h(t)\mathrm{d}X_t
ight)$$
 ,

then, there exists a  $d \times d$  matrix Lévy process  $\mathbf{X}_t$  such that

$$M_d \stackrel{\mathcal{L}}{=} \int_0^\infty h(t) \mathrm{d}\mathbf{X}_t.$$

▶ PA-Sakuma (08):  $X_t$ ,  $X_t$  1-dim and matrix Gamma processes.
• How is the matrix Lévy process  $M_d(t)$  realized?

- How is the matrix Lévy process  $M_d(t)$  realized?
- ▶ Simple case:  $\mu$  *CP*( $\nu$ ,  $\psi$ ),  $\nu$  p.m. on  $\mathbb{R}$ ,  $\psi \in \mathbb{R}$

$$M_1(t) = t\psi + \sum_{j=1}^{N_t} R_j$$

 $N_t$  PP independent of  $(R_j)_{j\geq 1}$ , i.i.d,  $\mathcal{L}(R_j) = \nu$ .

- How is the matrix Lévy process M<sub>d</sub>(t) realized?
- Simple case:  $\mu$   $CP(\nu, \psi)$ ,  $\nu$  p.m. on  $\mathbb{R}$ ,  $\psi \in \mathbb{R}$

$$M_1(t) = t\psi + \sum_{j=1}^{N_t} R_j$$

 $N_t$  PP independent of  $(R_j)_{j\geq 1}$ , i.i.d,  $\mathcal{L}(R_j) = \nu$ .

•  $\Lambda(\mu) = \nu \boxtimes m_1$ , free multiplicative convolution,  $m_1$  is MP.

- How is the matrix Lévy process M<sub>d</sub>(t) realized?
- Simple case:  $\mu$   $CP(\nu, \psi)$ ,  $\nu$  p.m. on  $\mathbb{R}$ ,  $\psi \in \mathbb{R}$

$$M_1(t) = t\psi + \sum_{j=1}^{N_t} R_j$$

 $N_t$  PP independent of  $(R_j)_{j\geq 1}$ , i.i.d,  $\mathcal{L}(R_j) = \nu$ .

∧(µ) = v ⊠ m₁, free multiplicative convolution, m₁ is MP.
 For each d ≥ 2

$$M_d(t) = \psi t \mathbf{I}_d + \sum_{j=1}^{N_t} R_j u_j^* u_j$$

 $(u_j)_{j\geq 1}$  independent *d*-vectors uniform on unit sphere of  $\mathbb{C}^d$ , independent of  $(N_t)$  and  $(R_j)_{j\geq 1}$ .

$$M_d(t) = \psi t \mathbf{I}_d + \sum_{j=1}^{N_t} R_j u_j^* u_j$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$M_d(t) = \psi t \mathbf{I}_d + \sum_{j=1}^{N_t} R_j u_j^* u_j$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Realization as quadratic covariation  $M_d(t) = [X_d, Y_d]_t$ :

$$M_d(t) = \psi t \mathbf{I}_d + \sum_{j=1}^{N_t} R_j u_j^* u_j$$

• Realization as quadratic covariation  $M_d(t) = [X_d, Y_d]_t$ :

▶  $\{X_d(t)\}_{t\geq 0}$ ,  $\{Y_d(t)\}_{t\geq 0}$  are  $\mathbb{C}_d$ -Lévy processes

$$X_d(t) = \sqrt{|\psi|}B_t + \sum_{j=1}^{N_t} \sqrt{|R_j|}u_j, \quad t \ge 0,$$

$$Y_d(t) = \operatorname{sign}(\psi)\sqrt{|\psi|}B_t + \sum_{j=1}^{N_t}\operatorname{sign}(R_j)\sqrt{|R_j|}u_j, \quad t \ge 0,$$

 $\{B_t\}$  is  $\mathbb{C}_d$ -Brownian motion independent of  $(R_j)$ ,  $(u_j)$ ,  $\{N_t\}$ .

# V. Open problems

• Lecture 2: Matrix Brownian motion  $B_n(t) = (b_{ij}(t)), t \ge 0$ 

•  $(\lambda_1(t), \cdots, \lambda_n(t))$  eigenvalues process of  $B_n(t)$ .

▶ Dyson-Brownian motion:  $\exists_n n$  independent 1-dim Brownian motions  $b_1^{(n)}, ..., b_n^{(n)}$  such that if  $\lambda_{n,1}(0) < \cdots < \lambda_{n,n}(0)$ 

$$\lambda_{n,i}(t) = \lambda_{n,i}(0) + b_i^{(n)}(t) + \sum_{j \neq i} \int_0^t \frac{1}{\lambda_{n,j}(s) - \lambda_{n,i}(s)} \mathrm{d}s.$$

Corresponding measure valued process

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_{n,j}(t)},$$

converges weakly in  $\mathcal{C}(\mathbb{R}_+\mathcal{P}(\mathbb{R}))$  to  $\{w_t, t \geq 0\}$ .

Open problems:

# V. Open problems

• Lecture 2: Matrix Brownian motion  $B_n(t) = (b_{ij}(t)), t \ge 0$ 

•  $(\lambda_1(t), \cdots, \lambda_n(t))$  eigenvalues process of  $B_n(t)$ .

▶ Dyson-Brownian motion:  $\exists_n n$  independent 1-dim Brownian motions  $b_1^{(n)}, ..., b_n^{(n)}$  such that if  $\lambda_{n,1}(0) < \cdots < \lambda_{n,n}(0)$ 

$$\lambda_{n,i}(t) = \lambda_{n,i}(0) + b_i^{(n)}(t) + \sum_{j \neq i} \int_0^t \frac{1}{\lambda_{n,j}(s) - \lambda_{n,i}(s)} \mathrm{d}s.$$

Corresponding measure valued process

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_{n,j}(t)},$$

converges weakly in  $\mathcal{C}(\mathbb{R}_+\mathcal{P}(\mathbb{R}))$  to  $\{w_t, t \geq 0\}$ .

#### Open problems:

• Dyson process associated to the matrix Lévy process  $M_d(t)$ ?

(日) (同) (三) (三) (三) (○) (○)

# V. Open problems

• Lecture 2: Matrix Brownian motion  $B_n(t) = (b_{ij}(t)), t \ge 0$ 

•  $(\lambda_1(t), \cdots, \lambda_n(t))$  eigenvalues process of  $B_n(t)$ .

▶ Dyson-Brownian motion:  $\exists_n n$  independent 1-dim Brownian motions  $b_1^{(n)}, ..., b_n^{(n)}$  such that if  $\lambda_{n,1}(0) < \cdots < \lambda_{n,n}(0)$ 

$$\lambda_{n,i}(t) = \lambda_{n,i}(0) + b_i^{(n)}(t) + \sum_{j \neq i} \int_0^t \frac{1}{\lambda_{n,j}(s) - \lambda_{n,i}(s)} \mathrm{d}s.$$

Corresponding measure valued process

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_{n,j}(t)},$$

converges weakly in  $\mathcal{C}(\mathbb{R}_+\mathcal{P}(\mathbb{R}))$  to  $\{w_t,t\geq 0\}$ .

#### Open problems:

- Dyson process associated to the matrix Lévy process  $M_d(t)$ ?
- ► Asymptotics for corresponding measure valued process?

## References for free ID: analytic approach

- H. Bercovici & D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- O. Arizmendi, O.E. Barndorff-Nielsen & VPA (2009). On free and classical type G distributions. Rev. Braz. Probab. Statist.
- Belinschi S. & A. Nica (2008). A remarkable semigroup with respect to multiplicative convolution. Adv. Math.
- VPA & Sakuma Noriyoshi (2008). Free generalized gamma convolutions. *Elect. Comm. Probab.*
- O. Arizmendi and VPA (2010). On the non-classical infinite divisibility of power semicircle distributions. COSA..
- VPA & Sakuma Noriyoshi (2012). Free multiplicative convolutions of free multiplicative mixtures of the Wigner distribution. J. Theoretical Probab.
- O. Arizmendi, T. Hasebe & N. Sakuma (2011). On free regular infinitely divisible distributions. arXiv:1201.0311.
- O. Arizmendi & Hasebe (2011). On a class of explicit Cauchy-Stieltjes transforms related to monotone stable and free Poisson laws. *Bernoulli.*

## References for Bercovici-Pata bijection

- H. Bercovici & V. Pata with an appendix by P. Biane (1999).
  Stable laws and domains of attraction in free probability theory. Ann. Math.
- O. E. Barndorff-Nielsen & S. Thorbjørnsen (2004). A connection between free and classical infinite divisibility. *Inf. Dim. Anal. Quantum Probab.*
- O. E. Barndorff-Nielsen and S. Thorbjørnsen (2006). Classical and free infinite divisibility and Lévy processes. LNM 1866.
- F. Benaych-Georges, F. (2005). Classical and free i.d. distributions and random matrices. Ann. Probab.
- T. Cabanal-Duvillard (2005): A matrix representation of the Bercovici-Pata bijection. *Electron. J. Probab.*
- A. Dominguez & A. Rocha Arteaga (2012). Random matrix models of stochastic integral type for free infinitely divisible distributions. *Period. Math. Hung.*

## References for free multiplicative convolutions

- D. Voiculescu (1987). Multiplication of certain non-commuting random variables. J. Operator Theory.
- H. Bercovici & D. Voiculescu (1993). Free convolution of measures with unbounded supports. Indiana Univ. Math. J.
- H. Bercovici & J.C. Wang (2008). Limit theorems for free multiplicative convolutions. *Trans. Amer. Math. Soc.*
- N. Raj Rao & R. Speicher (2007). Multiplication of free random variables and the S-transform: The case of vanishing mean. *Elect. Comm. Probab.*
- O. Arizmendi & VPA (2009). The S-transform of symmetric probability measures with unbounded supports. Proc. Amer. Math. Soc.

## References for Lévy matrix modelling

- O.E. Barndorff-Nielsen & VPA (2008). Matrix subordinators and related Upsilon transformations. *Theory Probab. Appl.*
- O.E. Barndorff-Nielsen & R. Stelzer (2011). The multivariate supOU stochastic volatility model. *Math. Finance.*
- O.E. Barndorff-Nielsen & R. Stelzer (2011): Multivariate supOU processes. Ann. Appl. Probab.
- VPA & R. Stelzer (2012). A class of ID multivariate and matrix Gamma distributions and cone-valued GGC.
- C. Pigorsch & R. Stelzer (2009). A multivariate Ornstein-Uhlenbeck type stochastic volatility model.
- R. Stelzer (2010). Multivariate COGARCH(1, 1) processes. Bernoulli.

## Matrix covariation

▶ If X, Y are  $\mathbb{M}_{p \times r}$ -semimartingales

$$[X, Y] := ([X, Y]_t)_{t \ge 0}$$
$$[X, Y]_t^{ij} = \sum_{k=1}^q [x_{ik}, y_{kj}]_t.$$

In general,

$$[X, Y]_{t} = X_{0}Y_{0} + [X^{c}, Y^{c}]_{t} + \sum_{s \leq t} (\Delta X_{s}) (\Delta Y_{s}),$$
$$[X^{c}, Y^{c}]_{t}^{ij} := \sum_{k=1}^{q} [x_{ik}, y_{kj}]_{t}^{c}.$$

If continuous part is zero

$$[X, Y]_t = X_0 Y_0 + \sum_{s \leq t} (\Delta X_s) (\Delta Y_s).$$

It holds

$$X_t Y_t = \int_0^t X_{s-} dY_s + \int_0^t dX_s Y_{s-} + [X, Y]_t.$$

# Infinitely divisible random matrices

Lévy-Khintchine representation

► Random matrix *M* is ID iff its Fourier transform Ee<sup>itr(Θ\*M)</sup> = exp(ψ(Θ)) has Laplace exponent

$$\begin{split} \psi(\Theta) &= \mathrm{i} \mathrm{tr}(\Theta^* \Psi_{}) - \frac{1}{2} \mathrm{tr}\left(\Theta^* \mathcal{A} \Theta^*\right) \\ &+ \int_{\mathbb{M}_d} \left( \mathrm{e}^{\mathrm{i} \mathrm{tr}(\Theta^* \xi)} - 1 - \mathrm{i} \frac{\mathrm{tr}(\Theta^* \xi)}{1 + \left\|\xi\right\|^2} \right) \nu(\mathrm{d}\xi), \end{split}$$

- $\Psi \in \mathbb{M}_d$
- $\mathcal{A}: \mathbb{M}_d o \mathbb{M}_d$  positive symmetric operator
- $\nu$  Lévy measure on  $\mathbb{M}_d$ ,  $\nu(\{0\}) = 0$  and

$$\int_{\mathbb{M}_d} (\|x\|^2 \wedge 1) \nu(\mathrm{d} x) < \infty.$$

- The triplet  $(\mathcal{A}, \nu, \Psi)$  is unique.
- Scalar product tr  $(AB^*)$ , norm  $||A|| = [tr (AA^*)]^{1/2}$ .