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Abstract. Antibiotic resistant bacteria are a constant threat in the battle against infectious
diseases. One strategy for reducing their effect is to temporarily discontinue the use of cer-
tain antibiotics in the hope that in the absence of the antibiotic the resistant strains will be
replaced by the sensitive strains. An experiment where this strategy is employed in vitro [5]
produces data which showed a slow accumulation of sensitive mutants. Here we propose a
mathematical model and statistical analysis to explain this data.

The stochastic model elucidates the trend and error structure of the data. It provides a
guide for developing future sampling strategies, and provides a framework for long term
predictions of the effects of discontinuing specific antibiotics on the dynamics of resistant
bacterial populations.

1. Introduction

Bacteria expressing antibiotic resistant genes are of increasing concern. In the
presence of an antibiotic the bacteria that carry resistant genes have a tremendous
competitive advantage and quickly sweep through the population. Genes encoding
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resistance to antibiotics are often located on plasmids. It is often assumed that the
carriage of an antibiotic resistance encoding plasmid is at a cost to the host when
this host resides in a medium where the antibiotic is not present [1]. However, it
is not known whether this cost gives resistant bacteria a considerable disadvantage
in a neutral environment causing the antibiotic sensitive bacteria to replace the
bacteria with the resistance genes, or if antibiotic resistant genes persist in such an
environment. An experiment [5] designed to address these questions for a particular
plasmid-encoded tetracycline resistance gene produced a very interesting pattern.
At the beginning of the experiment nearly all the bacteria under study contained
the resistance gene while a small fraction did not. When the bacteria were allowed
to evolve in a neutral environment, the proportion of antibiotic sensitive bacteria
increased. However, the increase was quite slow and erratic. After 500 generations
the fraction of sensitive bacteria increased on average from 0.15 percent to 6 percent
of the population. All clones examined had lost the entire tetracycline resistance
operon due to deletion of the corresponding plasmid region (De Gelder et al. [5]).
While there was an average trend upward, there was a considerable amount of
variability. This led the investigators to consider the following explanation: There
is little to no fitness advantage conferred to the nonresistant cells, and the slow
accumulation of sensitive mutants was mainly due to unidirectional mutation. That
is, from time to time the plasmid in the tetracycline (tet) resistant bacteria mutates,
resulting in the deletion of the tet resistant gene.

A brief description of the experimental evolution that we are modelling is as
follows. An initial number of bacteria, say N0 (usually on the order of 107/ ml),
is placed in a flask and the population doubles each generation for l generations.
l is about 8. The process is then subjected to a series of bottlenecks. That is, at
the end of each period of length l generations a sample of size N0 is taken from
the population that has grown to 2lN0. This produces what we call a cycle of the
experiment, where a cycle is defined to be a combination of a growth period and a
bottleneck occurring at the end of that period. The sample is then placed in a new
flask and the procedure starts anew.

Here we develop a stochastic model that captures the variability in an experi-
ment where unidirectional mutation and no selection explains the data. Our model
assumes that the rate of mutation from antibiotic resistant bacteria to sensitive
bacteria is much higher than the reverse and that we can only detect the difference
between the rates of mutation. It is this unidirectional mutation process that allowed
the mutant to increase in frequency over time. The statistical model described here
is in the spirit of those introduced in [14], and [15] but with important differences.
The focus of those models is to provide a theoretical basis for understanding certain
aspects of adaptive evolution in a controlled environment. This paper is motivated
by data where an explanation involving unidirectional mutations and drift due to
bottlenecks is explored. As a result the focus here is to understand certain patterns
of variability for experimental evolution where no defined selection is evident.

In addition to developing the mathematical model, we develop a statistical
procedure for parameter estimation and a goodness of fit test. We then apply our
statistical methodology to our data.
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2. The stochastic model

The experimental evolution process described in the second paragraph of the intro-
duction (Section 1) has two sources of variability. The first involves the bottleneck.
The percentage of mutants sampled at the beginning of the kth cycle could be higher
or lower than the percentage of mutants at the end of the (k − 1)st simply due to
the error associated with the bottleneck. The genetic effects of such fluctuating
environments is explained in [10]. The second source of variability involves the
mutation process.

Taking these two sources of variability into account, and assuming that mutants
arise at random with an average mutation rate of λ per individual per generation,
gives rise to the following model.

– Let Mk be the number of mutants at the end of the kth cycle.
– Let Yk be the number of mutants that arise during the kth cycle.
– Let Xk be the number of mutants sampled from the (k−1)st cycle or the number

of mutants at the beginning of the kth cycle.
– Let l be the number of generations in a cycle.
– Let Ak = Mk/(2lN0) be the fraction of mutants at the end of the kth cycle.
– Let Vj,k be the number of mutants that arise during generation j (j ≤ l) of the

kth cycle.
– Let Yj,k be the number of mutants at generation j that arise during the kth cycle.

Note that

Yj,k = 2Yj−1,k + Vj,k (1)

and Yk ≡ Yl,k .

The distribution of Mk is determined by the distributions of Xk and Yk .

Mk = 2lXk + Yk. (2)

These distributions are determined by the previous generation k − 1. Note that
the bottleneck determines the conditional distribution of Xk given Mk−1 to be
binomial, which can be approximated by the Poisson distribution. That is

Xk|Mk−1 ∼ BIN

(
N0,

Mk−1

2lN0

)
= BIN (N0, Ak−1) ∼ POI

(
Mk−1

2l

)
. (3)

The error due to the mutation process is determined by the number of mutants
that arise during that cycle, which is determined by the number of mutants that
arise during each generation of the cycle, Vj,k , using the following conditional
distribution

Vj,k|Yj−1,k, Xk ∼ POI
(
λ
(

2j (N0 − Xk) − 2Yj−1,k

))
. (4)

Now that we have the model set up, we use it to calculate E(Mk) the mean
number of mutants after k cycles, Var(Mk), and Cov(Mk, Mj ). We then use these
calculations to form a moment estimator for λ, to calculate the error associated with
the estimator and to develop a goodness of fit criteria.
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2.1. Means

In this section we use the stochastic model described above to derive an expression
for the mean number of mutants present at the end of the kth cycle, E(Mk), and
the mean fraction of mutants, E(Ak).

We begin by defining yj,k = E(Yj,k|Xk) and note that it follows from equations
(1) and (4) that

E(Yj,k|Yj−1,k, Xk) = 2(1 − λ)Yj−1,k + λ2j (N0 − Xk). (5)

Which implies

yj,k = 2(1 − λ)yj−1,k + λ2j (N0 − Xk).

Let αj = yj,k

2j (N0 − Xk)
then

αj = (1 − λ)αj−1 + λ.

By definition y0,k = 0, so it follows by (35) that, again,

αj = 1 − (1 − λ)j

and

E(Yk|Xk) = E(Yl,k|Xk) = yl,k = αl2
l (N0 − Xk). (6)

Therefore, it follows from (6) and (2) that

E(Mk|Xk) = 2lXk + E(Yk|Xk) = 2l (1 − αl)Xk + 2lαlN0 (7)

and by definition E(Xk|Mk−1) = Mk−1/2l , therefore

E(Mk|Mk−1) = (1 − αl)Mk−1 + 2lαlN0 (8)

implying

E(Mk) = (1 − αl)E(Mk−1) + 2lαlN0.

Now define βk = E(Ak) ≡ E(Mk)

2lN0
to be the mean fraction of mutants after k

cycles. This leads to the following recursion

E(Ak) = βk = (1 − αl)βk−1 + αl = 1 − (1 − β0)(1 − λ)lk (9)
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2.2. Variance

The purpose of this section is to calculate the variance of the number of mutants
at the end of the kth cycle, Var(Mk), and from it will follow the variance of the
fraction of mutants, Var(Ak). The variability associated with Mk depends on the
variability associated with the number of mutants transferred from the previous
cycle and the variability associated with the number of mutants that arise during
the cycle. The following standard formula for variance shows how these two are
related to the overall variance.

Var(Mk) = E(Var(Mk|Xk)) + Var(E(Mk|Xk)).

If we condition on the number of mutants at the beginning of the cycle Xk then
Var(Mk|Xk) represents the variability associated with the new mutants that arise
during the cycle. It follows from (7) that

Var(E(Mk|Xk)) = Var
(

2l (1 − αl)Xk + 2lαlN0

)
= 22l (1 − αl)

2Var (Xk)

and so Var(E(Mk|Xk)) is determined by the variance of Xk , the number of mutants
at the beginning of the cycle.

Recall in equation (3) we noted that Xk|Mk−1 is Poisson distributed. Now using
the conditional variance formula again we write

Var(Xk) = E

(
Mk−1

2l

)
+ Var

(
Mk−1

2l

)

= N0βk−1 + Var(Mk−1)

22l
. (10)

Combining these results gives

Var(Mk) = E(Var(Mk|Xk)) + 22l (1 − αl)
2N0βk−1 + (1 − αl)

2Var(Mk−1).

(11)

To complete the recursion we need to develop a recursion for E(Var(Mk|Xk)).
It follows from equation (2) that

Var(Mk|Xk) = Var((2lXk + Yk)|Xk) = Var(Yk|Xk) (12)

and so this term depends only on the variability associated with the number of
mutants that arise during the kth cycle Yk . To solve for Var(Yk|Xk) we need to con-
sider each generation during the kth cycle. Using the conditional variance formula
again we get

Var(Yj,k|Xk) = E
[
Var(Yj,k|Yj−1,k, Xk)|Xk

]+ Var
[
E(Yj,k|Yj−1,k, Xk)|Xk

]
.

(13)

We consider each term on the right side of equation (13) separately. It follows
from equations (1), (4) and (6) that

E
[
Var(Yj,k|Yj−1,k, Xk)|Xk

] = E
[
Var(Vj,k|Yj−1,k, Xk)|Xk

]
= 2j λ(N0 − Xk)(1 − αj−1). (14)
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Now consider the second term on the right side of (13). It follows by equation (5)
that

Var
[
E(Yj,k|Yj−1,k, Xk)|Xk

] = Var
[
2(1 − λ)Yj−1,k + λ2j (N0 − Xk)|Xk

]

= 4(1 − λ)2Var(Yj−1,k|Xk).

So combining the above gives

Var(Yj,k|Xk) = 2j λ(N0 − Xk)(1 − αj−1) + 4(1 − λ)2Var(Yj−1,k|Xk).

If we define

γj = Var(Yj,k|Xk)

(N0 − Xk)2j

we get the following recursion

γj = λ(1 − αj−1) + 2(1 − λ)2γj−1 = λ(1 − λ)j−1 + 2(1 − λ)2γj−1. (15)

The solution to the above recursion follows again by equation (35) given in the
Appendix and can be expressed as follows

γj = λ(1 − λ)j−1 (2(1 − λ))j − 1

1 − 2λ
. (16)

For λ small we can approximate γj by

γj ≈ λ

1 − 2λ
(2j − 1). (17)

We now use the solution for γj given in (16) to calculate the E(Var(Yj,k|Xk))

for any generation j in the kth cycle. We are particularly interested in the last gener-
ation of the kth cycle when j = l. Using equation (12) we get an explicit expression
for E(Var(Mk|Xk)). Note that E(Xk) = N0βk−1, hence

E(Var(Mk|Xk)) = E(Var(Yk|Xk)) ≡ E(Var(Yl,k|Xk))

= (N0 − E(Xk))2
lγl = (1 − βk−1))2

lγlN0.

Using the above result we can return now to equation (11) and recalling the
formula for βk given by (9), we get

Var(Mk) = (1 − βk−1)2
lγlN0 + 22l (1 − αl)

2N0βk−1 + (1 − αl)
2Var(Mk−1)

= (1 − λ)2lVar(Mk−1) + 2lN0(1 − λ)l(k−1)(1 − β0)

×
(
γl − 2l (1 − λ)2l

)
+ 22l (1 − λ)2lN0. (18)

The above recursion (18) follows the form of the recursion (34) given in the
Appendix, so it follows from equation (35) with a = (1 − λ)2l , b = (1 − λ)l,

c = 2lN0(1 − β0)
(
γl − 2l (1 − λ)2l

)
, and d = 22l (1 − λ)2lN0, that
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Var(Mk) = 2lN0(1 − λ)l(k−1) (1 − λ)lk − 1

(1 − λ)l − 1
(γl − 2l (1 − λ)2l )(1 − β0)

+22lN0(1 − λ)2l (1 − λ)2lk − 1

(1 − λ)2l − 1
(19)

where γl is given by equation (16).
We now have an explicit formula for Var(Ak)

Var(Ak) = 1

22lN2
0

Var(Mk). (20)

2.3. Covariance

In this section we show that the covariance of Mk with Mk+n is determined by the
variance of Mk . It follows from equation (7) that, for n ≥ 1

E(Mk+nMk) = E(Mk(E(Mk+n|Mk+n−1 · · · Mk)))

= E
(
Mk[(1 − αl)Mk+n−1 + 2lαlN0]

)

= (1 − αl)E(Mk+n−1Mk) + 22lN2
0 αlβk.

Recall that the fraction of mutants at the end of the kth cycle, is defined by Ak =
Mk/(2lN0). Define

an = E

(
Mk+nMk(

2lN0
)2
)

= E(Ak+nAk)

then
an = (1 − αl)an−1 + αlβk.

Again, an satisfies the usual recursion (34), where in this case a0 = E(A2
k). There-

fore,

an = (1 − αl)
nE(A2

k) + βkαln. (21)

Recall that E(Ak) = βk and therefore

Cov(Ak+n, Ak) = E(Ak+nAk) − E(Ak+n)E(Ak)

= (1 − αl)
nVar(Ak) + (1 − αl)

nβ2
k + αlnβk − βkβn+k

= (1 − λ)lnVar(Ak). (22)

3. Statistical methods

In Section 2 we characterized the structure of a model which assumes exponential
growth, random mutations and periodic bottlenecks. In this section we develop
several methods for data analysis. We begin by developing methods for fitting data
to the model. That is, we propose methods for estimating λ. We then develop ways
to assess the adequacy of the model. In Section 4 we apply the methods developed
in this section to the data of De Gelder et al. [5].
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3.1. Process error

Random mutations and periodic bottlenecks induce a certain amount of fluctuation
that is inherent to the process. That is, even if one could observe every single mutant
and wild type without error at the end of each cycle, there would still be variabil-
ity between different runs of the experiment just due to inherent randomness of
the process. We call this process error. To consider an estimator for λ where only
process error is accounted for, we make the assumption that Ak is observable. In
Section 3.2 we use the results of this section to consider sampling error and process
error together. This provides the realistic estimator used in the data analysis.

Below we propose a moment estimator for λ, the mutation rate, assuming that
Ak is observable. We refer to this estimator as λ̂process , and give an explicit expres-
sion for its variance. As mentioned above, the estimator is based on the Ak’s which
are the fraction of mutants present at the end of the k cycles. Note that the initial
fraction of mutants A0 ≡ β0. Denote by Āk the average (over r replicates of the
experiment) of the fraction of mutations at the end of k cycles.

Note that

E(Āk) = βk ≈ β0 + λlk.

If the experiment is replicated r times then it is easy to see that

Cov(Āk, Āj ) = 1

r
Cov(Ak, Aj ).

If samples are taken at cycles k1, k2, · · · , kn then

E(Āk1 + Āk2 + · · · + Ākn) ≈ λl(k1 + k2 + · · · + kn) + nβ0.

This suggests the following estimator

λ̂process = Āk1 + Āk2 + · · · + Ākn − nβ0

l(k1 + k2 + · · · + kn)
. (23)

If we define u = l(k1 + k2 + · · · + kn) then

Var(λ̂process) = 1

ru2

n∑
i=1

n∑
j=1

Cov(Aki
, Akj

)

= 1

ru2

n∑
i=1

n∑
j=1

(1 − λ)l|kj −ki |Var(Amin{ki ,kj }). (24)

Using the formula for Var(Aj ) derived in (19) and (20) and substituting into
(22) gives an explicit expression for the Var(λ̂process).
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3.2. Observational error

Recall that Mk is the number of mutants present at the end of the kth cycle and Ak

is the fraction of mutants at the end of the kth cycle. On average Ak follows a curve
given by

E(Ak) = βk = 1 − (1 − β0)(1 − λ)lk.

Note that the {Ak} process is subject to two sources of variability, one is due to
periodic bottlenecks and the other is due to random mutation. Recall that we denote
these two sources of variability as process error. However, the Ak process cannot be
directly observed. At the end of each cycle a sample is removed and used to start the
next cycle. The rest is diluted and from this dilution the mutants are observed. Inher-
ent in this procedure is another source of error, which we refer to as observational
error.

Recall that at the end of the kth cycle a sample of size N0 is taken and placed
into a new flask. We referred to the number of mutants in this sample by Xk+1. The
fraction of mutants remaining is Ak and the dilution process is equivalent to taking
a sample of size Dk . Let Sk be the number of mutants observed in the sample of
size Dk at the end of the kth cycle, then

Sk|Ak ∼ Bin (Dk, Ak) ∼ POI(DkAk)

and S1, S2, . . . , Sk are conditionally independent given A1, A2, . . . , Ak . The var-
iability associated with the {Ak} process is called process error and the conditional
distribution of Sk given Ak describes the observational error.

The purpose of this section is to model the observational error on top of the pro-
cess error to derive the mean, variance and covariances for the observable random
variables Sk and then to derive an estimator based on {Sk}.

We assume that at the beginning of the experiment, k = 0, the fraction of
mutants in the population is given by A0 ≡ β0. We then take r samples each of size
N0, which form the r replicates of the experiment. From the definition of Xk , given
in Section 2, X1 represents the initial number of mutants at the beginning of the
experiment for a particular run of the process. We assume that X1 is Poisson distrib-
uted with mean N0β0. To estimate the fraction of mutants in the initial population
we further take more samples, r0 say, each of size D0 and analyze those samples.
Let S0 be the number of mutants observed at the beginning of the experiment for a
particular sample of size D0. Note that S0 is distributed Poisson with mean β0D0
and that S0 is independent of X1. For the data that follow (Section 4) r = 6 and
r0 = 2. That is, 6 replicates of the experiment are run, but only two samples are
taken at the beginning.

Note that
E(Sk) = E(E(Sk|Ak)) = DkE(Ak) = Dkβk

and

Var(Sk) = E(Var(Sk|Ak)) + Var(E(Sk|Ak))

= Dkβk + D2
kVarAk. (25)
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Finally the covariance can be calculated for j, k ≥ 1 by

Cov(Sk, Sj ) = DkDj Cov(Ak, Aj ). (26)

So the fraction of observed mutants in the sample at cycles k and j have the same
covariance as the fraction of mutants in the population. That is,

Cov

(
Sk

Dk

,
Sj

Dj

)
= Cov(Ak, Aj ) (27)

Again sampling at the end of cycles k1, k2, . . . , kn and performing r runs of

the experiment and noting that E

(
S̄k

Dk

|Āk

)
= Āk , we get

E

(
S̄k1

Dk1

+ S̄k2

Dk2

+ · · · + S̄kn

Dkn

)
≈ nβ0 + λl(k1 + k2 + · · · + kn).

Recall that S0 is the number of initially observed mutants in a particular run of
the experiment and S̄0 the average number of observed initial mutants averaged
over r0 samples and E(S̄0/D0) = β0. This suggests that in order to account for
observational error, we use the following estimator for λ

λ̂ = S̄k1/Dk1 + S̄k2/Dk2 + · · · + S̄kn/Dkn − nS̄0/D0

l(k1 + k2 + · · · + kn)
. (28)

Note that S̄0 is independent of X̄1 which implies that S̄ki
is independent of S̄0. Thus

again let u = l(k1 + k2 + · · · + kn)

Var(λ̂) = 1

ru2

n∑
i=1

n∑
j=1

Cov(Ski
/Dki

, Skj
/Dkj

) + n2

r0u2 Var(S0/D0)

= Var(λ̂process) + 1

ru2

n∑
i=1

βki
/Dki

+ n2

r0u2 β0/D0. (29)

where the process error Var(λ̂process) is given by equation (24) which uses equa-
tions (19) and (20). We denote the observational error by

Var(λ̂obs) = 1

r0u2 n2(β0/D0) + 1

ru2

n∑
i=1

βki
/Dki

. (30)

3.3. Process error versus observational error

The fraction of mutants (per replicate) observed as a result of sampling the process
at the end of the kth cycle is given by Sk/Dk . While the fraction of mutants (per
replicate) in the entire population at the end of the kth cycle is given by Ak . It
follows from equation (9) that

E(Sk/Dk) = E(Ak) = 1 − (1 − β0)(1 − λ)lk.
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Fig. 1. A plot of the number of days k versus the expected fraction of mutants βk =
E(Sk/Dk) = E(Ak) (Equation (9)) plotted over 14 days. λ = 9.93×10−5 and β0 = 0.0015.
The dark trend line is actually three lines, where the solid lines above and below are
E(Ak) ± 2

√
Var(Ak) demonstrating that the variability of the Ak process is quite small.

The dashed lines (- - -) are E(Sk/Dk) ± 2
√

Var(Sk/Dk) where Dk was chosen so as to keep
the relative error at 30%, RE = √

Var(Sk/Dk)/βk = 0.3.

It follows from equation (25) that

Var(Sk/Dk) = βk/Dk + Var(Ak).

While we have not developed a full likelihood description of Ak we have derived
exact solutions for the mean, variance and covariances for the {Ak} process. We
discovered that for a typical population size on the order of N0 = 107, cycle length
l = 8 and mutation rate 10−8 ≤ λ ≤ 10−4 the {Ak} process was nearly determin-
istic and the error of the process, described by the variance and covariances was
actually quite small. The graph in Figure 1 illustrates this point. The solid trend line
is actually three lines. The middle line being βk = E(Ak) using equation (9) with
λ = 9.93×10−5 and β0 = 0.0015. The solid line (−) above is E(Ak)+2

√
Var(Ak)

and the line below is E(Ak) − 2
√

Var(Ak). The dashed lines (−−) represent the
error associated with the observed fraction of mutants Sk/Dk . The error for the
observed fraction depends on the size of the sample Dk . A reasonable approach
to deciding the sample size, Dk , is to consider the relative error. The relative error
(RE), denoted here by η, is defined to be the standard deviation divided by the
mean. In this case

RE ≡ η =
√

Var(Sk/Dk)/βk.

To illustrate the difference between process error and sampling error we choose
Dk so that the relative error is 0.3, which turns out to represent a sampling effort
that is attainable for these types of experiments. (See the data analysis that follows
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Table 1. The observed number of mutants for each of 6 replicates of the experiment and
two initial samples. sj,k is the number of mutants sampled during the j th replicate of the kth
cylce.

day samples total
k s1,0 s2,0 Dk

0 1 2 1000 3

s1,k s2,k s3,k s4,k s5,k s6,k

14 0 1 1 1 0 0 24 3
28 1 1 0 2 0 2 52 6
42 2 0 1 2 0 1 52 6
49 4 0 0 5 2 2 52 13
56 0 5 1 0 2 4 52 12
63 1 3 4 4 3 4 52 19

in Section 4). Our main point in this section is to demonstrate that by modelling
both the population variability (process error) and the sampling variability (obser-
vational error) we see that the observational error is several orders of magnitude
larger than the process error.

4. Data

Consider the data given in Table 1. Samples were taken 7 days apart starting with
day 14. The sample size taken on day 14 was 24, but realizing that this was too
small, the sample size was increased to 52 for subsequent days. (The investigators
did not have a prior view of how many sensitive mutants to expect and so the ini-
tial sampling plan was somewhat of a guess.) So the original data consisted of the
analysis of days 14, 21, 28, 35, 42, 49, 56 and 63. Errors occurred on both days 21
and 35 and the data for those days had to be discarded. Two initial samples each
of size 1000 were taken on day zero and a small fraction (0.0015) of mutants were
observed.

The experiment was replicated 6 times. Each replicate consisted of an initial
population of size N0 = 107 individual cells. The population doubled for l = 8
generations per day to reach a population size of 28 · 107 followed by transferring
107 cells into fresh medium each day. At the end of cycle k listed in Table 1 a
sample of size Dk is taken and the number of mutants observed is recorded. We
first fit the data to the model by estimating λ using equation (28) and calculate
the variance using (29). The results are summarized in Table 2. Table 3 gives the
observed fraction of mutants compared to the expected fraction.

4.1. Assessing the goodness of fit

As indicated in the discussion in Section 3.3, we can neglect process error for the
purposes of fitting data to the model and assume that the fraction of mutants in the
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Table 2. An estimate of the mutation rate λ̂ using equation (29) applied to the data in table
1. The variance of λ̂ is given by equation (29) using equation (24) for the process error and
(30) for the observational error.

Estimated rate λ̂ 9.93 × 10−5

Process error Varprocess(λ̂) 5.64 × 10−15

Observational error Varobs(λ̂) 1.53 × 10−10

Total Variance Var(λ̂) = Varprocess(λ̂) + Varobs(λ̂) 1.53 × 10−10

Standard error SE(λ̂) =
√

Var(λ̂) 1.24 × 10−5

Table 3. The observed fraction of mutants calculated from table 1 versus the predicted
fraction calculated using equation (9)

Cycle Observed fractions Expected fraction
k S̄k/Dk β̂k

0 0.0015 0.0015
14 0.021 0 .013
28 0.019 0.024
42 0.019 0.035
49 0.042 0.040
56 0.038 0.046
63 0.061 0.052

population follows a deterministic growth pattern defined by βk . Finally, since the
data appear in an array, we denote by Sj,k the number of mutants observed during
the j th replicate at the kth cycle. With process error ignored, Sj,k will follow the
Poisson distribution with mean Dkβk , and all of the observations are independent.

To test for model adequacy we consider the hypothesis that the model is correct,
that is, the data are Poisson distributed with E(Sj,k) = Dkβk against the alternative
that each Sj,k is Poisson with a different mean µj,k . We use the Poisson dispersion
test statistic [11] given by

χ2 =
∑
k∈K

rk∑
j=1

(
sj,k − Dkβ̂k

)2
/Dkβ̂k. (31)

This is the familiar observed frequencies minus expected frequencies squared
over the expected frequencies formula. The distribution of the test statistic given
in (31) is asymptotically distributed chi-squared with

∑n
k=1 rk − 2 degrees of free-

dom. Under the Poisson assumption the mean and variance are the same. In theory,
if the data are overly dispersed, then the sample variances will be much larger than
the means producing significant χ2 values. According to the Poisson dispersion
test displayed in Table 4, the data adequately fit the model. Care must be taken
when interpreting the scatter about the trend line in Figure 2. Note that the residual
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Table 4. The Chi-squared goodness of fit test using the data from Table 1 with β̂k coming
from table 3

χ 2 = ∑
k∈K

∑rk
j=1

(
sj,k − Dkβ̂k

)2
/Dkβ̂k

Degrees of Freedom 36
Value 36.5
P value 0.44
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Fig. 2. Predicted (trend line) and observed (plotted points) of the fraction of mutants plotted
over time (in days). The jagged lines represent two standard errors above and below the
predicted values.

error is not normally distributed but is instead Poisson distributed. This means that
the error depends on the cycle k, the sample size Dk and the mutation rate λ. The
jagged lines in Figure 2 represent two standard errors above and below the trend
line.

Note that with the exception of day 14 a constant sample size of 52 was main-
tained throughout. However, because of the Poisson nature of the observational
error, the relative error = standard deviation/expected value of the predicted values
decreases over time. Therefore, in order to keep the relative error constant, we rec-
ommend that in future studies larger samples be taken for the early days than those

taken in the later days. That is
√

Var(β̂k) ≈ √
lkλ/(rDk) and E(β̂k) ≈ lkλ and so

the relative error η is

η =
√

lkλ/(rDk)

lkλ
= 1√

lkλrDk

.
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Hence, an appropriate sampling strategy is to fix the relative error at η and choose
Dk such that

Dk = 1

η2λrlk
.

The sampling strategy described above was implemented in De Gelder et.al [5]
which made the pattern of a slow increase in mutants much more apparent in that
study.

5. Discussion

The mathematical model presented here can be used to predict the time needed
to eliminate antibiotic resistance genes in an environment where the antibiotic is
not present, thereby giving a preliminary assessment of the long term effects of
eliminating the use of certain antibiotics. This is a considerable advantage over a
purely descriptive approach to the data. For example, if we consider the mutation
rate λ = 9.93 × 10−5 and β0 = 0.0015 which were estimated from our data, then
we can use equation (9) to predict the average time t = lk needed to eliminate p

percent of the antibiotic resistant genes in the population. That is

1 − (1 − β0)(1 − λ)t = p. (32)

implying

t = ln((1 − p)/(1 − β0))

ln(1 − λ)
. (33)

If p = 0.95 say, then this implies that t = 32,794 generations. With 8 gen-
erations a day this comes to 11.23 years. This means that if there is no selective
advantage to the sensitive mutant, even if the antibiotic is not present, resistance
genes will persist in the population for a long time (see Figure 3). If the mutant has
even a slight selective advantage, this amount of time will decrease dramatically. So
we can view our results using equation (33) as an upper bound. (See [5] for details.)
The proposed model should be thought of as a null hypothesis against which other
models can be tested.

Splitting the variance of the estimate λ̂ into the two terms called process error
and observational error is an idea borrowed from theoretical ecology (see [6]).
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Fig. 3. Number of days k versus predicted fraction of mutants βk .
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However, this idea proves to be quite useful in experimental evolution. Because
microbial systems have the unique feature that both ecological and genetic pro-
cesses play an important role on the same time scale, exciting research opportuni-
ties exists on the boundary between the two disciplines; evolutionary biology and
theoretical ecology, both of which have rich history in mathematical modelling.
Several recent papers in theoretical ecology focus intensely on the issues surround-
ing observational error and process error. So it is important to understand how our
results fit into this framework. Population dynamics theory further subdivides the
process error into “demographic” and “environmental” stochasticity. Demographic
stochasticity represents the variability due to random contributions of births, deaths
and migrations of individuals in the population ([4]). Environmental noise repre-
sents the effect of external factors on the individuals of the population. In ecological
terms, this noise represents environmentally driven fluctuations in the per capita
population growth rate ([8]). These two types of error scale differently: demo-
graphic noise models predict that the variability in population size will decrease
towards zero for large population sizes, whereas under environmental noise, the
population fluctuates at large as well as at small densities [9].

The work of De Valpine and Hastings [6] and [7] focus mainly on environ-
mental noise as the main source of process error. Here, we were interested in the
random contributions of mutation and bottlenecks that affect population growth in
a unique way that may be characterized as a special type of demographic noise. To
our knowledge, compounding demographic stochasticity with observation error is
still a fertile field, both in ecology and genetics.

By modelling both the process error and observational error we see that the
pattern of variability in our data is explained almost entirely by the observational
error. In fact, based on numerical calculations, we were able to demonstrate that the
only situation where process error and observational error are comparable is when
the mutation rate is extremely high (on the order of λ = 10−3) and the bottleneck is
extremely small (N0 = 1000). So for nearly all experiments of this type the process
error can be neglected. This greatly simplifies the data analysis. In fact, since we
were able to demonstrate that process error can be ignored, then in the context of
the observational error only model, our moment estimate for λ is indeed also the
maximum likelihood estimate. These conclusions would not be possible without
the mathematical model. The conclusions are facilitated by the fact that we have
developed explicit formulae for the contributions of both observational error and
processes error in the estimates (29). A maximum likelihood approach that relies
on asymptotics to assess error can actually be less reliable than moment estimators
when the asymptotic theory does not hold. (In fact, in the area of statistical genet-
ics, where complex likelihood approaches are common, there is a growing body
of literature [13],[2], that suggests that estimates based on simple summaries work
as well as a full maximum likelihood approach, yet are more readily implement-
able in complex situations where full maximum likelihood is not computationally
feasible.)

The models also suggest sensible and efficient experimental designs, which can
aid the researcher in deciding how much data to collect and at what time periods
should the process be observed. Finally, our approach could serve as a template for
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future collaboration between experimentalists and theoreticians in designing and
evaluating evolution experiments in a variety of settings.
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6. Appendix 1- recursion

Throughout the paper we develop recursion equations that relate the process at
time t to the process one unit of time into the past t − 1. The general equation is as
follows.

zt = azt−1 + cbt−1 + d. (34)
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It follows by induction that

z1 = az0 + c + d

z2 = az1 + cb + d = a2z0 + (a + b)c + (a + 1)d

z3 = az2 + cb2 + d = a3z0 + (a2 + ab + b2)c + (a2 + a + 1)d

z4 = az3 + cb3 + d = a4z0 + (a3 + a2b + ab2 + b3)c + (a3 + a2 + a + 1)d

implying that

zt = atz0 + cat−1
t−1∑
i=0

(
b

a

)i

+ d

t−1∑
i=0

ai.

We now use a geometric series identity (See [12] page 69 equation 1) to get:

zt = atz0 + c
at − bt

a − b
+ d

1 − at

1 − a
. (35)


