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Chapter 1

Introduction

The main purpose of this thesis is the study of invertibility of unstructured and structured random
matrices, which have been intensively investigated for at least five decades. One of the oldest
references where the problem is mentioned goes back to 1964 in the work of Erdos and Rényi
[23], and its pioneering study is found in the work by Komlds [39] in 1967. The problem of the
singularity of random matrices arises in several areas of mathematics and its applications, such
as the circular law [9], [29], compressed sensing [60], geometric functional analysis [59], [60], [75],
smoothed analysis of algorithms [66], [67], and statistics [74],[60], among others.

Additionally, we include in this thesis a chapter with contributions on a different problem in
backbend percolation, which was also worked as part of the PhD studies.

With regard to the singularity of random matrices, we consider the following random matrix
models:

e Ginibre matrix: An n xn matrix (& j)1<s,j<n is called a Ginibre matrix if & ;,4,7 =1,...,n
are independent random variables. It is an unstructured random matrix with n? independent
entries.

e Wigner matrix: An n x n symmetric matrix (&; ;)1<ij<n is called a Wigner matrix if
&ij»1 <1 < j <n are independent random variables. It is a structured random matrix with
n(n 4+ 1)/2 independent entries.

e Circulant random matrix: Annxn matrix (& j)1<i j<n is called a circulant random matrix
if & ;j = &1 j—i+1, where the subscripts are reduced modulo n and lie in the set {1,2,...,n},
and the entries in the first row are independent random variables. It is a structured random
matrix with n independent entries.

When these matrices have entries with continuous distributions, we have that they are invertible
with probability one. But if the entries have discrete distributions, it is not immediate that they
are invertible. This poses the question of what are the features of the discrete distributions that
determine the invertibility of these models with high probability. Another question is how the
singularity of random matrices depends on the number of independent random entries used in the
construction of these matrices.

In the case of Ginibre matrices, Komlés [39] first considered a Ginibre matrix GB(n,1/2)
whose entries are Bernoulli random variables, taking the values 0 or 1 with probability 1/2. Using
a very clever “growing rank analysis” together with the Littlewood—Offord inequality (which is
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8 CHAPTER 1. INTRODUCTION

a concentration inequality!), Komlés proved that P {rank(GB(n,1/2)) <n} = o(1) as n — oo.
Bollobés [8] presented an unpublished result due to Komlés about the rate of the probability of
the singularity of GB(n,1/2). Employing the concept of “strong rank” and the Littlewood—Offord
inequality viz, Bollobds mentioned that P {rank(GB(n,1/2)) < n} = O(n~Y?) as n — oo. Komlés
[40] was also the first to consider the singularity of a Ginibre matrix whose entries have a common
arbitrary non-degenerate distribution, proving that the probability that such an n x n matrix is
singular has order o(1) as n — oco. This result was improved by Kahn, Komlés and Szemerédi [31]
in the case of Ginibre matrices whose entries are i.i.d. taking the values —1 or 1 with probability
1/2, showing that the probability of singularity is bounded above by 6™ for § = .999. The value of
6 has been improved by Tao and Vu [69], [70] to § = 3/4+ o(1) and by Bourgain, Vu and Wood [5]
to @ = 1/v/2 + o(1). Slinko [65] considered Ginibre random matrices whose entries have the same
uniform distribution taking values in a finite set, proving also that the probability of singularity is
O(n=12) as n — oo.

In the Wigner matrix case, the study of singularity was initiated by Costello, Tao and Vu [11],
inspired by the work of Komlds [39]. They considered a Wigner matrix whose upper diagonal entries
& ; have Bernoulli distribution on {0, 1} with parameter 1/2, and showed that P {rank(W},,)) < n} =
O(n~1/8+%) for any positive constant a, where the implicit constant in O(-) depends on a. They
needed first to develop a quadratic Littlewood—Offord inequality, which is a concentration inequality
for random quadratic forms. Nguyen [50] considered a Wigner matrix W,, with entries taking the
values —1 or 1 with probability 1/2, subject to the condition that each row has exactly |n/2] entries
which are zero. He showed that the probability of W, being singular is O(n~%), for any positive
constant C, and the implicit constant in O(-) depends on C. Vershynin [75] has considered the case
of a Wigner matrix W,, whose entries satisfy the following property: the above-diagonal entries
are independent and identically distributed with zero mean, unit variance, and are sub-Gaussian,
while the diagonal entries satisfy ; < K+/n for some constant K. He showed that the probability
of W,, being singular is bounded above by 2exp(—n¢), where ¢ depends only on the sub-Gaussian
distribution and on K.

The previous results assume some restrictions on the distribution of the entries of the Ginibre
or Wigner matrices. One of the first contributions of this thesis is to show that under the weaker
conditions that the entries are non-degenerate independent random variables, not necessarilly with
equal distribution or moments, and such that the maximum jumps of their distributions are bounded
by a number less than one (see Theorem 13 in Chapter 4), then the probability that the Ginibre or
Wigner matrices are singular decreases to zero at least polynomially. Actually, in our investigation
we establish universal rates of convergence and precise estimates for the probability of singularity
of Ginibre and Wigner matrices, which depend only on the size of the maximum jumps of the
distributions of the entries.

One of the main probability tools to prove that Ginibre and Wigner random matrices are invert-
ible with high probability has been Levy’s concentration function, which measures the maximum
probability that a random variable lies in an interval. The problem of estimating the maximum
probability that a linear combination of independent random variables belongs to a ball with given
small radious is generally known as Small Ball Probabilities [51]. In 1943, Littlewood and Offord,
in conection with their studies of random polynomials, estimated the small ball probability for
a linear combination of Rademacher independent random variables [44]. Erdos studied the same
case as Littlewood and Offord, but he analyzed the problem from a combinatorial point of view
[22]. The small ball probabilty phenomenon was also studied in probability by Kolomogorov [37],
[38], Rogozin [57], and others, and recently by Tao and Vu [72]. For the general assumptions we

1Some authors use the term “anti-concentration” instead “concentration.”



consider in this work, we need first to establish an appropriate concentration inequality for a linear
combination of independent random variables (linear Littlewood—Offord inequality) which is used
in the Ginibre case. A suitable concentration inequality for a random quadratic form (quadratric
Littlewood—Offord inequality) is also proved, which is used in the Wigner case. In both cases, we
clearly exhibit the role of the maximum jumps of the distributions in these concentration inequal-
ities.

Our Theorem 13 also handles the case when the entries of the Ginibre or Wigner matrices
depend on the dimension of the matrix. This kind of random matrices appear in the study of
random graphs [12], sparse matrices [13], [20], and some other models that have recently been
extensively considered, like the so-called generalized, universal and banded Wigner ensembles [21],
[64] among other works. See also the non i.i.d. Wigner case in, for example, [2, pp 26].

As another example where random matrices possess identifiable properties without moment
assumptions, we have that a Ginibre matrix has large rank with exponentially small probability.
Namely, let A be an n x n Ginibre matrix. Suppose that all the entries §; ; of A are random
variables with different distributions, satisfying the following condition: for some ¢ € (0, 1)

Sup]P){fm‘ = l‘} <q.
Tz€R
Then for all § € (0,1), we have
P (rank(A) < dn) < Cng1=9n*,

for some suitable constant C' > 0 which depends possibly on ¢. This simple statement? shows that
under weaker conditions, random matrices have “good qualities.”

It is notable that if one considers the minimum singular value of a rectangular random matrix, we
can see a similar phenomenon for the probability of the singularity of Ginibre and Wigner random
matrices without moment assumptions. For a strictly rectangular matrix with i.i.d. random entries
without moment assumptions, it was recently found by Tikhomirov [73] that the probability that
its minimum singular value is large goes to one exponentially. For square matrices, estimating the
minimum singular value (known also as the hard edge of spectrum) has been considerably more
difficult [74].

Recall that if A is an n x n matrix with real or complex entries, the singular values® s;(A),
k=1,...,n of A are the eigenvalues of |A| = v A*A arranged in non-increasing order.

Note s,(A) > 0 if and only if A is not singular, moreover s, (A) measures the distance of A to
the set of singular matrices. The study of extreme singular values are interesting since, for example,
they control the distortion of a Euclidean geometry under the action of the linear transformation
A: the distance between any two points can increase by at most the factor s;(A) and decrease by at
least the factor s, (A). The extreme singular values are clearly related to the operator norm of the
linear operators A and A~! acting between Euclidean spaces: s1(A) = ||A|| and if A is invertible,
then s,(A) = 1/||A7!||. In numerical linear algebra, the condition number ,(A) := s1(A)/s,(A)
frequently serves as a measure of the stability of a matrix algorithm [60].

When A is a Ginibre matrix, one has, e.g., if its entries have sub-Gaussian moments with some
additional weak assumptions, that for every £ > 0

P(sn(A)) < en~Y?) < Ce + ", (1.1)

where C' > 0 and ¢ € (0,1) depend on the sub-Gaussian moments [61]. Note that if € # 0, the

2The idea of how to prove this statement is found in Lemma 13 in Chapter 4.
3This notation can be extended to rectangular matrices.
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previous probabilities are not decreasing exponentially fast. If A is a Wigner random matrix, one
has the same result as that in the expression (1.1) [75].

A second set of main contributions of this thesis is about the minimum singular value of a
circulant random matrix. This n X n random matrix has a strong structure (great dependencies
among the entries) since it can use at most n independent random variables. First, a result similar
to (1.1) is obtained. Our approch to prove this new result for a circulant random matrix is different
of the one used for Ginibre and Wigner matrices in [10], [61], [75], where they use the advantage
that all or more than half of the entries are independent random variables.

Circulant matrices play a crucial role in the study of large-dimensional Toeplitz matrices. The
study of random Toeplitz matrices is a relatively new field of research. The question of establishing
the limiting spectral distribution of random Toeplitz matrices with independent entries was first
posed in the review paper by Bai [1]. Bose, Subhra and Saha [6], [7], studied the probabilistic
properties of the spectral norm (maximum singular value) of the scaled eigenvalues of circulant
matrices. Sen and Virdg [62] used circulant matrices to study the maximum singular value of a
random symmetric Toeplitz matrix. Meckes [48], [49], who also studied the maximum singular value
of symmetric Toeplitz matrices, was the first to give an estimate of the probability that a circulant
random matrix is singular when its entries are Rademacher independent random variables, and he
posed the problem of estimating the minimum singular value of a circulant random matrix.

For the study of the singularity of a circulant random matrix in this thesis, we use a remarkable
relation among circulant random matrices and random polynomials. More specifically, the eigen-
values of a circulant matrix are the values that a certain polynomial takes on the roots of unity. A
classic result in the theory of random polynomials says that the roots of a random polynomial are
concentrated in the unit circle when the degree of the polynomial goes to infinity with probability
one [4]. We show in Theorem 15 in Chapter 5 how the roots of a random polynomial move towards
the unit circle at a certain speed, which implies that the minimum singular value is different from
zero with high probability. Many results on the roots of random polynomials are about the behav-
ior of the empirical distribution of the roots [4], [27], [63] without treating the speed with which
the roots move towards the unit circle. Actually, the only references that we could find about the
minimum value of a random polynomial on the unit circle were [34] and [42]. But in [34] there
was no proof. Our Theorem 15 follows closely the ideas in [42]. In the proof of Theorem 15, we
can extend the classic Salem—Zygmund’s inequality for trigonometric random polynomial with i.i.d.
coefficients, such that they have moment generating function. Actually, we show that a random
variable & with E (§) = 0, E (§2) = 0 > 0, and moment generating function Me(t) for [t| < A is
locally sub-Gaussian random variable, i.e., there is A > ¢ > 0 such that M¢(t) < /2 for |t] < &
and v > o2

Theorem 14 in Chapter 5 establishes that the mininum singular value s,,(Cy,) of an nxn circulant
random matrix C, whose entries have moment generating functions has the property that for all
e > 0 and for all large n, P(s,,(C,) > en~'/2) > 1 — Ce. This expression is similar to (1.1). This
similitude was unexpected to the author since despite the large amount of dependency that exists
among the entries, the minimum singular value of circulant matrices is roughly speaking similar as
in the Ginibre and Wigner cases considered in [29], [75], also under some moment assumptions.

When the dimension of a circulant random matrix is a prime number, we can estimate the prob-
ability of its singularity when its entries have general distribution, without moment assumptions.
Theorem 16 in Chapter 5 shows that a circulant random matrix with prime dimension is invertible
with hign probability.

As a final contribution on circulant random matrices, we investigate the singularity phenomenon
in g-circulant random matrices, which is a generalization of circulant matrices, with the same strong
dependence among its entries. The g-circulant matrices have been an active research field of applied
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mathematics and computational mathematics [6], [7], [76]. There are many examples from statistics
and information theory that illustrate applications of g-circulant matrices [76].

As a third and final set of contributions of this thesis, we include some results on backbend
percolation that were also part of the PhD work of the author, which is different from the subject
of random matrices. Backbend percolation is a generalization of oriented percolation by Durrett
n [18], and was introduced by Roy, Sarkar and White [58]. Backbend model considers a path as
defined in [18], with the diference that the path is allowed to go down until some depth b. We
show that there exists a critical probability of this model as in oriented percolation, and we also
study properties of the backbend model and similarities and diferences with unoriented percolation
in two dimensions. Specifically, we establish the critical probability in terms of the “slope” of
the right edge process. Our approach follows the ideas in [18], however the dependency inherent
in the backbend model unlike in oriented percolation requieres a different analysis. Indeed, in
oriented percolation the right edge process is built from independent random variables, while in
our backbend model the right edge process is made from dependent random variables.

The remainder of this thesis is structured as follows.

e Chapter 2 contains a brief introduction to the problem of the singularity of random matrices.
Section 2.2 mentions the singularity problem over finite fields and its differences from matrices
over R or C. Section 2.3 shows that some kind of models of random matrices are invertible
with probability one when some of their entries have continuous distributions. Section 2.4
presents a result about the minimum singular value of a Ginibre matrix with i.i.d. entries,
which was used in the proof of the circular law by Gotze and Tikhomirov [29], with the goal
of exemplifying the techniques used to analyze it.

e Chapter 3 presents the main probabilistic tools to prove that Ginibre and Wigner matrices
are invertible with high probability. Section 3.2 introduces the notion of Levy’s concen-
tration function of a random variable. Section 3.3 presents our concentration inequalities
for sums of random variables. This section includes: Theorem 11, which establishes a gen-
eral concetration inequality for a linear combination of independent random variables (linear
Littlewood—Offord inequality), and Theorem 12, which gives a general concentration inequal-
ity for random quadratic forms (quadratic Littlewood—Offord inequality).

e Chapter 4 presents some of the main results in this thesis. Sections 4.2 contains Theorem 13
where is established the universality rate of the probability of non-singularity of the Ginibre
and Wigner matrices, for n large. Also, it is given an application of Theorem 13.b to Erdo-
Rényi. Section 4.3 gives the proof of Theorem 13 for the case of the Ginibre matrices. The
principal tools used for the Ginibre case are a suitable linear Littlewood—Offord inequality
and the concept of “strong rank.” Section 4.4 gives the proof of Theorem 13 for the case
of Wigner matrices. The main tools used for the Wigner case are an appropiate quadratic
Littlewood—Offord inequality and a slightly different concept of strong rank.

e Chapter 5 contains another set of the main contributions in this thesis. In Section 5.2 is
presented the main theorems in this chapter, Theorem 14, 15 and 16. Theorem 14 determines
the behavior of the minimum singular value of a circulant random matrix whose entries have
moment generating functions. For our proof of Theorem 14, it is used a remarkable result
about the roots of a random polynomial. This is found in Theorem 15. Theorem 16 shows
that if the dimension of a circulant matrix is prime, it is possible to obtain an estimate for the
probability of the singularity of a circulant matrix when its entries have general distributions.
Sections 5.3, 5.4 and 5.5 are given the proofs of Theorem 14, 15 and 16, respectively. Section
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5.6 includes some additional contributions about the extreme singular values of circulant
random matrices and g-circulant matrices.

e Chapter 6 is about our contributions on backbend percolation. Section 6.2 describes the
backbend percolation model. In Section 6.3 we give a characterization of the critical prob-
ability of backbend percolation. In Section 6.4 we show that there is an initial distribution
on nonpositive integers such that the right edge process has stationary increments. Section
6.5 is about the strict monotocity of the “slope” of banckbend percolation. Section 6.6 con-
tains our analysis of the sub—critical probability of backbend percolation model. Section 6.7
presents our first approach about the behavior of the “slope” of banckbend percolation when
the models are near to unoriented percolation in two dimension. Section 6.8 considers the
super—critical probability of the backbend percolation model.

e Appendix A provides some properties of sub-Gaussian random variables, material that is used
in Chapter 5.

Every new result that the author provides is marked with a *.



Chapter 2

On the Singularity of Random
Matrices

2.1 Introduction

This chapter contains a brief introduction to the problem of the singularity of random matrices with
the goal of exhibiting some different contexts where the problem arises and the distinct behavior
where the probability of the singularity changes drastically. First, Section 2.2 refers to the case
of random matrices over a finite field, since the probability of the singularity of some models is
asymptotically non-zero. This is in contrast with the case where the random matrix is over R or
C—which is the one considered in this thesis—where this probability is asymptotically zero. For
these situations, the study of non-singularity is commonly done using an analysis of the rank of the
matrix ever since the pioneering work of Komlés [39]. Second, Section 2.3 presents first a proof of a
result that is part of the folklore of the literature: unstructured random matrices whose entries have
continuous distributions are invertible with probability one. Moreover, for some structured random
matrices, we also prove that if the principal diagonal has entries which are independent continuous
random variables and independent of the entries in the non-diagonal part (the distributions of the
entries in the this part are arbitrary) are invertible with probability one. These proofs are carried
out by an analysis of the determinant of the matrix. Hence, the non-trivial problem is when the
entries have discrete distributions. Finally, in Section 2.4 we recall another feature of the singularity
of matrices: the extreme singular values. We also include a result about the minimum singular
value of a Ginibre matrix with i.i.d. entries, which is one of the keys behind the circular law as
shown in Go6tze and Tikhomirov [29]. This is an example where the problem of singularity via
minimum singular values comes out in very relevant situations in the theory of random matrices.
It is not surprising that in this proof there appears naturally the use of concentration inequalities,
which is the subject of Chapter 3.

2.2 Random matrices over finite fields

We would like to start by introducing the following “good” problem®.

1. There are 16 2 by 2 matrices whose entries are 1’s and 0’s. How many are invertible?

!There is an affable anecdote about this problem [14], where we can note the interest in it. This problem appears
as a “regular” exercise in [68].

13



14 CHAPTER 2. ON THE SINGULARITY OF RANDOM MATRICES

2. (Much harder!) If you put 1’s and 0’s at random into the entries of a 10 by 10 matrix, is it
more likely to be invertible or singular?

The first question is very easy. To check how many matrices are invertible we only need to list
them. However, the second one is difficult, as we need to consider 2'% possibilities.

Binary matrices are studied in combinatorics, information theory, cryptology, and graph theory.
In 1964, Erdos and Rényi [23] stated, at the end of their paper on the permanent of binary random
matrices, the question of how many binary random matrices are non-singular (in R). The invert-
ibility of binary matrices is especially important in encoding, since it helps to encrypt messages
and compress communication signals in an effective manner.

Note that the number of n x n binary matrices are 27° . Let F(n,k) be the number of n x n
binary matrices of rank k, and P(n) = F(n,n)/2"" the proportion of non-singular binary matrices.
If we have a random matrix whose entries are independent Bernoulli random variables taking the
value 1 with probability of 1/2 and the value 0 with probability 1/2, then P(n) is the probability
of non-singularity of this random matrix.

In 1967, Kémlos [39] showed that P(n) — 1, but he studied the invertibility of this random
matrix in R. But in the case that the random matrix is over Fy, finite field with two elements, we
have that P(n) < 1/2 for all n > 0. This will be discussed in detail later. In Table 2.1 we can see
the number of binary matrices which are invertible in Fy and R.

n || Total |  F(n,n) in F F(n,n) in R P(n)inFy || P(n)in R
1 2! 1 1 0.5 0.5
2 24 6 10 0.375 0.375
31 2° 168 338 0.328125 | 0.33984. ..
4| 216 20160 42976 || 0.307617... | 0.34424. ..
51 2% 9999360 21040112 | 0.298004... || 0.37296. ..
6| 236 2015870960 39882864736 | 0.293347... || 0.41963. ..
7| 2% | 163849992929280 | 292604283435872 || 0.291056. .. || 0.48024. ..

Table 2.1: Number of non-singular matrices in Fy and R.

Given a finite field F, with ¢ elements, the cardinality of the set GL(n,q) of invertible matrices
over [F, can be explicitly calculated and then we have the exact probability of non-singularity over
F, when the entries are independent discrete uniform random variables on all [F,.

If A€ GL(n,q), we can see A as a set of n linearly independent vectors in F,. We can construct
A in the following way. The first vector in A should be different from zero, there are ¢" — 1 choices.
This vector spans a one-dimensional subspace, which contains ¢' elements. The second vector
should not be in this subspace, so we have ¢" — ¢! possibilities. In fact, if we have a set of k — 1
independent vectors, there are ¢" — ¢* possible ways to create an independent set with k vectors.
Hence, the number of ways to choose vectors that will form an n x n invertible matrix is

(" =q"h) = ﬁ (q" - q'“) :

k=1
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In other words, the probability of invertibility of an n x n matrix over the field F, whose entries
are independent random variables with discrete uniform distribution on all F, is exactly

n

(}H(qnqk—l):ﬁ(lq—k)<1;.

k=1 k=1

For g = 2, we have [[;_, (1 - 2*’“) < 1/2, i.e., less than half of the matrices over Fy are invertible.
Moreover the number of invertible matrices decreases as m increases. Also, we can compute the
number G(n, 7, q) of n x n matrices over F, with rank r. Note that if r = 0, then G(n,0,¢q) = 1.

Theorem 1.

G(n,r,q) = (¢")"" f[ (Q” - q’H) :

k=1

Proof. The number of ways we can choose r linearly independent random vectors in F, is
| (q” — qk_l). Now, observe that the other n — r vectors should be a linear combination
of these r first vectors. This gives us the result. O

From Theorem 1 we obtain the exact probability that a random matrix over F, whose entries
are independent random variables with discrete uniform distribution has rank r.

When g — oo, [, (1 - q_k) — 1, i.e., if the number of elements of the finite field increases,
the number of matrices which are invertible increases too. From Table 2.1, it can be observed
that the probability of singularity decreases when we consider random matrices with independent
Bernoulli random entries over o or R. But, we will see that random matrices in R with independent
continuous or discrete random entries are invertible with high probability. First, we want to show
what happens with the probability of the singularity in the case of a symmetric random matrix
over F, with independent uniform random entries.

The next result? shows how to count the number of symmetric matrices over F, with rank 7.
For this, we define W(n,, ¢) as the number of n x n symmetric matrices over F, with rank r. Write
d(n, , q) for the number of j dimensional subspaces of Fy. Define [, (z) = (1—-z)(1—22)--- (1—2m).
It is well known [17] that

[1,.(a)

439 = T O L)

Theorem 2.
W(n,n —j,q) = d(n,j, ) W(n — j,n — j,q).

Proof. Let e; be the n dimensional vector over Fy that has a 0 in each entry except for the jth
entry. Let E = span{ey,...,e;}. Then there are W(n — j,n — j,q) n x n matrices with rank n — j
that have kernel F. To see this, we note that if M is an n x n matrix, then Me; is the jth row of
M. Hence, if A is a symmetric matrix with Ae; = 0, then the jth row and the jth column of M is
the zero vector.

Let A be a symmetric n X n matrix with rank n — j that has kernel F. Since Av = 0 for all
v € E, then A has j rows and j columns equal to the zero vector. If we look at A without these j
columns and the corresponding j rows, we have a symmetric (n — j) x (n — j) matrix that should
have rank n — j. So, there are W(n — j,n — j,q) symmetric n X n matrices with rank n — j that
have kernel FE.

2The proof of this theorem is the same as given by Prof. Robert C. Rhoades. The proof has been circulated on
the Internet, http://math.stanford.edu/“rhoades/FILES/rank_symmetric_matrices.pdf



16 CHAPTER 2. ON THE SINGULARITY OF RANDOM MATRICES

Let S be any j dimensional subspace of Fy with basis {v1,...,v;}. We define S as the set of
all n x n matrices of rank n — j with kernel S and £ is the set of all n x n matrices of rank n — j
with kernel E. Our goal is to show that |S| = |&].

There are ki,...,k,—; such that {vi,...,vj,e,... €k, ;} is a basis for Fy. Let B be the
change of basis matrix defined by es — v, for 1 < s < j and ej4 — ey, for 1 <t < (n —j).

Define the map ¢ : S — &€ by ¢(A) = B'AB. Since B is an invertible matrix, B! is too. Note,
Bt'ABv = 0 if and only if ABv = 0, but this implies Bv € S. Since B is the change of basis matrix
from {ey,...,e;} to {v1,...,v;}, we have v € E. Therefore, B'ABv = 0 if and only if v € &, i.e.,
the map ¢ is well defined.

Since B is invertible, ¢ is a 1-1 map. Now, we consider X € £ and Y = (B')"!AB~!. We have
#(Y) = B'YB = BY((B")"'XB~')B = X. Then it is enough to show that Y € S. But, Yv =0

if and only if X B~'v = 0, and since B~! is also a change of the basis matrix from {v1,...,v;} to
{e1,...,¢e;}, wehave v € S. So Y € S, i.e., ¢ is surjective.
This completes the proof. Then W(n,n — j,q) = d(n,7,¢q)W(n — j,n — j,q). O

Theorem 2 gives the exact probability that a symmetric n X n matrix has rank r when its entries
are independent uniform random entries over F,.

Random matrices over a finite field have been studied for many years [26]. Even though this
thesis is about random matrices over R or C, we would like to present some additional results about
the singularity of random matrices over finite fields, since there are significance differences from
the cases over R or C.

Let ¢ = p/ be a prime power and let F, be a finite field with ¢ elements. Suppose § is a
random variable that takes values in F, with probability distribution . We say that p is a-dense
for 0 < a < 1 if for every additive subgroup 7' < F, and s € F,

Pes+T)<1-a.

Theorem 3. [46] Let F, with q = p and suppose A is a n x n random matriz with i.i.d. entries
which take values from an a-dense probability distribution. Then we have the estimate

P (A is non-singular) = H(l — q*k) +0 (efcan) ’
k=1

where the implied constant and ¢ > 0 are absolute.

O

Theorem 4. [}7] Let Q,, be a n X n symmetric random matriz where the entries above and on the
diagonal are independent copies of &, where £ is a random variable with P(§ =t mod q) <1 —¢
for allt € Fy with ¢ > 0. Then we have the estimate for the total variation

dry(n — rank,v) = O (n—l/s) 7

where the implied constant depends on ¢ and q, and v is the probability distribution on ZT :=
{0,1,2,...} given by

vk =g T -7,

I=k+1
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2.3 Random matrices with continuous random entries

If a random matrix A has entries ® which are independent random variables with continuous distri-
bution on R or C, it is easy to check that P(det(A) = 0) = 0. A reason for this is that probability
that the sum of independent random variables with continuous distribution takes a particular value
is zero. The following results show that some structured random matrices with few continuous ran-
dom entries are also invertible with probability one.

We first show that under the condition that the principal diagonal has entries which are inde-
pendent with continuous distributions and independent of the upper and lower triangular parts, the
random matrix is invertible with probability one, whatever the distributions of the non-diagonal
entries. This theorem provides us a first guide when we want to find “good matrices” to test some
algorithms, because it gaves an indication of what are the “bad matrices.”

Theorem 5 (x Singularity: Continuous case). Let G,, = (& j)i<ij<n be an n x n random matriz
such that {&; 11 = 1,...,n} is a set of independent random variables and independent of {&; ; -
1<1i,j <nwithi#j}. If &, has continuous distribution for all i, then

P (G, is non-singular) = 1.
Proof. The proof is by induction on n. For n = 1 the statement is trivial. We can suppose the
statement is true for all n < k for some k. Now, we consider n = k + 1. Since

k+1

det(Grr1) = &1 det(Gr) + ) &1 j¢1,
j=2

where ¢ ; is the (1, j)-cofactor of G}.1, we have by independence and the inductive hypothesis

k+1
P (G4 is singular) = P | &1 det(Gy) + Zél’jq’j =0
j=2
_ ple, = _Z?:zl §1,5¢1,5
N L= det(Gk)
- E(p(¢ %2 €1y &, withi,j=1,...,nand (i,5) # (1,1)
1,1 — det(Gk) %,] ] sty ) 9
= E(0)
= 0.
Therefore P (Gg1 is non-singular) = 1. O

We note that if G is a Ginibre or Wigner matrix, then by Theorem 5 we have P(det(G) = 0) = 0.

Moreover, it is possible to consider a strong dependency among the entries of a random matrix.
For example, if T is a random Toeplitz matrix, we can prove that the probability that det(7") = 0 is
zero only under the hypothesis that the entries of T" are independent continuous random variables.

3In fact, this statement is also verified when the rows or columns are independent continuous random vectors.
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We recall that a Toeplitz matrix is defined as T}, = (&_j)%zl, i.e., T;, looks like

o &1 &2 o o & (no
& & &1 :
.- &2 & &
: e 1 &2
: & & §-1
1 0 0 & & o

Theorem 6 (x Singularity: Toeplitz case). Let T;, = (& j)1<i,j<n be an n xn random matriz such
that {&§ :i=—(n—1),...,n— 1} is an independent set of random variables. If & has continuous
distribution for all i, then

P (T, is non-singular) = 1.

Proof. The proof is by induction on n. For n = 1 the statement is trivial. We can suppose the
statement is true for all n < k for some k. Now, we consider n = k + 1. Since

det(Tk11) = §—r det(Tx) + Z &CLljl+1,
—(k—1)

where ¢; |ji41 is the (1,]j] + 1)-cofactor of Tj,;. We have by independence and the inductive
hypothesis

P(det(Tx4+1) =0) = <§ k det(Ty) + Z fjcl ljl+1 = 0
j=—(k=1)
= &jc, l7]4+1

- P - Ze e &0

(5 ¥ det(Ty)
= E(P(¢,= Lt i & withi=Fk,...,—(k—1)
- k— — det(Tk) 7 — Ny ey
= E(0)
= 0.

Therefore P (7)1 is non-singular) = 1. O

Another example of a matrix with entries having a strong dependence is a circulant random
matrix?. When the entries are independent continuous random variables, then a circulant ran-
dom matrix is non-singular with probability one. However, the structure of a random matrix can
drastically change the probability of singularity. This is shown in the following simple example.

Example 1. Let &y,&1,... be independent random variables such that there is a ¢ € (0,1) with

4This kind of matrix will be studied in more detail in Chapter 5.
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sup,er P{&k = x} << for all k. Let A be the n x n random matriz defined as

o & &L o &
& & & 0 &
An=1 & & & - &

& & & &

It is not difficult to show that det(A,) = X,Y,, where
Xp=Y & and det(Yy)= Hizl(ﬁo = &)

Suppose P(&y = &1) = p € [0,1] and P(§o = &;) = 0 for all i # 0,1. By the Kolmogorov—Rogozin
inequality (Theorem 8 in Chapter 3),

p=PY,=0) < PX,=00rY,=0)
< P(X,=0)+P(Y,=0)
< on 2 + p.

Then
P(det(A,) =0) = p as n — oo.

O

In the proofs of the previous results we used the determinant. Then a natural question is:
what is the behavior of the determinant of a random matrix? The study of the distribution of the
determinant of a Ginibre matrix was considered in [52]. We do not pursue this problem in the
present thesis.

The previous results show that under hypothesis that the random entries have continuous
distribution, the random matrix is invertible with probability one. So, the complicated scenario
appears when one considers discrete random entries. This situation will be analyzed in Chapters 4
and 5.

2.4 Minimum singular value of square matrices

We would like to finish this introductory chapter by mentioning some results on the extreme singular
values of random matrices with independent entries. To understand the behavior of extreme singular
values is actually one of the keys to the circular law theorem [9]. This is an example where the
problem of singularity comes out in very relevant situations in the theory of random matrices [29].
We know that the minimum singular value of a matrix is positive if and only if the matrix is
non-singular. The next result states that the matrix should be invertible if the maximum singular
value is not large. This lemma and its proof can be found in the review of the circular law in [9].
We include it here to highlight the role of the minimum singular value in the study of the spectral
asymptotic distribution of Ginibre matrices.

Recall that the extreme singular values are defined for a matrix A by the variational formulas

s1(A) = max ||Az|l2, sp(A)= min |[Azx|s.

z:||z||2=1 z:||z||2=1
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Lemma 1 (Small singular values of random matrices with independent entries). If (Xij)1<i j<n 15
a random matrix with independent and non-constant entries in C and if a > 0 is a positive real
number such that

o ; 2.
b:= 1§IIZ‘1,§'I%nP(|X"j’ <a) and o°:= Var(Xijl{lXij‘SCL}) > 0,

then there exists ¢ = c¢(a,b,0) > 1 such that for any n x n matricr M inC, n<c¢, s<1,0<t <1,

P (sn(XJrM) < \/tﬁ;sl(XJrM) < s) < ¢y/log(cs) <t32+ \/15> .

The proof of Lemma 1 is divided into two parts, which correspond to a subdivision of the unit
sphere S”~1 of C". For two real positive parameters 6, p > 0 that will be fixed later, we define the
set of sparse vectors

Sparse := {z € C" : card(supp(z)) < dn},

where supp(z) := {i : z; # 0}, and we split S*~! into the set of compressible vectors and the set of
incompressible vectors as follows:

Comp := {z € S""! : dist(z, Sparse) < p} and Incomp :=S""!\ Comp.

We note that for A an n x n matrix over C,

s$p(A) = min ||Az|lz =min | min [|Az|l2, min [|Az|]2 ] . (2.1)
zesSn—1 C I P

zeComp zelncom

Compressible vectors

Lemma 2 (Distance of a random vector from a small subspace). There exist €,¢,00 > 0 such that
for all n sufficently large, all 1 < i < n, any deterministic vector v € C" and any subspace H of
C™ with 1 < dim(H) < don, we have, denoting C := (Xy4, ..., Xpi) + v,

P(dist(C, H) < eov/n) < cexp(—ca?n).

Proof. Let n, = 1yx,,/<a}- Then n1...,n, are independent, n;, € {0,1} and E (n;) > b for all k.
Then, from Hoeffding’s deviation inequality [9],

" nb ~ nb
P(};nk§2) = P(;Uk—bn§—2>

AN
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Then it is enough to prove
P(dist(C, H) < eov/n| Ep) < cexp(—co’n),

where E,, = {|X1| <a,...,|Xmi| < a} with m := [nb/2].
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Let E,,[-] := E[-|En; Fm| denote the conditional expectation given E,, and the filtration Fp,
generated by Xp414,...,Xpn. Let W =span{H,v,u, w} where

U= (O, oo 0, Xty - - ,Xn’,-) and

w = (E[XleXlz‘ S a}, cee ,E[XmZHXmZ‘ S a,], 0, o ,0)
So, dim(W) < dim(H) + 3 and W is F,,-measurable. Also, we have that

dist(C, H) < dist(C, W) = dist(Y, W),
where

Y = (XIZ_E[X11||X12| Sa],,XmZ—E[XmZHXmZ‘ ga],O,...,O)

= C—-u—v—w.
By assumption, for 1 < k < m,
En[Ye] =0 and E,,[|Yi]}] > o2
Let D = {z:|z| < a}. We define the function f: D™ — Ry by
flx) =dist((z1,...,2m,0,...,0), W).

This function is convex and 1-Lipschitz, and by Talagrand’s inequality, for all ¢t > 0
2
P (|dist(Y, M) — M,,| > t) < 4dexp <_16aQ> ,

where M, is the median of f under P,,. From this inequality, we obtain for all ¢ > 0

2
P, (—dist(Y, M) + M, < —t) < 4dexp <_1éa2> . (2.2)

We want to prove that

M, > \/Em[dist2(Y, M)] - ca.

We consider the event dist(Y, M) \/ E,,[dist?(Y, M)] — ca. Then

P (dist(Y, M) > \/E,[dist?(Y, M)] - ca> _ (dlstQ(Y M) <\/IE [dist2(Y, M)] — ca>2> .

If we take t = ‘\/Em[distQ(Y, M)] — ca| from (2.2), we have that there is a ¢ = ¢(a,b,0) > 1 such

that )
(dlStQ(Y M) (\/E [dist?(Y, M)] — ca) ) < %

So, M,, > \/Em[dist2(Y, M)] — ca. On the other hand, if P denotes the orthogonal projection on
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the orthogonal of W, we find

E,[dist?(Y, M)] = i}Em[Y,f]Pkk
k=1
> (Z Prr, — Z Pkk)
k=m+1
> o%(n—dim(H) — 3 — (n—m))

> o2 (gb — dim(H) — 3> :

For n large enough, the last expression is bounded below by co?n if 6y = b/4. From (2.2) there
follows the result. U

Let 0 < e <1 and s> 1 be as in Lemma 2. We set

-l 5}

in particular p < 1/4. The parameter ¢ € (0, 1) is still to be specified, we only assume that 6 < dg.
We note that if A is an n x n matrix over C and y € C" is such that supp(y) C = C {1,...,n},
then

HAyH2 > HyH23n<A|ﬂ')7

where A is an n x |7| matrix formed by the columns of A selected by 7. So

3
min ||A]|l2 > = min sn(Ajr) — psi1(A). 2.3
selomp W22 Ty, TRy S ) — () 23

Write C; for the ith column of A and
H;:=span{C;:jemj#i}.
Then for any z € C/7l,

Exzz

1ET

HA\wf’«"H2 = > max |2;|*dist?(Cy, H;)

Z |2; % mln dist?(C;, H;).

1ET

In particular

sn(Ajr) = nréin dist(Cy, Hy)/+/|].

Since H; has dimension at most dn and is independent of C;, by Lemma 2, we can see that the
event min, dist(C;, H;) > e0+/n has probability at least 1 — cén exp(—co?n) for n sufficiently large.
Hence, for A = X + M,

P <5n((X + M);) < j%) < cdnexp(—cé?n).
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Therefore, using the union bound and our choice of p, we have from (2.3)

e
P min X +Mx|lo < —
<xeC0mp I )ll2 20

L51(X + M) gs) < (L(;;J)céne‘“ﬂ"
= conexp(H(8)(1+o(1)) - ca?),

where H(6) := —6log(6) — (1 — 6)log(1 — 6). If we pick § small enough so that H(§) < co?/2, we
have that there is a ¢; := ¢1(0) > 0 such that

e
P min X+ Mzl < ——;s1( X+ M) <s | <exp(—cin). 2.4
(aceCOmpH( )zl[2 Wi 1( ) > (—c1n) (2.4)
From now on, we fix
5= 6202
~ |loga|

small enough so § < dp and H(8) > co?/2.

Incompressible vectors: Invertibility via distance

Lemma 3 (Incompressible vectors are spread). Let @ € Incomp. There exists a subset m C
{1,...,n} such that |w| > on/2 and for alli € w

P« |<,/2
—— i <A/ —.
\/ﬁ_ 571

Proof. For 7 C {1,...,n}, we denote by P, the orthogonal projection on span{e; : i € w}. Let

m = {k:|xk| < /2/(6n)} and 7o = {k : |zx| > p/+/n}. Since ||z||3 = 1, we have

Also,
o = Pryalls = || Pegallz < p.

If |m9| < dn, we would have z € Comb, and then |m3| > dn. Write 7 = m N 7o, From the previous,

0 o
7 = n = || — || = 0 — T — (n—dn) = -

Lemma 4 (Invertibility via mean distance). Let A be a random matriz over C with columns
C4,...,Cy, and for some arbitrary 1 < k < n, let Hj be the span of all these columns except Cl.
Then, for any t > 0

: tp 2 .
< —= )| < — <t).
P (,pin llaclle < 22 ) < 2 > P((Ch ) <1)
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Proof. Let z € S"!. From Az = >k Cray, we get

A > dist(Ax, H.) = dist H).
|| Az|]2 > max ist(Ax, Hy,) _lggn\wﬂ ist(Cy, Hy,)

1<

Now, x € Incomp and 7 as in Lemma 3, we have

| Azl]s > %%gzcdist(ck,H, k).

Finally, note that for any real numbers y,...,y, and 1 < m,

1 m n
1{(maX1§k§m yr)<t} < E Z 1{ykSt} < Z 1{yk§t}'
k=1 k=1

O
Let C be the kth column of X + M. We want to establish, for all ¢ > 0, that
1 1
P(dist(C, H) < pts s1(X + M) < 5) < &/ 11087 (t + ) : (2.5)
o ) Vit

In order to obtain this, we consider a random vector 7 in S*~' N H* that is independent of C.
Note that n is not unique, we just pick one and we call it the orthogonal vector to the subspace H.
By the Cauchy—Schwarz inequality,

(C, )| < dist(C, H). (2.6)

Lemma 5 (The random orthogonal vector is incompressible). For our choice of p and 6, and with
c1 as in (2.5), we have

P(n € Comp; s1(X + M) < s) < exp(—c10°n).

Proof. Let A be the (n—1) xn matrix obtained from (X 4+ M )* by removing the kth row. Then by
construction An = 0, ||Az|]2 < [|(X 4+ M)*z||, and |[(X + M)*|| = || X + M]||. Hence if n € Comp,
we have min . comy, ||Az||2 = 0. Note that (2.5) holds with X + M replaced by A. O

Now, we will use the Berry—Essen theorem. In this step we assume that some coordinates are
fixed, both the components of 1 and the random variables X;; + M;, are well controlled. Namely,
if n € Incomp, let 7 C {1,...,n} be as in Lemma 3 associated to vector . Then conditioned on
{n € Incomp}, from Hoeffding’s deviation inequality, the event that

||b _ dbn
Zl{\xmga} Z 2T
1€em

has conditional probability at least (since 1 and hence 7 are independent of C')

1 — exp(—|n|b?/2) > 1 — exp(—cén).

So, using our choice of § and p, and using Lemma 5 and (2.6), it is sufficient, to prove (2.5), to
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show that for all ¢t > 0

B0 OOl < ) < Sy 2E2 (0 ).

where P, (-) = P(:| B, Fim) is the conditional probability given F,, the o-algebra generated by all
variables except (Xig, ..., Xmk), m := [dbn/4], and

2
E, = {\pf<| \gw(sn:1§i§m}U{|Xik|§a:1§i§m}.
Write . .
= 0(Creiy => WXy +u,
i=1 i=1

where u € F,, is independent of (Xyg, ..., X;ui). It follows that

Pm(‘h]acﬂ < ,Ot) <supP,, (
zeC

Zﬁi(Xik —EnXik) — 2| < ,ot) . (2.7)
=1

Now, we use the rate of convergence given by the Berry—Essen theorem to obtain an upper
bound for this last expression.

Lemma 6 (The small ball probability via the Berry—Essen theorem). There ezists a constant ¢ > 0
such that if Z1, ..., Zy, are independent centered complex random variables, then for all t > 0,

sup P CZ?:lEﬂZiP)
zeC

ct
<t| < + .
) S E(Z) (i E(1Zi])32
Proof. Let 72 =" | E|Z;|%. Then either > I | E(RZ;)? or > i, E(SZ;)? is greater than or equal
to 72/2, where Rz and 3z are, respectively, the real and imaginary parts of z. Also

( <t><ﬁ»< <t)

and similarly with &. We can assume without loss of generality that the Z;’s are real random
variables. Then, if G is a real centered Gaussian random variable with variance 72, the Berry—
Essen theorem asserts that

—Z

; — %

<ot 3/QZE 1Zi|?)
=1

sup
teR

(ZZ <t> P(G < t)

For all £ > 0 and =z € R, we have
IP’(ZZi—J:

i=1
To conclude, we note that P(|G — z| <t) < 2t/vV2n72. O

< t> <P(IG — 2| < t) + 200722 E(1Zif)
i=1
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Define L = %logQ %. For our choice of p and 4, we can find a constant ¢ = ¢(a, b) such that
L < c|log p|.

For 1 < j < L, we define
72j_1\f 72%0
M { <i<m p n_|771|_\/ﬁ}

From the pigeonhole principle, there exists j such that |7;| > m/L. So, we have

92§-2 )2 52
7y = 3 B X~ E(Xp)f?) = 2L,
1ET;

and

2itlq
3 i PEn (X — En(Xa) ) < =~
iEﬂ'j \/ﬁ

Recall that X and Y are independent random variables, P(|X +Y — z| <r) <P(|X — 2| < 7).
Now, from (2.7) and Lemma 6 (by changing the value of ¢), we get, for all ¢ > 0,

O’j.

cpt  cap
P O)Y<pt) < —
m(‘(% >‘_P) - Uj +O’j\/ﬁ
ctyv/n c

+
o/Imil oIl

¢ [|logpl 1
< - t+—]).
o 5 * vn
The proof of (2.5) is complete.

Proof of Lemma 1. By Lemma 4 and (2.5), we find, for all ¢t > 0,

<

2
, pot c ]10gp]< 1 )
P min X+ Myzllo —;51(X+M)<s| <— t+—].
(acelncompH( )=l vn 1 ) ) g 63 vn

Using our choice of p and §, we obtain for some new constant ¢ = ¢(a, b, o) > 0,

t 1
P min X+ Mzlls < —;51(X+M)<s §c\/logcs<t52+>.
(zEIHCOl’an( )l Vn i ) ) Vn

The desired result follows from (2.1) and (2.5). O



Chapter 3

Concentration Inequalities

3.1 Introduction

In this chapter we present the main probability tools used to prove that Ginibre or Wigner matrices
are invertible with high probability. Section 3.2 introduces the notation of Levy’s concentration
function, which is useful for understanding with what probability the sum of independent random
variables takes a value in some interval. In Section 3.3, we mention some well known results about
the concentration of sum of independent random variables and establish two proper concentration
inequalities for the Ginibre and Wigner cases, respectively.

The main idea is to estimate the probability that a linear combination of independent random
variables can take a particular value, which will be used in the proof of the Ginibre case. It is easy
to see that in the continuous case, the probability that the sum takes a particular value is zero,
hence the difficult stage is when we have discrete random variables. In Theorem 11 we establish,
basically, that the probability that a linear combination of n independent random variables takes
a particular value is at most Crn~'/2, where the constant C, depends on the maximum jumps of
the distribution of the random variables.

We also analyze the concentration of a random quadratic form, something which will be used in
the proof for the Wigner case. Suppose that A is a Wigner matrix. Then we want to estimate the
probability that the quadratic form z!Ax is zero. A random quadratic form is a sum of dependent
random variables, but using a decoupling argument, it is possible to give a good estimate of the
probability that ' Az = ¢ for any ¢ € R.

In our Theorem 12, we obtain that the probability that a linear combination of n independent
random variables takes a particular value is at most C’Qn_l/ 4 where the constant Cq also depends
on the maximum jumps of the distribution of the random variables.

As mentioned in the Introduction of this thesis, the problem of estimating the maximum prob-
ability that a sum of random variables belongs to an interval is known as the topic of small ball
probability. The study of the small ball probability goes back to the discovery made by Littlewood
and Offord [44] and Erdos [22] almost 70 years ago. The set of these problems were studied by
Doeblin, Lévy [15, 16], Erdos [22] (for the Bernoulli case, where it reduces to the Littlewood—-Offord
problem), Kolmogorov [38], Rogozin [57], Kesten [35] and Essen [24], and more recently by Tao
and Vu [71], and Rudelson and Vershynin [59], [75].

Sections 3.2 and 3.3 are from the book [54]. The proof of Theorem 11 used the Kolmogorov—-
Rogozin inequality [24], [57], and the proof of Theorem 12 follows the ideas in [11], where only the
Bernoulli case was considered.

The main results in this chapter were published by the author in joint work with Pérez—Abreu

27
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and Roy [45].

3.2 Concentration functions

The Levy’s concentration function Q(&; \) of a random variable ¢ is defined by

Q& N) = sggﬂ”({ €z —A/2,xz+\/2])

for every A > 0. The function Q(X;\) is a non-decreasing function for A. Also, it is clear 0 <
Q(X;)\) <1 for every A > 0.
We will show some properties about the concentration function.

Lemma 7. If X andY are independent random variables, then Q(X+Y;A) < min{Q(X; ), Q(Y;\)}
for every A > 0.

Proof. Writing I)(z) = [x — A/2,x + A/2], we note for y € R
P(X +yel\(z) =P(X € I\(z+y)),

hence
PX4+Y elh(x) =E(P(X+Y € I,(x)|]Y)) <Q(X,\).

Therefore Q(X +Y;A) < Q(X; ). O
Lemma 8. For every o > 0 and X > 0 we have Q(&; a) < (la] +1)Q(&; M)
Proof. Writing I\(z) = [x — A\/2,2 + \/2]. If a € [0, 1], then aX < A and

P(§ € Taa(z)) < P(€ € I)(2)).

If a > 1, we have
P& € Toa(z)) < P(€ € Ii(z)) + (a = 1)Q(&N).

Thus, Q(&; X)) < (la] +1)Q(& ). O

Lemma 9. Let & be a random variable with the characteristic function f(t) and the concentration

function Q(&;N). For § € (0,7)

. 1 ra
aen = (52 [ o (3.1)

for every A >0 and a > 0 with aX < 9.

Proof. Let h(t) be a function defined by

[ 1=t for|t] <1
ht) = { 0 for [t| > 1~ (32)

Note that h(t) is a probability density function, which represent a symmetric random variable.

Hence,
H(z) = <Sm(m/2)>2 _ / T et

x/2 oo
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We denote by F(z) the distribution function of the random variable £. For every real v and a > 0,
we have

/_ Z H(a(z —7))dF(z) = / h [ / h eim(w_”)h(t)dt} dF(z)

—00 —0o0

_ % /_ a e=n (%) { /_ Z ei“zdF(x)] du
= i/a e~ (g) f(u)du,

—a

whence

oo 1 a
| A —ir@ < [ s
Since lim,_,(sin(z)/x) = 1, we have for 6 € (0, 7) such that

<Smo£/x2/2)>2 - (“1?%2))2 =:C for |2 <.

Let us denote
L(v)=[vy=A2,7v+A/2].
If aX <4, then

[ Hata = par) > (Si“§f2/2)> P(¢ € (7))

—00

and
a

P(¢ € I(7)) < é,é / ().

—a
In view that ~ is arbitrary,
1 a
A < — t)|dt.
Qe < = [ 1700
O

We note one consequence of Lemma 9, corresponding to the value A = 0. If £ is an arbitrary
random variable with the characteristic function f(¢) then for a =6 = 7/2

2

n/
P —a)<v3 [ 5t (33)
zeR —7/2

Lemma 10. Let £ be a random variable with the characteristic function f(t) and concentration
function Q(&; N). Then

sin Za
R ILUIE (34)

for every non-negative X and a.

Proof. Let £ = £ —n, where n is a random variable independent of £ and having the same
distribution as &, then |f(¢)|? is the characteristic function of £°. Note h(-), which was defined in
(3.2), is the characteristic function of a distribution with the density (1 — cosz)/m22. Let U be
a random variable independent of X and having the caracteristic function h(t/4a), where a > 0.
The random variable V := £° + U has a continuous distribution with chacracteristic function
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|£(t)|?h(t/4a). From lemma 7, we have Q(V;\) < Q(£,\). By the Inversion Formula!

1y 1 % 9 |t| \ sin(t/4a)
P (V| < 4@) = dar | |f(t)] <1 - 4a> Yy dt.

Since t € [—4a, 4a], we have

Q <V; 21a> > P (Vl < 42) > Siﬂ;) /_i|f(t)2 (1 _ ﬂ) ,

By lemma 8, we have for a, A > 0

Q&N = Q(V3A) B
() ()

Asin(1) 2a
47 (1 + 2aX) /Qa F @) dt.

v

In the case where A = a = 0, the inequality (3.4) is satisfied. O

3.3 Concentration inequalities for sum of random variables

Let £ be a random variable with distribution function F'(x). For every A > 0 write

DN =¥ |

2
o x“dF(z) + / dF(x).

|z|=A

We define D(&;0) :=P(§ # 0). We have D(§; A) = 0 for every A > 0 if and only P(§ =0) = 1.
If0 < )\1 < )\2, then

At / 22dF (z)
‘CE|<)\2

IN

At / 2?dF (x) + Ay / 22dF (z)
|1‘|<)\1

/\§|x\<)\2

)\1_1/ 22dF (x) +/ dF(x).
lz|<A1 A<z <A2

Therefore D(&;M2) < D(&; A1), ie., D(&;\) is a non-increasing function. Additionally, if u > A,
then

IN

D(&X) > w2 / ‘</\:U2dF(x)+ / dF(x)

A<|z|<u
> y? / 22dF (z).
|z[<u

nversion Formula: If f is the characteristic function of F. For a < b points at which F is continuous, we have

F(b) — F(a) = lim i/° #f(t)dt.
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If € is a random variable, we denote by £° the corresponding symmetrized random variable, i.e.,
if ¢’ is a random variable independent of £ with the same distribution of &, €% = & — &',

Theorem 7. Let &1,...,&, be independent random variables, S, = > ;1 &k. Let Ai,..., A\, be
positive numbers, A\, < A\, k = 1,...,n. Then there exists an absolute positive constant A, such
that

n -1/2
Q(Sn; ) < AN (Z ND(&; )\k)> : (3.5)

k=1

Proof. Let Vi(x) and vi(x) denote respectively the distribution function and the characteristic
function of the random variable &, respectively. We apply lemma 9 to the sum S,, with a = 1/},

we obtain
n

Q&N < Apx / T lox (6)]dt.

[tI<1/X .24

From the inequality 1 + x < e* for every real x implies that
ok ()7 < exp(—(1 — [k (1)?)).
If V?(x) denote the distribution function of &}, we have
1—|u(t)]? = / (1 — cos(tz))dV?(z).

Therefore,

QS \) < A\ exp (-é 3 / - cos(tw))dV,f(x)) dt. (3.6)
k=1v %

[t]<1/A

Let Li(x) be the function defined by Ly (x) = V;’(z) —1 for x > 0 and Ly () = VJ(z) for z < 0.
Li() is a Lévy spectral function? (see [54] p. 35 ). In order to estimate the integral in (3.6), we
will use the following lemma.

Lemma 11. Let Li(z) be a Lévy spectral function for k = 1,...,n. Let 6 be a positive number,
and let 0 < Ay < A, k=1,...,n. Then

n

exp{ —90
/tlﬁl//\ { Z

k=1

n -1/2
<AV / w?dLy(x) + N} / dL(z) .
0<|z|<Ak |z[> Ak

k=1

/| - cos(t:v))de(x)} dt
(3.7)

2Let M be a function from R to R. M is called Lévy spectral function if it has the following properties:
e M is defined on R\ {0}
e M is nondecreasing on (—o0,0) and on (0,00) and is right continuous
o M(—o0)=0= M(cx0)

. f0<\r\<5 x?dM (=) is finite for all ¢ > 0.
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Proof. If |z| <1, then 1 — cosz > 5t2%. For |t| < 1/A, we have

/:v|>0(1 — cos(tx))dLy(z) = /0<33|<>\k(1 — cos(tx))dLy(z) + / (1 — cos(tx))dLy(x)

|| > A,

11
> t2/ ZL'Qde({L‘)—i—/ (1 — cos(tz))dLi(x).
24 Jocizi<n, 2>\,

We denote the left-hand side of the inequality (3.7) by I and we write

n

= 2dL(x).
% Z /0<m|<)\k ! ()

k=1
Then
11 -
I< / exp <_g0t2> I] exo <_5 / (1— cos(tx))de(x)> dt. (3.9)
t1<1/2 24 P EESW
Let
By = &Z/ dLp(z) 1<Ek<n,
|| > Ak
B:ZBk, ap/B 0<k<n.
k=0
We have

n

= 1’2 i 2 X . .
B 5; (/quk dLy(x) + X2 /lxw AL )) (3.9)

k

Without loss of generality we can assume that ap > 0 for all k. Appliying Holder ’s inequality to
the right-hand side of (3.8), we have

n
<[z, (3.10)
k=0

11
Iy = / exp <—Bt2) dt,
[#1<1/ 24

I, = / exp <—2/ (1-— COS(t(L‘))de((L')> dt, k=1,...,n,
tI<1/A Ay oo

where My, (z) is a distribution function such that

where

1 ; >
dMj(z) = { pkdﬁk(ﬁﬂ) if |z] > Ak

if |z| < A
and
Pk =/ dL(z).
|[> Ak
We note -
Iy < /Ooexp (—;113752) dt = AyB™Y/2, (3.11)

where Ay := /247 /11. To estimate the integral I, k = 1,...,n, we use the Jensens inequality
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with e™. Then
wp(JB/meW%@@MMM@>§/jfm<—gﬂ—amm»)ﬂﬂ@)

and
[k § / Jk(t,m)de(a;),
|| > A,

where

%:%@@:/

exp <—B2(1 - cos(t:c))) dt.
[H1<1/ 2 A

k

To prove (3.7) it is sufficient to show that for some constant A,
Je <ABY? if|z| > Ay and 1 < k < n, (3.12)

since that I, < A.B~1/2. In fact, from (3.10), (3.11), and 3.} _, o = 1 imply I < A,B~'/2. Then
(3.7) follows from the latter inequality and from (3.9).
If A\p < |z| <7, then |tz| < 7 for [t| < 1/A. Using the inequality sinwu/u > 2/x for |u| < 7/2,
we obtain ; 5 5
1 — cos(tx) = 2sin? Ex > pt2x2 > ﬁtQ)\i

and

2
Jp < / exp (—2Bt2) dt < AsB~Y/2,
[t1<1/X d

where A3 := /73 /2.

Now we consider |z| > 7\, but it is sufficient to suppose when x > w\. Then

G
A, = — exp | ——= (1 —cosu) | du
*  Jjul<a/n a )

< i?(L2:AJ+1)/C<Wem3<—§iﬂ-—cmﬂﬁ)du

3 B
< 2 ey d
< 7T/|u|<7rexp( )\2( cosu)) u,

because the function under the intengral sign has the period 2. We have 1 — cosu > u?/7? for
|u| < m. Therefore,

B B
/ exp <—2(1 — cosu)> du < / exp <_ 5 2u2> du < A4)\B_1/2,
ul<m A lu|<m T2\

where Ay := V273, These estimates imply (3.12). O
To complete the proof of theorem 7 we apply lemma 12 to the integral on the right-hans side

of (3.6). So
n —-1/2
. .’L‘2 S(p 2 S(x )
Q53 \) < AN (g ( /m AV () + A2 /H avi( >))
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Note that for an arbitrary random variable £ and every A > 0, we have

ID(EN) = / 22dF (z) + N2 / dF (x)
|| <A |z|>A
)\2
— +A? / dF (z)
4 Jaj2<izl<n |z|>X

> AQ (m ) | (3.13)
By lemma 7 we have
P2 5) 2 1- Qe = 1- Q6 N, (3.14)
and hence
D&% 2) = 1-Q(§A). (3.15)

From inequalities (3.13) and (3.15), we have the next useful result.

Theorem 8 (Kolmogorov-Rogozin Inequality). Let &1,...,&, be independent random wvariables,
Sn = > k1 &k Let Mi,..., A\, be positive numbers such that N\, < X\, k = 1,...,n. Then there
exists an absolute positive constant A, such that

n -1/2
Q(Sn; A) < AX (Z AP <|fk| > A;)) (3.16)
k=1
n -1/2
Q(Sn; A) < AX <Z A (1= Q(&; M))) (3.17)
k=1
O

Kesten [36] obtained the following refinement of the above inequality.

Theorem 9. For the constant A of the Kolmogorov—Rogozin inequality and any independent ran-
dom variables &1, . ..,&,, and real numbers 0 < A1,..., Ay < 2X, one has

Q(Sm)\) §4-21/2(1+A) Zz 1 z[ Q(gu Z)]Q(‘Slv)‘)
{3 A1 - Q(&; A i)]}3/2

O

Since € € [x — A/2,z + \/2] is equivalently to | — x| < A/2. If a is a real number with |a| > 1,
we have

Qe =@ (&) < @6, (3.18)

Let ay, ..., a, be real numbers such that |ax| > 1,k =1,...,n and let &,...,&, be independent
random variables. If there exists A > 0 such that Q(&;\) < p € (0,1) for every k, we obtain from
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; ( < A)

< A(l _p)—l/Qn—l/Q.

(3.21) and theorem 8

> apb —a

k=1

IN

P <Z akfk = 37)
k=1

The above statement gives us the intuition that any linear combination of independent random
variables takes one particular value has small probability to happend. The next result establish
more formal this idea. This situation is called Linear Littlewood-Offord problem.

Theorem 10 (Linear Littlewood-Offord problem v.1). Let ai,...,a, be real numbers diffenterent
from zero. Let &q,...,&, be independent non-degenerate’ random variables. If for every k =
1,2,...,n there exists N\, > 0 such that Q(&x; A\k) < p € [0,1). Then there exists an absolute
positive constant A such that

sup P <Z arpéy = x> <A1 —p) V212,
z€R k—1

Proof. Let m = ming;<y<py |ag| and A = ming <<,y Ak, by theorem 8 we have
n n ag -
P — < TFe T <
(Zakfk a:) < P(stk -~ _A>
k=1 k=1
n ap
Cheon
Q (; — & )

< A(l _p)71/2n71/2.

IA

0

In the case that &1,...,&, are i.i.d. random variables, we have in theorem 10 that Ay = A for
every k. Also, when r of the random variables &1, ..., &, are degenerate, we have

sup IP (Z axéy = :c) < A(L— p) M2 (n — )12,
z€R =1

If ¢ = sup,cr P(§ = x), then for every A > 0, there exists 6 = 6(A) such that
¢ <Q(§0) <+

We denote ¢ + 0 by ¢a. From this observation, we can obtain a little generalizarion of theorem 10
using theorem 9

Theorem 11 (* The Linear Concentration Inequality v.2). Let &1,...,&, be independent random
variables with non-degenerate distributions Fi,. .., Fy, respectively, and let oy, ..., o, be real num-

3A random variable ¢ is degenerate if there is z € R with P(¢ = ) = 1.
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bers with a; 20, i =1,...,n. Then

d S (1= o(0)sali)
sup P a&=xp=0 , 3.19
vek {Z } ({2?1 - <A<z'>1}3/2> (349

where the implicit constant in O(-) does not depend on F;, i =1,...,n.

Proof. Let a = minj<;<, {|a;|} and § = minj<;<p, {0;}, where 6; > 0 satisfies ¢a (i) = Q(&;, 0i),
i=1,...,n. We have for x € R

P{Zai& :x} :P{Zf@ - Z} :P{Za;gi :x/},
=1 =1 =1

where «;/a = o/, and z/a = 2’. Now,

P{Za;gi = x’} < SUpP{ZOé& € [y,y+5]}
=1 =1

yeR
S (1= s(i))sali)
AN NG e

the last expression following from theorem 9. g

<4-272(1490)

If sa (i) < ¢ < 1 for all 4, from theorem 11

= . . S
itelg]P’ {Zz; ;& = x} =0 ((1 — §)3n) . (3.20)

When r of the random variables £, ..., &, are degenerate for some 1 < r < n; n is replaced by
n —rin (3.19).

From theorem 11, it is natural to ask what happens if we consider a polynomial of degree k in
&1,...,&,. In the case k = 2, we have the Quadratic Littlewood-Offord problem.

In order to have a similar estimation as it was obtained in theorem 10, we will use a decouplig
argument.

Lemma 12 (Decoupling). Let X € R™ and Y € R™ be independent random variables, with
mi1 +mge =n, and let ¢ : R™ — R be a Borel function. Let X* be a copy independent of X which
1s independent of Y. For any interval I of R, we have

P (o(X,Y) €I) SP(p(X,Y) €L, p(X*Y) €.
Proof. We note

PlpX,Y)eL,p(X"Y)el|lY =y) = P(p(X,y) € L,p(X",y) € 1)
= P’ (p(X,y)el).

The above expression implies

P(p(X,Y) € I,p(X",Y) € I|Y) = P (p(X,Y) € I),
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and finally
P2 (p(X,Y) € I) < P(p(X,Y) € Lp(X*,Y) €1).

Theorem 12 (x The Quadratic Littlewood-Offord Inequality). Let &1,...,&, be independent ran-
dom wariables with non-degenerate distributions Fi, ..., F,, respectively, and let (c;j)1<ij<n be a
symmetric n X n array of constants. Suppose Si U Sa is a partition of {1,2,...,n} such that for
each j € Sy, the set Nj := {i € Sy : ¢;; # 0} is non-empty. Let

p=o{,. . bt = D ki

1<i,j<n
be the quadratic form whose coefficients are c;;. Then any v € R

1/2

> jen(l—<(j))sald)

. >ien, (1 =5(0)3a (i) sup
DCS3,|D|>|S2|/2 {ZjED 1- GA(j)]}3/2

LS (S, 1-san)

P{p=2}=0 +

where for &, an independent copy of &;, S(i) and Sa(i) are the jumps associated with & — &, and <(3j)
and sa(j) are the jumps associated with &;. The implicit constant in O(-) does not depend on Fj,
1=1,...,n.

Proof. Let § = minj<;<, {0;} where §; > 0 satisfies (i) = Q(&,0i), i =1,...,n. If z € R,
we have

P{o=z} <P{pe€lzr,z+/2]}.

Write I = [z,2+6/2], X = (§ :i€ S51), Y = (& i€ S2) and X' = (§ : i € Sp), with X'
independent of X and Y, but having the same distribution as X. By lemma 12,

P {p(X,Y) e I} <P{p(X,Y) € Ip(X',Y) € I}
<P {CP(X, Y) - @(Xl,Y) S [_5/275/2]} :

We can rewrite p(X,Y) — p(X",Y) as

PX,Y) =X Y) =g(X, X)+2) & | D e (6 - &)

JESs €51

= g(X, X')+2) &y,
JES2

where g(X, X') = Zz‘,jesl cij(&& — 5255) and 1; = 3 ieg, Cij (& — &)-
Let ¢ be the number of n; which are equal to zero. If J = [-§/2,6/2], we have

P{o(X.Y) —o(X\Y) € J} < P{w(X,Y) —p(X'Y) e (< ‘522’}

|52
+IP’{C> 2}.
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Since ¢ = Zj652 1,,=0}, using theorem 11, we have

}:PhuO}EZP{EZQJ 00}

JES> JES2 €N,

Y

[ S -0
B Z . 3/2
ige \ {Sien, 1 —5a(0)]}
where <(¢) and 5a(4) are the jumps associated with & — &/. By Markov’s inequality, we obtain

152| 2 >ien, (1 —5(2))5a(i)
{C > } = !52 \52! Z {ZleNj 1 _GA(Z,)]}:’»/z

For M := {j € Sa : n; # 0}, we note that (i) M is a random set which depends only on X, X’
and (ii) |M| > |S2|/2 whenever ¢ < |S3|/2. Thus for a given realization x, 2’ of X, X’ respectively,

we have
B !52! / \52\
P{o(z,Y) — o, Y)e J|¢< =P{2) gniet | (<
JES2

where J' = [—g(z,2") — §/2, —g(z,2") + §/2]. Then by theorem 11,

EjEM(x,x/)(l - C(]))CA(])
3/2
{Cierttoan 1 =201}

where M (x,2’) is the set M obtained for the realization z, 2’ of X, X’. So

IP{ eJ}g<’2’}_

)

IP’{(p(m,Y)— o(2,Y) GJ‘C<| 2'}_0

E( — (XY EJ‘§< 2|XX})
> jep(l—<(7))sals)
PeSIDRISIE (5, s}
sup > jep(1—<(7))sals)
pesa Pzl (51 - s}
Hence
1/2
Plo—2} =0 3 Sien, (1 =3(0)3a(4) e Sien(l—s(i))sals)

| 2‘ JES2 {ZiENj 1— ?A(M}sﬂ Desu|DI2(%l/2 {ZjeD [1-— §A(j)]}3/2
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O

€

In theorem 12, if we suppose that ¢a (i) < ¢ < 1 for every k, |S1| = |S2] = n/2, and |N;| > nt-
for all j and € > 0, we have

1/2
S
supP{p=2}=0| | ———— . 3.21
z€R tp=o} (1-— §)3n1_5] (3:21)
Even as theorem 11, we have if 1 < r < n of the random variables &1, ...,&, are degenerate, in

this situation, n is replaced by n — r in (3.21).
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Chapter 4

Ginibre and Wigner Matrices

4.1 Introduction

This chapter contains some of the main contributions of this thesis. We prove the universal asymp-
totically almost sure non-singularity of the Ginibre and Wigner matrices. The problem of estimating
the probability that a Ginibre matrix is singular is a basic problem in the theory of random ma-
trices and combinatorics [5]. Theorem 13.a establishes, under the assumptions that the entries of
an n X n Ginibre matrix are independent random variables with possibly different distributions
(possibly without moments and a few are allowed to be degenerate) which depend on the dimen-
sion of the matrix, that it is singular with probability at most Cen™/2, where the constant Cg
depends basically on the maximum of the jumps of the distributions of the entries. The proof of
Theorem 13.a follows the ideas in [65], which considered the discrete uniform case and used a linear
Littlewood—Offord inequality.

Theorem 13.b, under the same assumptions as for the Ginibre case, gives that an n x n Wigner
matrix is singular with probabilty at most Cyyn~(1=9)/4 for any € € (0,1), where the constant Cyy
depends basically on € and the maximum of the jumps of the distributions of the entries. The proof
of Theorem 13.b follows the ideas in [11], which considered the Bernoulli case and used a quadratic
Littlewood—Offord inequality.

Our Wigner models include the adjacency matrices of Erdés—Rényi random graphs [8]. The
distribution of the entries of the adjacency matrix of this random graphs depend on the dimension
of the matrix. For this reason we present one example of the application of Theorem 13.b to the
non-singularity of the adjacency matrix of a random graph.

Proposition 2 shows basically how to construct a sequence of Ginibre matrices from an arbi-
trary sequence of distribution functions, such that the probability of the singularity of the Ginibre
matrices goes to one. The proof of this statement follows the pioneering ideas of Komlés in [40],
which have been widely used in this area.

The main results in this chapter were published by the author in joint work with Pérez—Abreu
and Roy [45].

4.2 Main results and applications
First, we introduce some definitions that it will be used in the rest of this chapter.

Definiton 1. An n x n matriz G, = (& ;)1<ij<n 15 called Ginibre matrix if §; ;,4,j =1,...,n
are independent random variables.

41
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Definiton 2. An n x n symmetric matric Wy, = (& j)1<i,j<n 15 called Wigner matrix if §; j,1 <
i < j <n are independent random vartables.

Given a collection of non-degenerate distribution functions {Fi(]n) : 4,7 >1, n>1} and a
subsequence {m,, : n > 1}, we study the singularity of the m,, x m,, matrix with independent
entries 5,(;;) governed by the distribution function F,g?) for every 1 < k,l < m,,. Let us denote by ¢,
the biggest jump of the distribution functions Fi(jn), 1<4,j <my,ie., if ¢ ; =sup,cr P{fgfj =z},
then

= max {G;}. (4.1)

We give a sufficient condition for m,, = n in terms of the sequence of biggest jumps (¢n),,>-

Theorem 13 (x Universality of the non-singularity of Ginibre and Wigner matrices). With the
notation as above, let G&”) and Wr(n) be the r x r Ginibre and Wigner matrices respectively, each
with entries §£3), 1<i<j<r. Assume that g, < € [0,1) for alln

a) Asn — oo

P {rank(G%")) < n} =0 (n_l/Q) , (4.2)

where the implicit constant in O(-) depends on s.
b) For any € € (0,1),
P {mnk(Wén)) < n} =0 (n_(l_a)/4) , (4.3)

where the implicit constant in O(-) depends on € and s.

As an application of the Wigner case, we obtain an estimation of the probability that the
adjacency matrix of a sparse random graph (not necessarily an Erdos-Rényi graph) is non-singular.
Costello and Vu [12] have analyzed the adjacency matrices of sparse Erdos-Rényi graphs, where
each entry is equal to 1 with the same probability p(n) which tends to 0 as n goes to infinity (see
also Costello and Vu [13] where a generalization of [11] is considered in which each entry takes the
value ¢ € C with probability p and zero with probability 1 —p, and the diagonal entries are possibly
non-zero). It is proved in [12] that when cln(n)/n < p(n) < 1/2, ¢ > 1/2, then with probability
1-0O((InIn(n))~/4), the rank of the adjacency matrix equals the number of non-isolated vertices.
Now we consider the following model extension of Erdés-Rényi graphs, where vertices i and j are
linked with a probability that depends on ¢ and j and the number of vertices. Furthermore, the
rate of convergence is an improvement of the one given in [12] for clnn/n® < p(n) < 1/2 with
c¢>0and g € (0,1). From the proof of Theorem 13.b in section 4, if k, =1 — p(n), we have

3 1
gn—gsn ¢ 2 1/4 _ B1)\2 1/4
Kn < < K )> < <(1 c(lnn/nP)) > o

k(1 — Kp) ni=¢(1 — Ky nl=¢Blnn

asn— oo, ife+ 8 <1.

Also, we notice that Theorem 13 provides us a first clue about what kind of matrices are “bad
matrices” for testing a matrix algorithm. System of linear equations with Ginibre and Wigner
matrices have solution with high probability for large variety of random entries. Hence, Theorem
13 tells us that we must understand the behavior of extreme singular values of a random matrix,
as we will study in the next chapter for a circulant matrix, when we like to know the degree of
singularity of a random matrix.
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Proposition 1 (x). Let {p;; € (0,1) : i,j = 1,2,...} be a double sequence of positive numbers
with p}, = mini<;<j<n{pij} € [clnn/nB,1/2], ¢ >0, and e + 3 < 1, ¢,8 € (0,1), then there is a
random graph with n vertices such that the vertex i is linked with the vertex j with probability p;;,
1<i<j<n, andif A, is its the adjacency matriz, we have as n — oo

P {rank(A,) < n} < Cn~ 0=/, (4.4)
for some constant C > 0.

In the following sections we develop the proof of Theorem 13. For the rest of this chapter, all
our random variables satisfy

supP{€ =z} <qa(f) <¢ < 1.
zeR

4.3 Proof in the Ginibre case

We start with an extension of a result by Slinko [65], who treated the case of a discrete uniform
distribution with parameter 1/q with ¢ € ZT.

Lemma 13. Let k < m and let A € R™** be a (deterministic) matriz with rank(A) = k. Ifb € R™
18 a random vector whose entries are independent random variables, then

P {rank(A,b) = k} < ™k,

Proof. Since rank(A) = k, we can decompose [A b] in the following way

i Ak b
[A b] B ( Am—kz bm—k > ’

where A, € RF¥k A, e Rm=K)xk b e R and b, € R™%. We note A, is an invertible
matrix. We have that there exists a random vector D € R¥ such that AyD = by, and A, D = by_i,
then Am,kAlzlbk =by—k. So
P{r(A,b) =k} <P{Ap_1A; b = by}
=E{P{An_rA; bk = bk |Am—r A} 'bx } }
< gmh

)

the last inequality being due to the independence of every entry in b,,_g. O

Lemma 14. Let k < m and let A € R™* be a random matriz (whose entries are independent
random variables). Then

P{rank(A) < k} < %gm*k.
-9
Proof. We note that if A = [a1]|---|ax], a; € R™ i=1,...,k, then
P{rank(A) = k} = P{a; ¢ {0}, a2 ¢ span{ai},...,ar ¢ span{ai,as,...,ak_1}}

k
— P{ay ¢ {0}} [[ B{E:).
=2
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where we use the notation span{-} for the space generated by some vectors and

E; ={a; ¢ span{ay,ag,...,a;—1}]a; ¢ {0},a2 ¢ span{ai},...,a;—1 ¢ span{ay,as,...,a;—2}}.

Hence by lemma 13 and the Weierstrass product inequality?,

P{rank(A) =k} > H(l -k >1-) KMt =1- N gmek
. ; 1—-=x
i=0 =0
]
We consider the following concept used by Komlés [8]. Let S = {v1,...,v,} be a set of vectors.

Let us define the strong rank of S, denoted sr(S), to be n if S is a set of linearly independent
vectors, and k if any k of the v;’s are linearly independent but some k + 1 of the vectors are linearly
dependent. For a matrix A, we denote the strong rank of the system of columns and the strong
rank of the system of rows by sr.(A) and sr.(A), respectively.

Remark 1. (a) Let A be an m X n random matriz with all entries independent random variables.
It follows immediately from lemma 14 that

K m—k

P {sr.(4) < k} < (Z) 1

— K
(b) For every ¢ and 0 < o < 1 there exists B > 0 which satisfies

h(B)

+08<a<l, (4.5)
logy ¢

where h(z) = —xlogy(x) — (1 — ) logy(1 — x) is the entropy function. Indeed, let

_ h(=)
~ logg

g()

Now, since the function g is continuous and g(0) = 0, there exists a positive number 3 > 0, which
depends on s, such that g(8) < a < 1.
c¢) We note from (a) and (b) that if m = |an] and k = [pn], then

NS lan)=[8n] S gn(h(f)—(a—B)logs(s)) » S g-n
P {rank(A) < [pn]} < (W?ﬂ) = < 17g2 < 17g2 ,

where we use (,6’7:1) < 2m(B) gnd ¢ 1S a positive constant which depends on <.

Lemma 15. Let vy,vy,...,vx € R™ be (deterministic) linearly independent vectors. Let B =
[vi]...|vg] and sc,.(B) = s. Then for a random vector a € R™ whose entries are independent
random variables,
P {rank(vi,ve,... vk, a) =k} < O™ k12,
"Weierstrass product inequality. For 0 < a1,az,...,a, < 1, then

n

ﬁ(l—ak)—l—Zak 2 1.

k=1 k=1
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Proof. Although simple, for the sake of completeness we include the proof. Let by,bo,..., b, be
the rows of B. Without loss of generality we may assume that by, ba, .. ., b are linearly independent
and that all other rows are linear combination of them. We have

k

>80 =
i=1

forr=k+1,...,m. As sc,(B) = s, at least s of the coefficients BY) ey ﬁ,(:) are nonzero.

Now, since we consider the event [rank(vy,vs, ..., vg, a) = k|, we have

k
E ozjvj =a
j=1

for some «j ..., q; not all zero. In particular Z?:1 QjUk41,j = Ag41, where agyq is the (k4 1)th
entry of a. But

k k k k k k
k+1 k+1 k+1
Ut = Y QUL = )@y (Z 8! )Um) =3B agig | =X B as.

j=1 j=1 i=1 i=1 j=1 i=1
From the above and the independence of the entries of a,

k
P {rank(v,ve,..., v, a) =k} SP{Z/BZ-(T)CLZ' :ar,r:k+1,...,m}

i=1

k
E{P{Zﬁy)ai:ar,r:k—l—l,...,m|al,...jak}}
=1

k m—1
E{P{Zﬁgm)ai = G | al,...,ak} H P{Zﬁi(l)ai = q | al,...,ak}}
i=1 I=k+1 =1
k
§E{§mk1P{Z,8i(m)ai = ap | al,...,ak}}

i=1

k
= gmikil]P) {Z/Bz(m)a’b = am}
=1

é Clgm—ks—l/Q’
the last line being due to Theorem 11 and expression (3.20). O
Proof of Theorem 13.a. Let o € (0,1) and 8 > 0 be as in expression (4.5) and let ng = [an].

Let B be the ng x n matrix whose columns are the first ng columns of G,,.

From lemma 14 we can assume that B has full rank. Since

P{rank(G,) = n} = P{rank(G,) = n, sr(B) < fn} + P{rank(G),) = n, sr.(B) > fn},



46 CHAPTER 4. GINIBRE AND WIGNER MATRICES

by lemma 15 and remark 1, we have

P{rank(G,,) = H <1 — C1(Bn) 1/2§i> >1- 101 (Bn)~1/2,

— <
which proves Theorem 13.a. g

We now turn to Theorem 13. A natural question is to understand what happens when ¢, — 1.
The following proposition says something about this situation.

Proposition 2 (x). For any sequence {s, € [0,1] : n > 1} there is a sequence {Gn,, = (& j)1<ij<mn }
such that:

o G, 18 a my X my, Ginibre matriz
e &, 1 <1,5 <my, have the same distribution F,,
o ¢, is the mazimum jump of Fy,,

o P{G,,, has full rank } -1 n — oo

Proof. Let Fi be a distribution function whose biggest jump is ¢;. We take m,, = 1 and §; = ¢1/2,
then P{G,,, has full rank } > 1—6;. Now, let F}, be a distribution function whose biggest jump is
Gn. By Lemma 2 in [40], there is m,, > my,_1 and J,, < 1/n < for n > 1 such that

P{G,,, has full rank } > 1 — 4y,

where the entries of G,,, have the same distribution and §,, — 0 as n — oo. O

In the following examples we can see that if ¢, — 1 at some appropiate rate, the probability of
a singularity can behave differently.

We write GB(n,p) (WB(n,p)) for a n x n Ginibre (Wigner) matrix whose entries obey a
Bernoulli distribution on {0, 1} with parameter p.

Let ZGB,, (ZW By,) be the event that the first row of GB(n,1/n), (WB(n,1/n)) contains only
zeros. Then

P{ZGB,} = (1—71)”, P{ZWB,} = <1— ;)n

and hence
el < li_>m P {rank (GB (n,1/n)) < n},

el < ILm P {rank (WB (n,1/n)) <n}.
However, if a € (0,1), then there is a constant C, > 0
P {rank (W B (n,n%/n)) < n} < n~ %, (4.6)

In the Ginibre case it is not clear what happens when ¢, = n®/n, but if v € (0,1), then

P{rank (GB (n,n%/n)) > yn} — 1 as n — oo. (4.7)

4.4 Proofs in the Wigner case

Following the terminology introduced in Costello, Tao and Vu [11], given n vectors {v1,...,v,}, a
linear combination of the v]s is a vector v = Z?Zl c;v;, where the ¢; are real numbers. We say that
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a linear combination vanishes if v is the zero vector. A vanishing linear combination has degree k
if exactly k among the ¢; are nonzero.

A singular n x n matrix is called normal if its row vectors do not admit a non-trivial vanishing
linear combination with degree less than n'=¢ for a given ¢ € (0,1). Otherwise it is said that
the matrix is abnormal. Furthermore, a row of an n X n non-singular matrix is called good if its
exclusion leads to an (n — 1) x n matrix whose column vectors admit a non-trivial vanishing linear
combination with degree at least n!=¢ (in fact, there is exactly one such combination, up to scaling,
as the rank of this (n — 1) X n matrix is n —1). A row is said to be bad otherwise. Finally, an n x n
non-singular matrix A is perfect if every row in A is good. If a non-singular matrix is not perfect,
it is called imperfect.

For the proof of Theorem 13.b, we first present three lemmas which generalize results in [11]
for Wigner matrices W,, = (§;;) with independent entries which need not be identically distributed
and the appropriate estimates in these new cases are found in terms of the size of the biggest jump
of the distribution functions governing the entries under the hypothesis A (i) < ¢ < 1. We also
obtain a better rate of convergence, which is universal. The proofs we give follow ideas in [11] but
also take into account the size of the biggest jump.

Lemma 16. Let € € (0,1), then for all n large
P{W,, is singular and abnormal} < (=792 (4.8)

and
P {W,, is non-singular and imperfect} < Gn=nT/2, (4.9)

Proof. If W, is singular and abnormal the row vectors of W,, admit a non-trivial vanishing
linear combination with degree at most N :=n'=¢. Fori =1,..., N, we have that if i = 1, there is
a row of W, that contains only zeros, and if ¢ > 1, the ith row is a linear combination of the first
i — 1 rows of W,, that are linearly independent. We denote by D(n,i) this last event and by T;_;
the upper triangular part of W,, until the row i — 1 (included). The linear dependence of the ith
row of W, with the ¢ — 1 rows of W), is determined only by its last n — i 4+ 1 entries. Then by the
stochastic independence of T;_1 with the last n — ¢ + 1 entries of the row i

P {W, is singular and abnormal} < f: (?)]P’{D(n,i)} < é (?)E{P{D(n, i) Ti-1}}

=1

N
< ZnNgn—NH — NpN=N+L
i=1

and for all n large,

P {W, is singular and abnormal} < cin=n!=%) < 3(n—nl=)

Now, we consider the case when W, is non-singular and imperfect. We can suppose that the
last row of W), is the bad row. The (n — 1) X n-matrix obtained has rank n — 1, hence there is a
unique column that admits a non-trivial vanishing linear combination with degree at most n'=¢.
Then the last n — k — 1 entries of this column are completely determined by its k first entries and
k linearly independent columns, for 1 < k < n'~¢. Since we can choose this bad row, we have as
above for n large

P {W,, is non-singular and imperfect} < ng%(”_l_("_l)lfs) < g%(”—"lfs),
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O

Lemma 17. Let A be a deterministic n X n singular normal matriz. Then

Proof. Since r := rank(A) < n, without loss of generality it is possible to suppose that the first
r rows of A are linearly independent. If vy, ..., v, are the first rows of A, then v, = Y., a;v;, and
as A is normal, the number of coefficients in this linear combination is at least n' . If it does not
hold that &, = 2221 &, where & are entries of the last column of W, 11, by symmetry of W,
we have rank(W, 1) = rank(A) + 2. Hence

P {rank(W,,4+1) —rank(W,,) < 2|W,, = A} <P {fn = Zaié}}

i=1

o [— s
c nl—e(1—q)3 )"

The last expression follows from expression (3.20). O

Lemma 18. Let A be a deterministic n X n non-singular perfect symmetric matriz. Then

1/2
s
nl—s(l _ §)3

Proof. If rank(W,,41) = n, then det(W,,+1) = 0, and we have

P{rank(Wy41) =n|W, = A} = O;

0= det(WnH) == (det A)€n+1 + Z Z Cijgigja

i=1 j=1

where ; are entries of the last column of W, ; and its transpose, and the ¢;; are the cofactors
of A. Since A is perfect, when we eliminate the ith row of A, the columns of the matrix thus
obtained admit a vanishing linear combination of degree at least n'~¢. When the column j is
selected, where j is the index of a non-zero coefficient in this linear combination, we obtain an
(n — 1) x (n — 1) non-singular matrix since there are at least n'~¢ indices i such that there are at
least n'~¢ indices j with ¢;; # 0. Taking the partition of {1,2,...,n} as S; = {1,2,...,|n/2]}
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and S2 ={1,2,...,n} — 51, by expression (3.21)

detA §n+1 + Z Z Czjgzgj }

i=1 j=1

P{rank(Wyp41) =n|W, = A} <P

=1 j=1

O&( nlsm)]m))
og<

Now we consider the discrete stochastic process

B 0 if rank(W,,) = n
" (g_l/s)n—rank(wn) if rank(W,,) < n,

=E

( { (det A)&pt1 + chwfzfj 0 fn+1})

1/2
nl—a(l _ §)3] ) .

for which we can prove the following result.

Proposition 3.

Proof. For j =0,...,n, write A; = {rank(W,,) =n —j} and let 1 +y = ¢~ /8. We have

E(Xp) =Y (1+7)/P{4;}
j=1
= Z(l + ) P {A;, W,, normal} + Sy,
j=1

where
n

S, = Z(l + )P {A;, W, abnormal} .
j=1
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By lemma 16,

n
Sy <Y (1)t
j=1

n
<Y (14
j=1

| GO S
— 1— §71/8
= C<(3n74n1_5)/8
for some constant C' > 0.
So .
E(X,) = Z(l +79) P {A;, W,, normal} + O, <§(3n_4"175)/8) . (4.10)

J=1

On the other hand,
E(Xp41) = S2+ 534+ Sy + S5,

where

Sy = E (Xp+1| Ao, W, perfect) P{ Ay, W,, perfect}
S3 = E(Xp41 | Ao, W, imperfect ) P { Ay, W,, imperfect}

Sy = ZE (Xn+1]4;, W, normal ) P{A;, W, normal}
j=1

Ss = ZE (Xn+1]A;, W, abnormal) P {A;, W,, abnormal} .
j=1

By lemma 18 and the fact that rank(W,,) = n,

Sy < (VB I PLrank(W,, 1) = n|W,, is perfect and non-singular }

1/2
s
nlfs(l _ §)3

On the other hand, lemma 16 and the definition of X,, 1 give

=0,

Sy < ((1/s)n+1§(nfn1*€)/2 — 0. (g(3n74n1*5)/8> _
Using again lemma 16 and the definition of A;,

S5 < Z(g—l/S)j-i-lg(n—nl*E)/Q — 0. (C(sn—zml*a)/s) _
j=1

If rank(W,,) = n — j, then rank(W,,41) is equal to n — j + 2 or n — j since Wj,41 is a symmetric
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matrix. By lemma 17 and for n sufficiently large,

E (Xpt1|Aj, W, normal) = (1 4 ) T P{rank(W,,11) = rank(W,,) |W,, normal and singular }

+ (1 47)y
= (1+~) ((1 +9)" + 0, (nlle — g)3)>
<a(l+q)

for some o < 1.
Then we have

E(Xnt1) =« Z(l +7)/P{A;, W,, normal} + O (f(s,n)),
j=1

where

Sn—
L

lnl—s 1/2
S 2 S
f(s,n) = a9 + [ n1_5(1—§)3] .

Using the expression (4.10)

E(Xn+1) < aE(X,) + O: (f(s,n)),

SO

E(Xn+1) < a"E(X1) + Oc (f(s,n)) -
This proves the proposition.

O
Proof of Theorem 13.b. By Markov’s inequality,
P {rank(W,,) <n} =P{X,, > 1}
<E(Xn)
1/2
=0 S T (4.11)
€ nl=s(1 —¢)3 ’ )

where we have used proposition 3.
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Chapter 5

Circulant Random Matrices

5.1 Introduction

This chapter is about our research in the analysis of the minimum singular value s,(C,) of a
circulant random matrix C,,.

In Section 5.2 we give the main contributions to the question of the singularity of a circulant
random matrix, and a new result of independent interest in the theory of random polynomials.
Theorem 14 shows that when the first row of C,, has independent and identically distributed random
variable entries with moment generating function and zero mean, we have s,(C,) > en~1/2 with
high probability, for any £ > 0. A classic result in random polynomial theory says that the roots of a
random polynomial become concentrated near the unit circle as the degree of the polynomial goes to
infinity, with probability one [4]. Theorem 15 determines the speed of the movement of the roots of
a random polynomial towards the unit circle. The proof of Theorem 14 is then a direct application
of Theorem 15, whose proof follows ideas in [42]. Theorem 16 states that when a circulant random
matrix has prime dimension and its entries are allowed to have general distribution (no moment
assumptios), it is invertible with high probability. The proof of this result uses some properties of
the concentration of a linear combination of Rademacher random variables mentioned in [51].

In Sections 5.3, 5.4, and 5.5, we give the proofs of the above three theorems in this chapter.
Section 5.6 presents additional contributions. Theorem 19 gives an upper bound for the expecta-
tion of the maximum singular value of a circulant random matrix whose entries are sub-Gaussian
random variables not necessarily indenpendent. Corollary 1 gives some additional results about the
minimum singular value of g-circulant matrices, which are a generalization of circulant matrices.
Finally, using a result on random polynomials whose coefficients are independent but not identically
distributed random variables, we establish a condition for the singular value of a circulant random
matrix to be large.

In a personal communication from S. V. Koyagin, I was told that he and his student, A. G.
Karapetyan, did not continue to work on the minimum value of a random polynomial near the unit
circle, and he encouraged me to study in detail the case of sub-Gaussian variables.

The main results in this chapter are collected in the coauthored with Gerardo Barrera in
manuscript [3].

53
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5.2 Singularity of a circulant random matrix

An n x n circulant matrix circ(co, ..., c,—1) has the form
Co Cl1 -+ Cp—2 Cp-—1
Ch—1 Co ' Cp—-3 Cp-2
circ(eg, ..., cp_1) == . — . . ,
C1 C2 . Co
where c¢g,...,cp—1 € C. It is well known that any circulant matrix can be diagonalized in C as
follows: Let w, := exp (z%’r), i? = —1, and
11 1 1 1
1 wy w2 wr—t
F, = I w? wi Wi
1 wZ,1 wi(n—l) w7(ln—1)(n—1)

The matrix F,, is called the Fourier matriz of order n. Note that F, is a unitary matrix. By a
straightforward computation, one can readily verify that

circ(cg, . . ., en—1) = F,diag (Gn(l), Gr(wp), ..., Gn(wﬁfl)) F,,
where G, is the polynomial given by

Gn(z) =co+crz+--+ Cno12" L.

We have that the eigenvalues of circ(co, . ..,c,—1) are Gp(1),Gp(wy), . .., Gp(wl™1), or equiva-
lently
= 2rkj
deﬁ)z%qexp(i - > k=0,...,n—1 (5.1)
]:

Now, we consider an n X n random circulant matrix C, with independent entries, i.e., C, :=
circ(&o, - - - ,&n—1), where &, ...,&,—1 are independent random variables.

The maximum and minimum singular values of a circulant matrix C,, are given by

51(Ca) = | max Gn(eoh)
and
$n(Ca) = min_ \Gn(w,’g) .
If &, ..., &,—1 have continuous distribution, then

P (C, is singular) = 0

since P (Gn(w,]fb) = 0) =0 for all k. If &,...,&,—1 have discrete distribution, estimate the proba-
bility that C,, is singular is not easy.
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Note
min  |Gp(2)] < sn(Cr). (5.2)
z€C:|z]=1
It is clear that w” satisfies |w?| =1 for every k = 0,...,n — 1. So, if G}, does not have any root in

T :={z € C: |z| = 1}, we have that C, is a non-singular matrix.

In [27], it was shown that if G, (z) = Z?:_& ¢;27 is a random polynomial with (real or complex)
i.i.d. coefficients, its roots are asymptotically concentrated around T as n — oo almost surely.
Moreover, it was also proved that the condition E (log(1 + |£p|)) < oo is necessary and sufficient for
the roots of GG, to be asymptotically near the unit circle. If Zp j» J =0,...,n— 1 are the roots of
G, we have for all e > 0

03{22}1_1 2= wﬁ‘ <e asm— 00 a.s.

The left—hand side of (5.2) was studied in [32], [34], [41] and [42]. In [42], it was shown that if
G, has i.i.d. Rademacher or standard normal random coefficients, then for all ¢ > 0 and large n,
we have with high probability

min |G, (2)] > en” Y2,
z€C:|z|=1

In [32] and [34] the sub-Gaussian case was studied, but there was no proof. Even so, we give a
generalization of the main result in [42], which includes the sub-Gaussian case.

Theorem 15 is itself an interesting result about random polynomials because it provides a fine
estimate of the distance between the roots of GG), and the unit circle. Many results on random
polynomials are about the location of their roots via the convergence of the empirical distribution
of the roots of G,,.

The main results in this chapter are the following:

Theorem 14 (x Minimum singular value of a circulant random matrix). Let & be a random variable
with moment generating function such that E(§) = 0 and E (§2) = 02 > 0. Let {&i}is0 be a

sequence of independent random variables with & 2 ¢ for every k > 0. Let C,, := circ(&p,...,&n—1)
be an n x n circulant matrixz. Then for all € > 0 and for all large n,

P(sn(Cn) > en %) > 1 - Ce,
where C is a constant depending on &.

Theorem 15 (x Roots of a random polynomial). Let £ be a random variable with moment gener-
ating function such that E(§) =0 and E (52) =02 > 0. Let {& k>0 be a sequence of independent

random variables with & 2 & for every k > 0. Let ¢ : [0,1] — R be a non-zero Hélder continuous
function of order ¢ € (1/2,1]. Then for any e > 0,

n—00 2€C:||z|—1|<en—2

n—1
limsup P min Z@-q&(j/n)zj <en V2| < Ce,
§=0

where C' is a constant depending on ¢ and &.

The following result considers only the non-singularity of C,,, when its size is a prime number.
This result is interesting because it considers a more general kind of random variables.
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Theorem 16 (x). Let X = {X}i>0 be a sequence of i.i.d. Rademacher random variables. Let
Y = {Yi}r>0 be a set of independent random variables which are independent of those in X. We
define & == Xy + Yy for k> 0. If n is prime, then

P(cire(& . . ., En_1) is singular) = O(n~?),
where the constant implicit in O is independent of the random variables in Y.

Remark. Throughout the proofs, absolute constants will be always denoted by C. So its
particular value can be different in different instances.

5.3 Minimum singular value of a circulant random matrix

Proof of Theorem 14. If we take the Holder function as ¢ = 1 in Theorem 15, we have

lim inf P ( min |Gn(2)] > 5n1/2> >1-Ce.

n—00 z2€C:||z|—1|<en—2

Then, there is N := N(Ce) € N such that for all n > N

1-2Ce < P ( min |G (2)| > En_1/2>

2€C:||z|—1|<en—2

. M\ > en—1/2)
P (i 1G] > en

5.4 Roots of a random polynomial

Proof of Theorem 15. The proof is based on [42]. We assume that ¢ € (1/2,1/2 + 1/20) and
e 6(2) = 6(s)]
— P(s
s := max |¢(t)|+ sup ——" =
[19lle 0<t<1 l6(0) 0§t<1;)§1 [t — sl

and we write

n—1
To(w) =Y &0 (j/n)e ", we0,2n].
j=0

Let
h
{yg}g1—{27rk:1§k§A,0§h§k—1,(k,h)—l},

where A and B are constants depending only on ¢ and where A is as specified in [42]. Fix ¢ > 0

and split T = [0, 27] into non-overlapping intervals I, of lengths between %zsrf2 and en~2.

The intervals Jg = [yg — 2~ 1+s/20, yg + 27rn_1+§/20], B8=1,2,..., B, will be called bad. We
define I, to be good provided I, ¢ ngng. For any such I, fix 24 € I\ ngljg. Write

N = {zEC:Hz|—1|<€n72},
g

{||Tg||oo < Con® 108" 2(n), sup |G(2)] < n13/4} |
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where Cj is a sufficiently large constant. For any interval I C T, we write £(I) := {® : x € I}.
Let D(zo,p) :={z € C: |z — 20| < p}. Now, we have

P <£gij\f}!Gn(Z)| < 6n_1/2> < %:IP’ (ZeD(eggigm_Q) G(2)] < en‘1/2,9>
+Pon +P(G),

where

€N 2/|21€E(Jp)

B
Pon = ZIP’ ( min 1G(z)| < en™ /2, Q) :
p=1

To avoid the loss of a logarithmic factor, we shall use the Taylor polynomials of T}, of order two
around e**« to estimate the sum over «. If the event G occurs, then

Gn(2) = T(za) — (2 — €™ )ie "™ T, (xq) + O(€2n_3/2) for all z € D(ema’%”%),
Hence, if |Gy (2)| < en™1/2 for some z € D(ei®2n™%) then
T (za) — (2 — eixa)ie_ixaTr’L(xa)‘ < %en~1/2

for large n. Consequently, if also | Ty, (z4)| > 4en™2|T" (z4)|, then |T},(z4)| < 4en~/2. We conclude
that for each I,

P( Ly [Ga(a)] < en2.G) < Pr ot Pa 65:3)
z€D(et*a 2en—2)
where
Pinm = P (|Tn(:1:a)] < 45n_1/2> ,
Pon = P (]T(ma)\ < den?|T) (za) . || T oo < Con®? 1og1/2(n)) :

We show that Py, + Papn = O(e?n72) as n — oo. Since the number of good intervals does not
exceed 4me~1n?, this will imply that the sum over a in (5.3) is O(g) as n — oco. Also, we shall
establish that the sum over the bad intervals in (5.3) is o(1) as n — oco. The proof will be complete
provided lim,,—, P(G¢) = 0. Note that

P(G°) < P3n + Pan,
where

Py, = P (HTr/LHoo > Con3/2 logl/Q(n)> ,

Pin = P (sup |G (2)| > n13/4> :

zeN
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Pyn=o0(1) as n — oo
By the Markov inequality,

n—1

j—2
P (sup G > n%t) < P (- vlglietnl (14 5) =0
ZE

j=0

n—1
< Y E(IE]) e
7=0

< Cn~1/4,

Pon =o0(1) as n — oo

The proof of this statement is the same as that provided by Lemma 3.3 in [42]. The auxiliary
Lemma 3.2 in [42] should be taken with the mean covariance matrix of T;,(x) multiplied by E (£2).
Then

sup P min Gn(2)| < €n1/2,g> —o(1).
15523 <Z€N7z/|2€5(JB)’ ( )| ( )

Psn=o0(1) as n — o0

In order to adapt the classical Salem—Zygmund Theorem to estimate P3,, we show that if £ is a
random variable with moment generating function (mgf) and E () = 0, then the mgf of £ has a
similar behavior around the origin to that of a sub-Gaussian random variable. Recall, a real-valued
random variable £ is said to be sub-Gaussian if there is some b > 0 such that for every t € R

E (etg) < "*/2,
When this condition is satisfied for a particular value of b > 0, we say that £ is b-sub-Gaussian, or

sub-Gaussian with parameter b'.

Lemma 19 (*x Locally sub-Gaussian). If £ is a random variable with moment generating function
M such that E(§) =0, E (§2) = 0% > 0, then there is a 0

Me(t) < /2 for |t| <6,

where y > 0.

Proof. Define g(t) := 7’/2 for t € R. Then g(0) = 1, ¢’(0) = 0, ¢"(0) = . Let h(t) := g(t)— M¢(t)
for all ¢ € I¢, where I is the neighborhood of definition of M. Since h”(0) = v — % > 0, there
exists 0 > 0 such that h”(¢) > 0 for every |t| < d. As h'(0) = 0, and therefore it is non-negative for
|t] < 6, it follows that h(t) > 0 for every [t| < 6. O

Lemma 20 (x Salem-Zygmund). Let {£}r>0 be a sequence of independent and identically dis-
tributed random variables with moment generating function M, such that E (§y) =0 and E (58) =

For more details, see Appendix A.
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o? > 0'.. Let Wy(z) = Z;:ol & fi(x) be a random trigonometric polynomial where f;j(x) =
¢(j/n)e”, and ¢ is as in Theorem 15. Then for all large n,

8m

P (IWalloe = Co (ralog(n))/?) < =3

n

forry = Z?;ol | fill% and some absolute constant Cy > 0.

Proof. By Lemma 19, there exists a § > 0 such that
Mg, (t) < /2 for |t <,
where v > o2,

At first, we suppose that the f; are real (we consider only the real part or the imaginary part)
and we write My, := ||[W,]||sc. Since || fj|loc < 1 for every j =0,...,n — 1 then

n—1 n—1 n—1

/2 > H Bl @22 5 H B <etgjfj(x)> _E H Jtafi@ | — g (eth(a:)>
j=0 j=0 =0

for every |t| < §. There exists an interval I (in T) of length 1/p,, with p, = 27n?, where |W,,(z)| >

2[Walloo (see Proposition 5 of chapter 5 in [30]). So, Wy(z) > M,/2 or —W,(z) > M,/2 on I.
Then for every [¢| < 4,

E (etMn/2> < pE </ <€th(x) _’_efth(z)) ,u(dx))
I
< pE (/ (eth(x) +e—th(x)> ,u(dx))
T
< 2pn6’)/t2Tn/2’

where p is the normalized Lebesgue measure in T.

From the above inequality, we obtain

2 1
E <eXp {; <Mn — e = 3 log (2pnk‘)> }) <z

for any k£ > 0 and |¢| < §. Hence

2 1
P (Mn > trn + 5 log (2pnk)> <z

1/2
1 nk : 1 nk
7Og£/2rf; )’ < 8%, By choosing t, = (7Og(2p )) we

for any £ > 0 and |t| < . For all large n, rn

obtain

—_

P (M > 3 (ymlog (2puk)) <
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for any k£ > 0. Since f; = Re(f;) + iIm(f;), for all large n we have

1/2
n—1 ) 1
P | |IReWalloo > 3 {7 [Ref;|I% log (20nk) <
§=0
1/2
n—1 1
P [ [ImW,||s >3 Imf;||% log (2pnk < -
ol > 3 { 73 s . o 2o < 3
for any k > 0. Lastly, as p, = 27n? and taking k = g, we have
B (IIWallse 2 Co (ralog(m)"/?) < 5
for large n, where Cy > 0 is a suitable constant. O

As fj(z) = é(j/n)e® j=0,...,n, we have

n—1 n—1 1
ra =3 NIFI2 = S 166 /)2~ n / 6% () dx
=0 =0 0

for all large n. Using Lemma 20 and the Bernstein inequality (page 153 in [55]), we have

P (|72l > Con®? 102 ()) < P ([Tl > Con!/?log!2(m) < .

where Cy > 0 is an absolute constant.

Pin=0(en"?) as n — oo

For a random variable £ to have a moment generating function it is necessary and sufficient that it
have exponential decay.

Lemma 21. The following statements are equivalent.

1. There exist positive constants b and ¢ such that

P(|¢] > x) <be™**  for all z > 0.

2. There exists a constant H > 0 such that

E (et‘5> < oo for|t| < H.
Proof. See Section 7 in [43]. O

The proof of Py, = O(en™2) as n — oo is the same as that provided by Lemma 4.1 in [42]. The
auxiliary Lemma 4.2 should be considered that the characteristic function f,(s) of %T(ma) is

n—1

fo(s) = ] E (cos (n&45))

J=0
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where s = (51, s2) € R? and

11
T /n
this is possible because we want to estimate the value of |f,|, hence we can suppose that §; is a
symmetric random variable.

From Lemma 4.3 in [42], we have that there is J C {0, 1,...,n—1} such that sup,¢ 7 [¢;| < 3n~"

(7 := (¢ —1/2)/10 where ¢ is the constant in Theorem 15). Thus, for large n and by Lemma 21,
we have

¥j (3/n) (s1cos(jza) + s2sin(jza)) ,

[fa(2)l < T E(lcos (miy)l)
jeg
< J]E (lCOS (&m3)] Lje;1<nr 3 + [cos (§5m95)] 1|gj\znf/3>
jeg
< TTE(( - Liicurss + Lig o)
JjeT
= ] (= 0B (€34<0rs5)) + P (1] = n7/3))
jer
E (&2 en
m-)
JjeT
1 o (€7)
< J];[7<1+n> (1—¢j 5
<

e[ (1—%21@(252)).

JjeT

So, we obtain
sup |fa(s)] <exp{-n"},
nl/0<|s|<nl+T
which is an important part of the proof of Lemma 4.1 in [42].
Lastly, we have

sup P (]T(xa)\ < sn_1/2> < Ce*n2,

Py, = O0(en™?) as n — oo

The proof of this statement is similar to that given in Lemma 5.2 in [42]. In the auxiliary Lemma
5.1, the covariance matrix of

1 .
S (1) T (o) fim)
should be multiplied by E (52). Using the ideas given in subsection 5.4 of the present thesis, we
have

sup P <|T(:Ua)] < den T (20)], |7 |oo < Con®/? 1og1/2(n)) < Ce?n 2.
(e}
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O

5.5 Singularity of a circulant random matrix with prime dimen-
sion

Proof of Theorem 16. First, we determine the cardinality of {cos (27rk%) 1 j=0,...,n— 1}.

Lemma 22 (x). If n is prime, then

’{am(%%i) :ijV.wn—l}'ELZJ—l,

foreveryk=1,....,.n—1.

Proof. Fix k € {1,...,n—1}. We consider the function cos(2wkz) defined on [0,1]. Let y € [0, 1].
Then

A:={y,1-y}u {T]Z:ty}ill

is the set all possible values in [0, 1] that are equal to cos(27ky).
For j € {0,1,...,n—1}, we take y = j/n. We need to check that thereis a j' € {0,1,...,n—1}
such that
g _m

n o n k
for m € {1,...,k — 1}. If we suppose that this happens, we have

k

s ./: )
m(ﬂ[]) n

If m divides k, we have a contradiction. Hence, 7 F 7/ = am for some integer «, so kae = n. But,
since k > 1 implies that o < n, we have again a contradiction.
Note cos(2mkz) =0 only at z =m/k for 1 <m <k —1. So j/n =m/k, or

k.
n=—j
m

and using an argument similar to those before, we have cos (27kj/n) # 0. Therefore, we obtain
the result. 0

The next lemma shows how a sum of Rademacher random variables can take particular values
[51].

Lemma 23. Let {a;}]_; be a set of distinct real numbers different from zero. If {&}p_, are
independent and identically distributed Rademacher random variables, then

sup P <Z aré = m) = 0(n=%/?).

z€R k=1

O

Now, we can give an upper bound for the probability that a circulant matrix is singular under
the hypothesis its dimension is a prime number.
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From (5.1), we have that the event {circ(...,&,—1) is singular} is equivalent to
n—1

{H |Gr(wy)| = 0} :
k=0

Note |G, (wk)| = 0 implies that Zz;é &, cos(2mkj/n) = 0. Hence

n—1 n—1 n—1
P(circ(&o - - ., &n—1) is singular) <P ij =0+ ZIF’ <Z &k cos(2mkj/n) =0

J=0

From Lemma 22 and Lemma 23, we have for k # 1

n—1 .
P (Z €5 cos (%ki) - 0)
k=0

IN

n—1
P (Z X}, cos

k=0

E

k=0
E [0(n=*/2)]
O(n~?/?),

k=1

()3

n—1 .
P (Z X} cos (27rk:i> =5

k=0

wa"ayh—l)

) |

where S := — Zz;é T cos(2mkj/n). By the properties of the Lévy concentration function (pages

22 and 68 in [54]), we have

n—1
P|Y &=0]=0n"?.
j=0

Therefore,

P(circe(&p . . ., €n1) is singular) = O(n~'/?).

5.6 Some additional results on circulant random matrices

A g-circulant matrix Cj is an n X n matrix with the following form

€0

Cn—g

C1

Cn—g+1

Cn—2g9 Cn—2g+1

Cg

Cg+1

Cn—1
Cn—g—1
Cn—2g—1

Cg—1

where g is a positive integer and each of the subscripts is understood to be reduced modulo n. The
first row of Cj is (co,c1,--.,cn—1) and its (j + 1)th row is obtained by giving the jth row a right

circular shift by g positions. Note that g =1 or ¢ = n + 1 yields the classical circulant matrix.
A g-circulant matrix Cj, with first row (co,c1, ..

.,¢n—1) can be factored as Cj = O5Cp, where

Q7 is a g-circulant matrix with the first row e* = (1,0,...,0) and C, is a circulant matrix whose
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first row is (cg, c1, - - -, cn—1). The matrix Of is an unitary matrix if and only if n and g are co-prime
integers [76]. From Theorem 14, we get the following corollary.

Corollary 1 (%). Let {&}r>0 be a sequence of random variables as in Theorem 14. Let C5, be a
g—circulant random matriz, whose first row is (o, ...,{n—1). Then for all e > 0 and for all large n
such that n and g are co-prime, we have

P(sn(C9) > en™Y?) > 1 - Ce,

where C' is a constant depending on the distribution of &p.

0

Now, we present some results about the maximum singular value of a circulant random matrix
when its entries are complex random variables. We can establish exact distributions for s;(C,) and
5n(Cp). Write X! = (&,...,&n—1). Then /nF, X, is the vector of eigenvalues of C,, where F}, is
the Fourier matrix of order n. Since F), is a unitary matrix, if we suppose that X,, is a complex
random vector such that (Re(X),Im(X)) € R?" has a spherical distribution (chapter 2 in [19]),
and we establish the distribution of s;(C,) and s,(Cy).

Theorem 17 (). Let X! = (&,...,én—1) € C" be a complex random vector such that (X)) :=
(Re(X,),Im(X,,)) € R?" has a spherical distribution. Then

FoX, 2 X,

where F,, is the Fourier matriz of order n. Moreover, if all entries of X], are independent random
variables, we have for all x € R

n—1

P (s1(Co) <) = [P (1] < 2/v/n),

=0

n—1
P(5a(Ca) = ) = [ P (1] = 2/v/m).
7=0

Proof. Note F,, is unitary if and only if

o Re(F,) —Im(F),)
" | Im(F,)  Re(Fy)
is orthogonal. Hence, W), := F,,X,, if and only if W] = F, X, where

e |

Since the distribution of X, is spherical and F}, is orthogonal, we have W), 2 X,

W, L X,,. Since \/nF,X L v/nX,, then for the second part of the statement, we only need to
take the modulus of every entry of \/nX,. O

which implies

Theorem 17 is similar to Theorem 7.1 in [53] and Proposition 3 in [49]. However, Theorem

7.1 in [53] assumed F}, to be an orthogonal matrix in order to deduce that F, X, L X,, when X,
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is a normally distributed random vector in R”, which is not possible since F;, X,, is, in general, a
complex vector and X, is a real vector?.

In the following theorems, we study the behavior of s1(C;,) in the case that the entries of C,, are
identically distributed sub-Gaussian random variables.

Theorem 18 (x). Let {{;}j>0 be identically distributed sub-Gaussian random variables with pa-
rameter b. Then for every e >0, 0 > 0, and all n large,

2,0
P (s1(Cp) > en'™?) < exp (—E " > .

4b?

Proof. Note
max Z{ ex <z k) > enlte <7§IP’ nilg- (271]{:) > enlte
o pax | jexp | ij en =2 2 jexp (i en
and

s, 2k 2k €
P 1 1
v Z.ogjeXp(” n) Zentt) < P §:§JCOS< ) > on'te
J:

2rk
+P ngSln( W) >gn1+9

Also, we have that "'~ =0 §J cos ( ]M) and 7'~ =0 5] sin (]m) are sub-Gaussian random variables

with parameter
( 27Tk>
sin

I

21k =
cos <]> ' and by, = bz
n

7=0

n—1
Dre:=bY
§=0

respectively. By sub-Gaussian tail estimation, we have that

n—1
2rk 4o e2n2(1+e)
P ]EO &j cos (j - > > 2n < 2exp Sbic ,

27k 2),2(1+0)
P Z§]SID< T ) > 2n1+9 < 2exp (—82;)2 )
k,s

If £k =0, then bac = b?n? and bg,s = 0. If k£ # 0, we have that

) b2 2 5 b2 2
bkCST and kaST

Therefore, for all large n,

2,20 2.0
P (sl(Cn) > Enlﬂ’) <4nexp (—:22) < exp <—€4:2> .

2The author of this thesis asked to the authors of [53] about this mistake, but as of now, I have not received a
response.
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O

In the next lemma, we determine the behavior of the moment generating functions of |¢| and &2
when £ is a sub-Gaussian random variable. This lemma will be useful for estimating the expectation

of s1(Cp).

Lemma 24. Let £ be a sub-Gaussian random variable with parameter b > 0. Then there is a B > 0
such that fort € R,

E (exp (t£?)) < exp {§2t2 + 1K (§2>} J

b2
Bexp () < exp {5 £+ B () |
Fort >0,
B2
E (exp (t£2)) < exp {2 2 + 2C2b2t} ,

2
E (exp (t€])) < exp {;’ 21 cm} |
where C' is an absolute constant that does not depend on &.

Proof. This follows from the definition of sub-Gaussian random variable. O

Theorem 19 (x). Let {{;};j>0 be identically distributed sub-Gaussian random variables with pa-
rameter b. Then

E (51(Cpn)) <nb (\/nlogn +2+/logn + 20) )
where C' is an absolute constant that does not depend on X.

Proof. Let Ry := Re(Gp(wk)) and 3y, := Im(G,,(wk)). From the proof of Theorem 18, we have

n n
that R and 3y are sub-Gaussian random variables such that their parameters satisfy

bre <bn and bys <bn forall k.

If Zy := |Rg| + |S%|, then by Lemma 24 and the Cauchy—Schwartz inequality, for every A > 0

E (exp{AZ}) VE (exp (2A[R%])) E (exp (2A]3x])

<
< exp {2n2b2)\2 + QCnb)\} .

Then, by the Jensen inequality, for every A > 0,

exp <)\E <kgflx,n Zk)> <E <exp </\ kgflx,n Zk>> =E (kgfm’n e’\Z’“>

E (e)‘Zk> < nexp {2n262)\2 + QCnb)\} .

NE

<

i

1

Taking logarithms of both sides and dividing by A in the previous expression, we have

[ARR)

1
E (kmax Zk> < 222 4 2n%?) + 20,
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The upper bound is minimized for A\ = V\/l%gl : , which yields

yeeey T

IE( max
k=1,...

Zk) < nb (\/nlogn—i- 2\/logn+20) .

Lastly,

B(a(G)) = B gpax | Gu(eh)])

0<k<n—1

< =, (e« o)
< nb<\/nlogn+2\/logn+20).

O

One question arises from the previous discussion. When are the roots of a random polynomial
G, not near the unit circle? This problem was studied in [63], which provides a useful statement
for understanding the minimum singular value of a random circular matrix.

We consider a sequence of random polynomials {Hn(z) = o szk}n>1 whose coefficients

form a sequence of independent real- or complex-valued random variables. The complex-valued
coefficients are of the form &, = X + 1Yy where X} and Y} are real-valued random variables. The
means p; and variances a,% of £ are given by

Pl = X, + Uiy,

and
2 _ 2 2
Op = 0x, T 0y,-

Let 6, n, 8 be arbitrary numbers such that 0 <7 <6 <27 and 0 < § < 1. Let D and R be the
following subsets of the complex plane:

D:={zeC:n<arg(z) <0},

R:={z€C:1-6<|2| <146}

Define N, (D) and Ny (R) to be the number of zeros of H,, contained in D and R, respectively.
In [63], we find the next result.

Lemma 25. Let {{,}n>0 be a sequence of independent random variables with finite means and
standard deviations such that

lim sup {/|px| > lim sup {/oy.
k—o0

k—o0

Then the following equalities hold almost surely:

N, (R*
tim SR _ 1,
nj—r00 n]

. A%AD) 9—ﬂ
lim = ,
. —>00 nj 2
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where . .
R*={z: <limsup \k/\,u,k]) —0 < |zl < (hmsup \k/|uk\> +9
k—o00 k—o00
and Hy; is a subsequence of Hy, which consists of polynomials whose coefficients satisfy

lim "/ |pn,| = limsup /|-
k—roo

n;—>00

O

From Lemma 25 and using the Fundamental Theorem of Algebra, we can construct random
circulant matrices such that their minimum singular value is large, as the following theorem estab-
lishes.

Theorem 20 (%). Let {£,}n>0 be a sequence of independent (real- or complez-) random variables
with finite means and standard deviations such that

R:= lim /|u| > limsup {/oy.
k—o0 k—o0
Then for all 0 < 6 < 1, we have with high probability

1. If0< R<1,
$n(Cp) > (R*1 —J—1"

2. If R>1,
5n(Cp) > (1 —6—-RH",



Chapter 6

Oriented Percolation with Backbend

6.1 Introduction

Oriented percolation with backbend is a generalization of oriented percolation, defined by Durrent
in [18]. In this chapter, we analyze the properties of the backbend model and its similarities and
diferences with unoriented percolation in two dimensions.

Section 6.2 describes the model of backbend percolation; which roughly speaking is similar to
oriented percolation with the diference that the backbend path is allowed to go down until a depth b.
Section 6.3 gives a characterization of the critical probabability p’ of backbend percolation in terms
of the right edge process. Section 6.4 gives the proof that there exists an initial distribution on the
infinite subsets of {...,—4,—2,0} which contain 0, such that the right edge process has stationary
increments. Section 6.5 shows the strict monotonicity of the “slope” of right edge process respect to
depth of backbend percolation. Section 6.6 exhibits that in the sub—critical probability of backbend
model, the probability that a backbend path reaches the level n descreases exponentially fast to
zero. Section 6.7 shows some similarities of backbend model with the unoriented percolation in Z?2,
when the depth of backbend is going to infinity. In our first approach of this situation, we show
that it is possible to construct a backben path such that it can go far away to the right side of zero.
Section 6.8 studies the super—critical probability of backbend percolation with a renormalization
argument. Also, we obtain that the “slope” of right edge process is zero, when the model takes the
critical probability.

The main results in this chapter were obtained in joint work with Roy.

6.2 The model

We consider an undirected graph where £ = {(m,n) € Z* : m + n is even, n > 0} is the set of
vertices and

E={{(m,n),(m+1,n+1)),((m,n),(m—1,n+1));(m,n) € L}

is the set of undirected edges. A path 7w in L is a sequence of finite or infinite distinct vertices
x0, L1, ..., (xg) € L such that (z;,z;41) € € for all i =0,1,..., (k).

The edges are open or closed, independently, with probability p or 1 — p. So, we have the space
({0,1}¢,B,,) where B is the o-algebra generated by cylinder sets and P, is the product measure
with marginals P,(w(e) =1) =p=1—-Py(w(e) =0) for all e € £.

For 0 < b < oo, a b-backbend path 7’ in £ is a finite or infinite path zg,x1,... such that
(x5)2 > (x;)2 — b for all 0 <1 < j, where (2)2 denotes the second coordinate of the point z € L.

69
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Ly, 0 I57s

Figure 6.1: Ly and Ry

We call a path m = xg, x1, ... open if all the edges (x;, z;+1) comprising the path are open. For
z,y € L we use the notation z—y to mean that the point x is connected to y through some open
b-backbend path 7°.

We denote by C? the random set of vertices x € £ that are connected to the origin through
some open b-backbend path, i.e., C? = { € £:(0,0)—=z}. For 0 < b < oo, the critical probability
p? is defined as p? = sup{p : P,(|C°®| = o) = 0}.

We define the following random variables:

o up :=sup{z: (y,0) — (z,b) for some y < 0},

o 77870 :=0 and fg,n :=sup{x — up : (y,b) = (z,n +b) for some y < up} for n >0,

o 7 :=sup{r — F&m s (y,m+b) = (x,n+b) for some y < f&m} for 1 <m <n.

m,n

The above definitions are meaningful only if u, < co a.s.; the following proposition shows this.
Proposition 4 (*). For allb >0, up < 00 a.s.
Proof. For a non-negative, even integer k let us define the path L; by

Ly =(—k,0),(-k—-1,1),(—k,2),(—k — 1,3),...,(—k,2b)

and the path Rj by
Ry = (k,0),(k+1,1),(k,2), (k+1,3),...,(k,20b),

see Figure 6.1. We further define the random variables K, Kr by
Kj, = max{k : L is an open path}

and
Kpr = min{k : Ry is a closed path}.

The probability that the path Ly is an open path is 7; = p?®, and that the path Ry, is a closed
path is v, = (1 — p)?*. By definition of K and K we have

]ub\ < Kr—Ky.
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Since Kp and Kj, are geometric random variables with E(Kr) = 2(1 —.)/v, and E(KL) =
—2(1 — )/, we have u, < oo a.s. O

6.3 A characterization of the critical probability p°

We prove the following properties of the process {f{‘nm 10 <m < n}lp>o.

Claim 1 (*). For the process {ffmn 10 <m < n}lp>o

1.

F(b]m < F&m + an’n for all 0 <m <n.

2. {f?nfl)kmk :n > 1} is stationary for all k.
3. The distribution of {Fﬁun”k : k> 0} does not depend on m.
4- E(I74]) < oo.
5. The process is ergodic.
Proof.
1. By definition of u; we have 778’0 = 0. Since any b-path that starts from the line y = b and

b =b

reaches the line y = n + b must cross the line y = m + b, we have g ,, — F&m < Ty OF

=b =b =b
TO,n < TO,m + Tm,n'

. Let E. 4 be the set of edges that lie between the levels ¢ and d, i.e., E. 4 := {(z,y) € £ :c <

()2, (y)2 < d}. Further, let k € N be fixed and z1,z9,...,2; € R. Note that the probability
of the event {f&k < ml,f%% < $2""77?t—1)k:,tk < z;} depends only on what happens in
Ey t1+p- Since

D
Eo kb = Ei kbt

for all [ € N, we have

b b b b
Podrok <21, To—nyeae < ek = PolTi gane <0 Tp— 1 (e < -
.Let 0< 1y <y <...<l; betintegers and x1,...,z: € R. As before, the probability of the
event

b b
{rm7m+ll <1 Tmal, < x}

depends only on the configuration of edges in E,,_p 41,45 Since
D
En—bmtti+o = Emt1—bm+1+1+b5
we have
P, {7 <z I < x} =P {7 <z i < Xt}
PU mm+4l Ly Pmom+ly tf — IpUm41,m+1+1 Ly Pl m4-14+1, ty-

Let K;, and K be as in the proof of Proposition 4. For any non-negative, even integer k, let
us define the path L; by

Ly = (—k,0),(=k—1,1),(=k,2),(=k—1,3),...,(—k— 1,20+ 1)
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and the path Ry as
Ry = (k,0),(k+1,1),(k,2),(k+1,3),...,(k+ 1,20+ 1).
We further define the random variables K, Kr by
Kj = max{k : Ly is an open path}

and
Kpr = min{k : Ly, is a closed path}.

The probability that the path Lj is an open path is 7, = p?*! and that the path Ry, is a
closed path is 7, = (1 — p)?**1. By definition of K7 and K we have

|78,1‘ < Kp-—Kj,.

Since K and K, are geometric random variable with E(Kr) = 2(1 — )/ and E(K) =
—2(1 = %) /v, we have
2(1 =) 201 =)

E(|rgal) < E(KR) —E(Ky) = N T =
.

for p € (0,1).

5. Let us consider the process {r? k(nt1) S 2 1} for fixed k. Let A be an invariant set, i.e.,
there is a B € B such that for every m > 1

A= {<fllim,k(m+1)7772(m+1),k(m+2)7 ...) € B},

Clearly A € 0(Ekm—po0o) for all m > 1, where o(Ejgy,—p o) is the o-algebra generated by
the edges in the set Egy,—poo. Since A € NYX°_0(Ekm—boo), by Kolmogorov’s 0-1 law, the
probability P,(A) is zero or one, implying that the process {7 k(1) P12 1} is ergodic.

O

Theorem 21 (*). Consider the process {fﬁ’mn :0<m <n}y>0. Then

E(7 E(7
w 20on) e B0 e

n—oo n n>1 n

for some constant a®(p) € [—o0, 00), and

=b

7

. 0,n
lim —
n—soo n

=a’(p) a.s.

Proof. From Claim 1, we have by the subadditive limit theorem that

E(7) E(7)
lim M = inf M =a’(p)
n—o00 n n>1 n

for some constant a®(p) € [~o0, 00), and by the subadditive ergodic theorem

. TO,n _
lim =7 a.s.
n—oo N
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for some random variable —oo < 7 < oo such that E(7) = a’(p). Moreover, if a’(p) > —oo, then

%
lim E 7] =0.
n—00 n
From claim 5, we have 7 = a’(p) a.s. O

We argue in the following that if P,(|C®| = c0) > 0, then a’(p) > 0. To show this, we define the
following random variables:

o wy = inf{z: (y,0) — (z,b) for some y > 0},
e I5,=0 and lO,n = inf{x — wp : (y,b) — (z,n + b) for some y > wy} for n > 1,
o I}, =inf{z— ﬁt’hm : (y,m +b) = (z,n+b) for some y > ﬁ(’)’m} for 1 <m <n.

As in the proof of Proposition 4, we may show that w, > —oo a.s. and by symmetry with 778771
we have l%,n/n — —a’(p) as n — oo a.s. Since l%n < f&n, we have —a®(p) < a®(p), implying
a’(p) > 0.

From our last statement, it follows that if a®(p) < 0, then P,(|C®| = co) = 0. We show that if

ab(p) > 0, then P,(|C?| = c0) > 0.
Claim 2 (*). If a®(p) > 0, then P,(|C®| = >0) > 0.

Proof. The idea of this proof is in principle the same as in the case of no backbend in Durrett
[18]. However, we modify the proof to take care of the case with backbend.
Consider the random variable

M1 = max{|M — wb|, |M — ub\}

As ab(p) > 0, we have fg,n — oo a.s. This fact and the fact that the random variables u;, and wy

have geometric tails imply that there is an even integer M < oo so that
P(Fgm > —M; for all n) > 0.51.

For A C (—o0,00) let

bA - — {2 (y,b) = (x,n + b) for some y € A},
oA = supeA 1A = inf A | 4 = inf{n : %4 = 0L

Clearly, for all M >0

L ¢ @ M, ),
MM iMoo, MM,
é-b,[fMl,Ml] C gb [lb[ Ml,Ml} b,[*Ml,Ml]]‘
Moreover, on {gf;[;le’M” # (0} we have
£b7[—M1,M1] — gb,(—oo,Ml] N Ub,[—Ml,Ml]’ OO),
Eb,[—Ml,Ml] — gb —M1 OO) m ( OO Tb [—Ml,Ml]]’

é’ba[—Ml,Ml] — é—b [lb [ My Mﬂ b,[—Ml,Ml]],
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and
Pol=MiMi] _ b, (—o0,M] (o[~ M1, M) _ b [~ Mi,00)
n n Y n n *

Hence it follows that

b,[—M1,M] b,[—Mq,M;] lg,[fMl,Mﬂ}

= inf{n:r)

= inf{n : r2(-oMl L b[=Mioo)y

This means
{Tb,[—Ml,Mﬂ — OO} 2 {l%[_MlyOO) S 0 S /r-%(_oovM_ub] for all n}.

Hence, we have

P(ebMM) £ ¢y forallp) = P, (r2-MMI — )

2 PP(TZ’(_OO’Ml] > 0> (27020 for all n)
> 2P, (rh (M 5 0 for all n) — 1
2 (b(oo[)]> —M; for all n) — 1
> 2P, (rh (%] > My 4 for all n) — 1
> 2P, (rh(w] —yy > — My for all n) — 1
> 2P (7’8”> —M for all n) — 1
> 2(0.51) — 1 = 0.02.

Here, the last inequality follows from the fact that Fg,n = 7’2( 00,y — up. Moreover, it is easily seen

that P (50 A0 5 (2Z N [—M;y, M;])) > 0. Hence
P,(|C®| = 00) > Py x Py > 0,

where Py = B, (n"M £ @ for all n) and Py = P,(€31), 2 (221 [~ My, My))). O

By a simple coupling argument, we have that a(p) is a non-decreasing function of p. Then it
follows from the above discussion that

sup{p : ap(p) < 0} < p% < inf{p: ap(p) > 0}.

In the following theorem, we show that p% = inf{p : ay(p) > 0}.

Theorem 22 (*). We have
P2 =inf{p: ap(p) > 0}.

Proof. To prove Theorem 22 it is sufficient to show that if a(p2) > —oco and p; > po, then

ap(p1) — ap(p2) = 2(p1 — p2)- (6.1)

We show this in three steps.
STEP 1. In this step we show that if A DO B are infinite subsets of {—2, —4,...}, then

E (rf;BU{O} - rf;B> >E (rgyAU{O} - r;;‘> > 9. (6.2)
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From the definition of gf?;s it is immediate that

b,CUD __ ¢b,C b,D

)

which means

TZ’CUD oD

b,C
= max{r,",

and
b,C

n

TZ’CUD —r

n,D _ TZ,C'} _ (T%D o Tb’C)+.

= max{0, 7, ”

From the above we see
b,BU{0 b,B _ /..b{0 b,B\+ b,{0 n,A\+ b,A b,B
Ty {}_Tn _(rn{}_Tn ) > (Tn{}_rn ) [T > ]

TZ’AU{O} — sz:A .

Now (6.2) follows from the observation that by translation invariance,

E (7427{07_27"'} _ r’n27{_27_47"'}> = 2. (63)

STEP 2. In this step we show that if p; > ps and o’ (p) = E(7%), then

oy (p1) = ap(p2) = 2(1 — (1 — (p1 —p2))"). (6.4)

We construct the systems with parameters p; and ps on the same space in the same way as
Durrett [18] has done for the no backbend case. For completeness, we present this here once again.

To each edge e, assign an independent random variable U, that is uniformly distributed on
(0,1). Call an edge open if U, is less than the parameter value, and closed otherwise. Let F’l’,n

and 75 , be the location of gh(zoo—u]

b:

in the systems with parameters p; and po, respectively. Let

T

FS’TZ, for the respective parameters p; and p are independent of the edges in Ey 7, .

inf{n : Fll’m > fg,n}. We note that for the random time 7°, the random variables 7 L» and

So applying (6.2) and the strong Markov property we have
o0

E <fll),n - fg,n) = ZE (fll),n - fg,n
t=0

n

_ =b ~b

- ZE Tl,n - T?,n
t=0

> 2P(r° <n).

— t) P(r? = 1)

b= t) P(r° =1t)

At each stage n, there is at least probability p; — p that F§7n+1 - Flz’jnﬂ > Fll’yn - ngn + 1. Hence

P(r" <n) > (1— (1 - (p1 —p2))").

This completes Step 2.

STEP 3. We now complete the proof of Theorem 22 in this step. Let § = (p; — p2)/M where M is
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a large integer. Then using (6.4)

an(p) — ap(p2) = % [an <p1 + ’Z‘S) o (p1 N <m;1>5)}

m=1

o (2))

Dividing both sides of the inequality by n and letting n — oo we see that

o (p1) — al(p2) > 2M <1 — exp (—p]\_/)?» .

Letting M — oo yields
a’(p1) — a®(p2) > 2(p1 — p2),

which proves Theorem 22. O

6.4 Stationary distribution for the edge process

In this section we discuss the stationary distribution for the edge process.

Theorem 23 (*). If p > p., then there is an initial distribution p concentrated on the infinite
subsets of {...,—4,—2,0} which contain 0, in such a way that rh has stationary increments.

Proof. We start by introducing a family of “reset approximations” éz,m, which start from
53’0 = (—00, up| and evolve according to the following rules:

For k=1,2,...

1. If (m+ 1) & nZ, then 52,m+1 ={x:(y,m+0b) = (z,m+b+1) for some y € fzm}

2. If (m+ 1) € nZ, then fz’mﬂ = (=00, 1), where 70 = sup{z : (y,m+b) = (z,m +
b+ 1) for some y € fzm} — Up.

Let ffhm = sup éfwn —uyp for all n,m € N. Then for fixed n, the increments Xfl’k = ffL,k — fqb%k_l

of these processes are not stationary, but they are periodic with periodicity n. To construct a

stationary process out of X°, we introduce an independent r.v. U, with P(U, = k) = 1/n for

n,k>
0 < k < n and consider the process Yfl’k = XfL piv, - Let, forap, ... as €R,
P(Y?, < VP o <a,) = P(XP < x? < ag)
n,1l S Alseees P o < Qs nd4+U, S Al oos Ay sryy, < As
n—1
— ZIP’(Xn,HUb <ai,..., X oy, <as| Uy =0)PU, =1i)
i=0

—1

1 n

= fZP(XZ’1+i<a17...,X,27S+i<a5)
=0

n S
= P(X},<ay,..., XD, <a)
Similarly, for [ € N,

b b b b
P(Yn,1+l < al,...,Yn’s+l < G/s) = P(Xn,1+l+Ub < al,...,Xn7S+l+Ub < as)
= P(X}, <ar,.... X5, <ay,).
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This shows that the process {Y?, : k > 1} is stationary with
n
E(Y)) = Y E(XL | Un=0PU, =)
=0

1 n

— b .

YRR
=0

1
- _E b ab
n (7” Tn,O)

n,n
> a’(p).
Moreover, we have
b 1 ¢ A b
IE’|Y;1,1| < ﬁ Z(E’rn,k‘ + E’rn,k—l‘)
k=1
1 1— 1-—
n 71 Y2
1-— 1-—
ga! Y2
< o0
for p € (0,1).
It follows from the above calculations that if we consider the processes {an,m :m > 1} as a sequence
of random elements of R X R x ---, then the sequence is tight. So we can find a sequence n; — oo

such that {Y,fjm :m > 1} converges in distribution (in R x R x ---) to a limit {¥;2 : m > 1} with

E(Y?) <4(52 + 152).
To construct the measure u, we have to take another sequence. Let us define the following

random variables:

~b _ cb cb &b b
Tn,Un = sup ’Sn,Un — U, gn,m - én,m—&—Un - rn,Una

fz,m = sup gz,mv er,m = ffz,m - fz,mfl'
Since . )
lez,m - ffz,m - fn,m—l - 72277” - fz,m—l - Yrim?
we have

(Ve 2V},

Note that 5270 is a subset of (—oo,up] and up, € 5270. For B € B and k € N fixed, we have

P(EZ,mGB) = P(éﬁ,m€B>UnSn_k)+P(gz,m€BaUn>n_k)
= P& yv, — 7oy, €BU, <n—k)+P(&,, € B,Uy>n—k).

Note that for fixed k, P(U, > n — k) — 0 as n — oo. This means that as n gets larger, the

finite dimensional distribution of égm become arbitrarily close to those of é,’;#‘ " where p, is the

distribution of 5270.
Our idea of constructing p from p, is the same as in Durrett [18]. However, some care needs
to be taken for the backbend model. We describe this here for the sake of completeness. Since
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Ly, are probability measures on the compact space {0, 1}{“"_4’_2’0}, the sequence pi,,; has a further
subsequence o, which converges weakly to a limit u. Hence for each M the distribution of

{éz, -0 <m < M} converges weakly to {Ezlf‘ :0<m < M}, Let
ko

b,,LL — ,r_b,[,t

b’ —_ b7 b7 —
rob = sup & — wy and X H =r) gy

Then
{xbry B {vhy

b . . b .
and hence X/, i.e., the increments of r,}" form a stationary sequence. We show

Tb,u
" ab(p) as.

n

Since E(Y&l) > ab(p) and the process Y,f’l converges in distribution to Y}, we have
E(YY) = lim E(Y;?;) > a’(p). (6.5)
n—00 )

Noting the fact that 7“5;““ < F&n, we have

b
’,’ln’/J/

< ab(p) as.

lim sup
n—oo 1

By means of the Ergodic Theorem, we deduce that as n — oo

1 1 <
—rbr = - > VP S ENY|T] as.

n
k=1
where J is the shift invariant o-algebra. Lastly, as
E(Y!) = EE[Y?|T]) < a’(p)
we have by (6.5)
E(Y)) = o(p) and E[YY|T]) = o’ (p)

and hence )
—rf;’“ — ab(p) a.s.
n

b

6.5 Strict monotonicity of the limiting direction o’ over b

It is clear from the characterization of p’ in Section 6.3 that a®(p) < 0 < ab*!(p) for pt™! < p < pl.
In this section we show a®(p) < a®*1(p) for p > pb.

Theorem 24 (*). For p > p?
a’(p) < a"*(p).

Proof. We say that a b-path is a strict b-path if it is a b-path but not a (b — 1)-path.
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We take fixed N =b+2 and p > plc’. Let A?an m = 1,..., the event that there exists a strict
(b+ 1)-path below level mN from 72\ +2(m —1)(b+1) to 72, 5 +2m(b+1) (see Figure 6.2). Note

T i= Py(AL ) = p*P(1 — p)®~1 > 0 for all m > 1.

b =b4-1
mN TO,mN rO,mN

Figure 6.2: Event Al . (b= 3)

Note that E (rgt\} f& N) > 2(b+ 1)m, and by translation invariance

b b
E ( Ot\hk 0 N+k) > E ((Tot\hk 7 N+k> 1A§v) >2(b+ 1)m

for all k£ > 0. Now, when £ = N, we have E (To ON — 70 2N> > 4(b+ 1)m, and, again, by translation
invariance,

=b+1 =b b+1 =b
£ < O+~ 70 N+l) 2 E <<7"0J5N+l "o 2N+l> 1AgN) > 4(b+ 1)m
for all I > 0.
So, by induction (see Figure 6.3), we have
E <r8+1N fﬁmN) > 2(b+ 1)mpym.
Dividing the above expression by mN and taking the limit as m — oo, we obtain

2(b+ 1)my
N

" (p) = a’(p) >
6.6 Exponential estimates for p < p’

In this section we provide some exponential estimates for p when p < plc’. Let §Z’O ={z:(0,0) —
(z,m+b)}.
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Figure 6.3: Average b-path and (b + 1)-path

Claim 3 (*). If p < p?, then there is a positive constant v* := ~4*(p) such that

P(EL0 # 0) < e (6.6)

and 1
~logP(&," # 0) = =

as n — oo.
Proof. Consider the event {Ez&nﬁb # @}. Then

P o D) < PEL £ 0, 60 iniay D)
= P(ﬁfﬁo 7& Q)P(gfrﬁr2b,m+n+2b 7& @)
— P £ Q)P £ 0).

Taking the log of both sides and denoting log ]P’(ffjo # ) by ay, we have from the last inequality

Am4n+2b = Am + Ap.

For fixed m > 2b, we have for every k € N

Agm =  Qkm—2b+2b
> am—2p t A(k—1)m
> m—2b + Gm—2b + A(k—2)m
> kap 2.
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For fixed m consider n = km + r where r < m and k € N. Then using the above inequality it
follows that

an+2b Akm+r+2b
n+ 2b km +r+2b
Akm + Gy
km+r+2b
kam—2p + QA
km+r+2b km+r+2b
Am—2b + Ay
m+ %’Zb km+r+2b

v

Y

Taking the limit infimum over n on both sides and noting that £ — oo as n — oo, we have

Q20 > Am—2b
n n+2b ~ m

Qm—2b

n n+2b — m

This means that the limit of the sequence {9} exists and

. (279 am b
lim — = sup — =: —".

Note that up to this point everything holds for any p < 1. We only need to prove that v* > 0.
Here, we use the fact that p < p%. If p < pl, there exists a (large) N such that Efgb’N < 0, and

from the subadditivity property and 7787,1 < Ffmn for all m,n, it follows that

b b b
TomN < TonN FTNmN
b b b
< ToN TTNaN T T ) NmN
_b b =b .
< TN+ TNy T F T o) N2bmN = Oms
where S, is a random walk with E(S;) < 0. Note {fé’k_l)NJrQbN :k=0,...,m} is a set of

independent and identically distributed random variables. We recall the random variable Kr
defined in the proof of Proposition 4. We define K in a similar way but with the parameter
vr = (1 —p)V*2 (p > 0). Hence S; < Kp and for every 6 € [0, —1/2log(1 — vr)), we have

0(0) := E(exp(6S1)) < E(exp(0Kp)) = —— 1 < o

1 (1—p)ef

For M large and positive,

E (exp(051)) — 1 < E (exp(0(S1V—-M))) —1
0 - 0 '
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Taking the limit supremum of both sides as 8 — 0 we obtain

E (exp(651)) — 1

lim sup <E(S1Vv—-M).
0—0 0
Lastly, letting M — oo,
E 0 -1
lim sup (exp(051)) <E(S;) <O0.

6—0 0
Write p(6) = E (exp(651)). Then there is a 6y > 0 with ¢(6y) < 1. So

P(S,, > 0) < Eexp(0pSm) < (p(6p))™.
Hence
P(75 oy > 0) < P(B0Sm > 0) < P(exp(BoSim) > 1) < Eexp(6pSm) < (¢(60))™,

ie., IP’(FSymN > 0) — 0 exponentially fast when m — oo.

To conclude that the same thing is true for IP’(&Z’O # ()), observe that
]P)(gfzyo = @) > P(Fg,n <0< Tg,mN)?

SO
P(¢h0 # @) < P(rpy,, > 0) +P(If,, < 0) = 2P(7;, > 0)

and since for every large n we have that n > mN for large m
P& = 0) < P&y = 0) < 2P(7Gn > 0),

so the proof of (6.6) is complete. O

Claim 4 (*). If s > a®, then there are constants Cy, and ~, such that

P (fqbl > sn) < Cpe ", (6.7)

Proof. If s > a’, we have the following:

o (ng,Nb — sNb> < 0 for some Ny, > 0,

° IP’(ffL>sn) SP({Z’O#@>,

,b .
® TN, — smNN, satisfies

b b b .
Toamny = 5MNy < (72,5 = Nb) + (Thvszp2n = 8N) + -+ (T N2p,my — 51Vb),

and now the conclusion follows from the proof of Claim 3. Il
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6.7 The nature of the limiting direction o’ as the number of back-
bends b goes to infinity

In this section we make some connections between the unoriented percolation model and the back-
bend percolation model. Intuitively it seems that when b gets larger and larger in a b-backbend
percolation model then the model becomes closer and closer to the unoriented percolation model
in Z2. In this spirit we show that for p > 1/2, the limiting direction a®(p) diverges to infinity as b
increases to infinity.

Theorem 25 (*). Forp > %, a’(p) = o0 as b — oco.

Proof (first approach). We start by defining a top—bottom crossing of a box [a,b] X [¢,d] C L:
it is a path in the box from [a, b] X {c} to [a,b] x {d}; a left—right crossing is defined similarly.
Fix ¢ < % We define

T1(n,q) = Py{3 an open left-right crossing of [0,n] x [0, 3n]},

T2(n, q) = Py{3 an open top-bottom crossing of [0, 3n] x [0,n]}.

Since q < %, there is an N such that
Ti(Na Q) S K

for i = 1,2 and & = 1(50e)7'?!, and so the hypotheses of Theorem 5.1 in [33] are satisfied.
Therefore there is 0 < C1, (5 < oo such that

P{#W >n} < Cre " forn >0,

where W is the set of all vertices which belong to the open cluster of 0 in £ and #W denotes its
cardinality:.
We consider the next set of boxes. Let L > 0. Now define the boxes

A = [0,kL] x [0,2kL], By:=[0,LF] x [0,kL], k>2.

For every Ay, we consider the parallelogram Aj whose vertices are the points (0,0), (kL, —kL),
(0,3kL), (kL,2kL), and for By, we consider the parallelogram with vertices (0,0), (L* + kL, 0),
(L* kL), (—kL,kL) (see Figure 6.4). We define a top-bottom crossing in B, as a path which
starts at the line that joins (—kL, kL) with (L*, kL) and finishes at the line that joins (0,0) with
(L*+kL,0), and a left-right crossing in A}, as a path which starts at the line that joins (0, 0) with
(0,3kL) and finishes at the line that joins (kL,—kL) with (kL,2kL).

Let Ej, be the event that there exists a top-bottom crossing in B;, and let F}, be the event that
there exists a left-right crossing in A}. So, by the previous discussion, we have

Py (Ey) < (L* + kL)LP,(#W > V2kL) < ¢; LFe=2F

Py (Fy.) < 3kLP(#W > V2kL) < cike kL

for £ > 0 and suitable positive constants ¢; and cs.

Now, change the model “open with probability ¢” to “open with probability p = 1 — ¢.” Note
that if there being a top-bottom crossing in Aj implies that there is a top-bottom crossing in Ay,
and there being a left-right crossing in Bj, implies that there is a left-right crossing in Bj. From
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(0,3kL)

(kL,2kL)

(—kL,kL) (LF, kL)

(0,0) (0,0) (L* + kL, 0)

(kL,—kL)

Figure 6.4: Parallelogram A}, B},

the above inequalities we obtain

IP,(3 open top—bottom crossing in A;) > 1 — c1LFee2kl

P,(3 open left-right crossing in By) > 1 — ¢y LFe 2F

We consider the configuration of the boxes A, and By as is shown in Figure 6.5, such that
e up to k, the length of the configuration is
k

k k+1
24 Z L -1 L
=3

Jj=2

e Up to k, the height of the configuration is

k

hi=Y 2jL—

=2 =3

Lk

(-VL=5(k+3)— L.

M-

Suppose that the sequence (with respect to b) a®(p) (p > 1/2) is bounded. Then o> :=
limy_,o a®(p) is finite. Hence, when L is large, 0 < [ — a™h is also large.

If we concatenate a top-bottom crossing in A; with a left-right crossing in Bj, for j =1,...,k,
we obtain a 2kL—path. So, by the FKG inequality, the probability that this 2kL-path exists is at

least
k

o = H(l — ¢ LFem2FL),
j=2

Since ¢y LFe~2kl = ¢ (L/eC2L)k, we can choose L and k sufficiently large so that myp > 1 —¢
for some prescribed € > 0. We choose a K such that mg > 1 — ¢ for some fixed € > 0 and L, and in
the following we consider this 2K L-path.

We can extend the 2K L-path such that it still below of line with the slope a*° by adding a
“copy of itself” in the following way (see Figure 6.6). We select one point in the original 2K L-path.
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/)E\Mbr
?7\A3

Ay

N
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N

Figure 6.5: Configuration of the boxes Ay, By.

The probability that there is a 2K L-path from the previous selected point is at least 1 — (1 — ).
After that, we add j 2K L-paths, we choose j 4+ 1 points on these paths, and now we have that the
probability that there is a 2K L-path starting from some of these points is at least 1 — (1 — 7o)/ 1.
By the FKG inequality, the probability that we can obtain an infinite 2K L-path is at least

10:0[ 1—(1—mo)).

We can take L such that m; > 0, but this is a contradiction to the boundedness of a’(p).
Therefore a’(p) — 0o as b — 0. O

Figure 6.6: 2K L-paths
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6.8 A construction for studying p > plc’

Let £ = {(m,n) € Z* : m + niseven,n > 0}. For § small and L large, we define, for each
(m,n) € L,

Cmm = ((1=3)a’Lm, Ln),
Run = Cpn+[—(1+68)aL,(1+8)a’L] x [0,(1+8)L],

where o is the constant defined in Theorem 21.
Let Ago be the parallelogram with vertices

ug = (—1.560°L, 0), vy = (—.56a°L),
up =ug+ (1+68)(’L, L), v =wvo+ (1+08)(a’L, L),

and let Byo = —App. We say that the event G occurs if there is a b-path from [ug, vg] to [u1, v1]
which stays in Ago and there is a b-path from [—vg, —ug] to [—v1, —u1] which stays in By (see
Figure 6.7).

The events Gy, , are defined by translating the last definition by C,, .. So, to every z € £ there
is associated a random variable 7(z) as

U(mv n) = 1Gm,n'
The next proposition mentions some properties of this 7-system.
Proposition 5 (*). The n-system satisfies the following:

1. If 6 < .1, the random wvariable n(z) will be 1—dependent, that is, if we let ||(m,n)|| = (Jm| +
In])/2 and if z1,...,2m are points with ||z; — zj|| > 1 for i # j, then n(z1),...,m(2m) are
independent.

2. If percolation occurs in the n-system, then there is an infinite path in the original system
which starts in [—1.56a’L, 1.56aL)].

3. If 6, > 0 and p with a(p) > 0, then we can pick L large enough so that P (n(z) =1) > 1—¢.

Proof. (i). Note that n(m,n) depends only on the configuration in R,,,. We take z; =
(m1,n1), 20 = (M2, n2) € L with ||z1 — 22|| > 1. Suppose that m; < mg and n; = ny. If

(1—08)a’Lmy + (14 6)a’L > (1 —8)a’Lmg — (1 + 6)a’L,

then Ry, ny N Romoony 7 O, but this is not possible, since mg —m; > 3 and

Then, if ||z — z2|| > 1 (other possible cases are similar to that above), we have that n(z1) and 7(z2)
are independent.

(ii). If zo = (0,0) and z; = (1, 1) are open, then there is a b-path from [—1.56a’L, 1.56a”L] x {0}
through C; 1 + ([—-0.50a’L,0.55a’ L] x {0}) and on up to Cy 1 + ([~1.58a’L, 1.56a’L] x {0}) and to
Ca2 + ([-0.56a°L,0.50ab L] x {0}) (see Figure 6.7). From this observation and induction we have
that if there is an infinite O-path in the n-system and then there is a corresponding infinite b-path
in the original system (but not conversely).
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Clo.0) Clo.2)
Figure 6.7: n-system

_ _ b
(iii). Let 7% = sup 52’( 00, =800L] and let 7 = sup €20 {7b 4 85aPL 1 n > 0} 4 {7t :n >0}

and as n — 00, Fz /n— ab a.s., so it follows that if we pick L large enough, then with probability
> 1—¢/4 we have
sy > —86a"L + (1+.96)a’L

and for n < (1+9)L

. 1+1.19
T'Z S —.760ZbL +n <]_—|—(5) ab.
The last two events guarantee that there is a b-path from (—oo0,—.86a’L] x {0} up to [(1 +
16)alL, (1 + .40)a’L] x {(1 + §)L} which does not cross the line between vg and v;.
To prove that this b-path does not fall too far to the left, we observe that to travel from
the line between ug and uy to [a’L,00) x {(1 + §)L} a b-path must have an avarage slope s :=
a’(1+1.58)/(1+6) > ab and it follows from (6.7) that

P (F,IZL > sn) < Ce™™,
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so picking M large enough so that
oo
> e
n=M

and then considering separately the points on line between wy and u; with y < (14 6)L — M and
y > (1+9)L — M (see Figure 6.8). We see that if L is large, the probability that there is a b-path
connecting the line between ug and u1 and [a’L, 00) x {(1 + )L} is at most /4.

U b
Lol (1+6)L

(1+0)L — M

Ug

Figure 6.8: A b-path connecting the line between ug and u1 and [a’L, o0) x {(1+ §)L}

By the previous discussion, if L is sufficiently large, then the first half of the event G occurs
with probability > 1 —¢/2. Now the second half of the event G has the same probability as the
first. So, it follows that with probability > 1 — ¢ the good event occurs. O

Theorem 26 (*). a’(pl) =0

Proof. In section 10 of Durrett [18], it was shown that P (n(z) = 1) > 1 — 3736 and then there
is a positive probability of percolation in the n-system. If a’(p%) > 0, let § = .1 and pick L so large
that P (n(z) = 1) > 1 — 373" Since there are only a finite number of bonds in Ry, we can choose
p such that p < p2 and P (n(z) = 1) > 1 — 3736, but this is a contradiction because a’(p) =0. O



Appendix A

Sub-Gaussian Random Variables

This appendix presents several facts about sub-Gaussian random variables and some of the prop-
erties which are used in Chapter 5. For details in this subject we recommend [56], [60].

A real-valued random variable ¢ is said to be sub-Gaussian if there is some b > 0 such that for
every t € R

E (et§> < /2

When this condition is satisfied with a particular value of b > 0, we say that £ is b-sub-Gaussian,
or sub-Gaussian with parameter b.

From this definition, we have that sub-Gaussian random variables are centered and their variance
has a natural upper bound in terms of the sub-Gaussian parameter.

Proposition 6. If ¢ is b-sub-Gaussian, then E (&) = 0 and Var (&) < b2.

Example 2. If ¢ has distribution N'(0,02), then an easy computation shows that any t € R
242
E (€t§> — o2
i.e., £ is sub-Gaussian with parameter o.

Example 3. Let £ be a Rademacher random variable, i.e., the law of £ is P = %5_1 + %(51 (here
0z 18 the point mass at x). Then for any t € R

1 1
E (etg) =3¢ "+ e = cosh(?) < eV,

so € is 1-sub-Gaussian.

Example 4. Let £ be a random variable with uniform distribution over the interval [—a,a] for
some fized a > 0. The for any real t # 0

1 /e 1 i = (at)®
E(tg):/ teg. Y (at _ _—aty _ 7
o) =gq | el = g (e —eT) =) (2n + 1)

—a n=0
since (2n 4 1)! > nl2™, we see that £ is a-sub-Gaussian.

More generally, any centered and bounded random variable is sub-Gaussian.

89
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Theorem 27. If £ is a random variable with E (§) =0 and |{] <1 a.s., then
E (et§> < cosh(t) VteR (A.1)

and so & is 1-sub-Gaussian. Moreover, if equality holds in (A.1) for some t # 0, then & is a
Radamecher variable and hence equality holds for all t € R.

Corollary 2. If £ is a random variable with E(§) = 0 and |§| < b a.s. for some b > 0, then £ is
b-sub-Gaussian.

The set of all sub-Gaussian random variables has a linear structure.

Theorem 28. If & is b-sub-Gaussian, then for any o € R, the random variable af is |a|b-sub-
Gaussian. If & and & are random variables such that & is b;-sub-Gaussian, then & + & is
(b1 + b2)-sub-Gaussian.

Note that in the previous theorem, & and & are not necessarily independent.
The following theorem gives equivalent conditions for a random variable to be sub-Gaussian.

Theorem 29. For a centered random variable £, the following statements are equivalent:

1. Laplace transform condition: 3b>0,VteR, E (etf) < V*t/2,
2. Sub-Gaussian tail estimate: ¥ X > 0, P(|{] > ) < 2exp {;TA;}
3. Orlicz condition: E (exp {b%fg)} < 2.

4. Moments condition: 3 C' > 0, (E(|£|p))1/p < Cby/p for all p > 1.
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