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ABSTRACT

Horizontal plasmid transfer plays a key role in bacterial adaptation. In harsh environments, bacterial
populations adapt by sampling genetic material from a horizontal gene pool through self-transmissible
plasmids, and that allows persistence of these mobile genetic elements. In the absence of selection for
plasmid-encoded traits it is not well understood if and how plasmids persist in bacterial communities.
Here we present three models of the dynamics of plasmid persistence in the absence of selection. The
models consider plasmid loss (segregation), plasmid cost, conjugative plasmid transfer, and observation
error. Also, we present a stochastic model in which the relative fitness of the plasmid-free cells was
modeled as a random variable affected by an environmental process using a hidden Markov model
(HMM). Extensive simulations showed that the estimates from the proposed model are nearly unbiased.
Likelihood-ratio tests showed that the dynamics of plasmid persistence are strongly dependent on the host
type. Accounting for stochasticity was necessary to explain four of seven time-series data sets, thus
confirming that plasmid persistence needs to be understood as a stochastic process. This work can be
viewed as a conceptual starting point under which new plasmid persistence hypotheses can be tested.

COMPARATIVE molecular phylogenies (Gogarten

and Townsend 2005; Sørensen et al. 2005) and
prospective, mathematical models coupled with exper-
imental data sets have shown that horizontal gene
transfer (HGT), and in particular conjugative plasmid
transfer (Stewart and Levin 1977; Levin 1980;
Simonsen 1991), is an important mechanism for bac-
terial adaptation. The search for adaptive traits within
a large horizontal gene pool is often facilitated by
plasmids, since these mobile genetic elements often
carry genes that are advantageous to their hosts (e.g.,
genes required to exploit new carbon sources, antibi-
otic resistance genes, etc.). As these genetic functional
units allow their host to occupy new ecological niches,
then the persistence of plasmids in bacterial popula-
tions under local selective pressures can be understood
(Gogarten and Townsend 2005; Sørensen et al.
2005). Perhaps most difficult to understand is the
persistence of plasmids under nonselective conditions,
that is, when the plasmid’s genetic material does not
confer any advantage to its hosts. This scenario is the
focus of our research. Understanding this scenario has
many important applications. For example, the loss or
persistence of plasmids carrying antibiotic resistance
genes, when the selective pressure of the antibiotic is

removed from the population, has major human health
implications.

In the absence of selection, a plasmid may be main-
tained if a certain balance exists between three key factors
(Stewart and Levin 1977; Simonsen 1991; Freter et al.
1983; Lenski and Bouma 1994). These factors are (i)
plasmid loss by segregation during bacterial replication,
(ii) the burden or fitness cost associated with carrying
and/or expressing the extra piece of genetic material,
and (iii) plasmid transmission via conjugation. In other
words, for a plasmid to persist, horizontal transmission
must compensate for segregational loss and fitness cost of
the plasmid. The framework under which most of this
knowledge about plasmids persistence has been built is
deterministic differential equation modeling. Yet, the
main biological mechanisms and principles under which
evolution and adaptation are theoretically understood
are essentially stochastic (Novozhilov et al. 2005).

Adequately connecting deterministic and stochastic
population models to real time-series data via statistical
time-series methods is an important yet difficult task
(Cushing et al. 2002; Dennis et al. 2006). The statistical
framework under which these analyses are performed
while considering both, process and observation un-
certainty is well formalized and known as state-space
modeling (SSM) (Carlin et al. 1992; Meyer and Millar

1999; Dennis et al. 2006). One important class of SSMs is
the HMM. Much work remains to be done to assess
the reliability and accuracy of maximum-likelihood
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parameter estimates from population dynamics hidden
Markov models and the inferences made from them. A
recent study in theoretical population dynamics (Dennis

et al. 2006) has shown that even in the simple case of
a linear and Gaussian SSM, the likelihood function
is highly multimodal and that the finite samples ML
estimates do not enjoy good statistical properties. These
statistical deficiencies would be expected to vanish when
either multiple replicated samples are taken or true
process replicates are observed, something that is rarely
feasible in macroecological studies, but relatively easy
to accomplish in microbial experiments. Finally, we ex-
pect that a careful time-series analysis might lead to a
better understanding of plasmid persistence in bacterial
populations.

The objective of our current work is twofold: first, we
formulate, fit, and later compare deterministic and
stochastic models to time-series data on plasmid persis-
tence in seven bacterial strains. In doing so we consider
taking into account both process and observation
uncertainty using analytical methods for SSM. Second,
we show via extensive simulations that the statistical
procedures implemented here provide the means to
reliably make biological inferences from plasmid in-
stability time-series data (De Gelder et al. 2007). We
briefly explain the stability experiment methods used to
obtain time-series data on plasmid instability and refer
to De Gelder et al. (2007) for technical details on the
experimental procedures. We also present a mathemat-
ical modeling section in which we state and develop
each one of the deterministic and stochastic models that
include segregation, selection, and horizontal transfer
processes used throughout the article. In a supplemen-
tal data file (at http://www.genetics.org/supplemental/),
the statistical methodology used to confront the mod-
els with the time-series data and evaluate their per-
formance is explained in detail. Finally, we discuss the
implications, significance, and weaknesses of our find-
ings in light of the current studies in the area.

THEORETICAL BACKGROUND

Segregation and selection model: Our simplest dy-
namic model summarizing the growth dynamics of the
fraction of plasmid-free cells in the experiments de-
scribed below (see materials and methods) is a simple
system of difference equations where it is assumed that
at any generation, the abundance of the plasmid-free
cells (m) increases due to (1) plasmid segregation from
the wild-type cells (n) at a frequency l and (2) growth of
segregants at a rate 211s, where s represents the
selection coefficient

nt ¼ 2ð1� lÞnt�1;

mt ¼ 211smt�1 1 2lnt�1 ð1Þ

and the fraction of plasmid-free cells xt is given by

xt ¼
mt

mt 1 nt
: ð2Þ

This deterministic model was developed by De Gelder

et al. (2004) and assumes that there is no conjugational
transfer from plasmid-carrying cells to segregants.

Throughout this article, the segregation and selec-
tion (SS) model serves as our null hypothesis against
which more complex models and growth behaviors
were tested. The solution to the SS model is presented
in De Gelder et al. (2004, appendix a). This fraction of
plasmid-free cells grows logistically starting very close to
0 and approaching 1 as t/‘. We note that Joyce et al.
(2005) also showed that it can be assumed that the
deterministic growth of plasmid-free cells is basically
unaffected by the daily bottlenecks described below
(materials and methods).

Horizontal transfer model: A horizontal transfer
(HT) model can be generated from Equation 1 by
incorporating a term that accounts for the fraction of
plasmid-free cells that reacquire the plasmid through
conjugative transfer. The typical approach to model
conjugation (Levin 1980; Simonsen 1991; Stewart

and Levin 1977) is to use the mass-action principle,
where the rate at which conjugation occurs depends
linearly on the concentration of plasmid-free and
plasmid-carrying cells. Using the mass-action principle,
the horizontal transfer model where g represents a
constant conjugative transfer frequency would be writ-
ten as follows:

nt ¼ 2ð1� lÞnt�1 1 211sgmt�1nt�1;

mt ¼ 211sð1� gnt�1Þmt�1 1 2lnt�1: ð3Þ

Here we model conjugation by relaxing the mass-
action principle with the following system of equations,

nt ¼ 2ð1� lÞnt�1 1 211smt�1g
ð1� xt�1Þ

u 1 ð1� xt�1Þ
; ð4Þ

mt ¼ 1� g
ð1� xt�1Þ

u 1 ð1� xt�1Þ

� �
211smt�1 1 2lnt�1; ð5Þ

where xt is the fraction of segregants at time t (2), g is an
asymptotic maximum conjugation frequency during a
time interval, and u represents the fraction of the
plasmid-carrying cells at which the frequency of con-
jugations is half its maximum. The second term in
Equation 4 assumes that the transfer process works as in
an enzymatic reaction, where enzyme and substrate are
the plasmid-carrying and plasmid-free cells, respectively
(Andrup and Andersen 1999).

The system of Equations 4 and 5 can be readily
reduced to a single model equation for the fraction xt of
plasmid-free cells at time t :

xt ¼
(1� gð1�xt�1ÞÞ=½u 1 ð1� xt�1Þ�211sxt�1 1 2lð1� xt�1Þ

211sxt�1 1 2ð1� xt�1Þ
:

ð6Þ
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A local stability analysis (Kot 2001) shows that
this model has three equilibrium solutions, the simplest
of which is xw

1 ¼ 1. The other two solutions xw
2 and

xw
3 are ð � B6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p Þ=2A, where A ¼ (2s � 1,

B ¼ ððu 1 1Þð2s � 1Þ1 l 1 2sgÞ, and C ¼ �l(u 1 1).
The equilibrium solution xw

1 ¼ 1 is stable as long as the
plasmid burden s is big enough to satisfy

g

u
$ 1� 1� l

2s ; ð7Þ

provided u . g . As it is illustrated in Figure 1, when the
solution xw

1 ¼ 1 is stable, the plasmid-carrying cells are
guaranteed to be lost from the population. When s is
too small so that inequality 7 is not satisfied, the
equilibrium solution xw

1 ¼ 1 becomes unstable and
one of the other two solutions of the model, the one
inside the interval (0, 1), (xw

2 ), becomes stable. This new
equilibrium solution basically predicts that plasmids will
never be lost from the population.

Note that inequality 7 is readily interpretable: Since
the fraction g/u is a measure of the intensity of the
transfer frequency, this formula basically states that a
high loss of plasmids due to segregation must be
balanced by a high transfer frequency for the plasmids
to persist in the population. Likewise, a high cost would
decrease the fraction (1� l)/2s and hence increase the
size of the transfer-frequency threshold needed to
guarantee the persistence of plasmids in the popula-
tion. This property of the HT model is analogous to the
results of Stewart and Levin (1977), who found that in
a chemostat, plasmids can be maintained only when the
cell density and conjugational transfer rate constant are
large enough for the transmission of the plasmid to
overcome its loss through segregation and the selection
against plasmid-carrying bacteria. However, we note that
the HT model also shows that, when the frequency
dependence in transfer is strong, i.e., at higher values of

u, the persistence threshold g/u becomes smaller and
the loss of plasmids through segregation and selection
can be more easily overcome. If the loss by segregation
and the frequency of frequency-dependent transfer are
kept fixed, a reduction in the size of the cost s down to a
critical value (see inequality 14) allows the invasion of
plasmids in the population. This behavior is visualized
by plotting both solution trajectories and the growth
rate of the fraction of plasmid-free cells at different
values of s (see Figure 1). As the plasmid burden s

decreases, the growth rate ceases to be parabolic in
shape (as in a typical logistic growth curve) and adopts a
cubic-like form with a root inside the interval (0, 1),
which is a stable equilibrium. That is, it is the point
where the long-term fraction of plasmid-free bacteria
stagnates, thus predicting a long-run coexistence be-
tween plasmid-free and plasmid-carrying bacteria.

The variable selection model: The dynamic equa-
tions explained so far assume that during an entire
plasmid stability experiment the growth of the fraction
of plasmid-free cells follows essentially a deterministic
pattern. That is, all the deviations from the determin-
istic smooth growth Equations 1, 2, 4, and 5 that appear
in the data are assumed to be pure random sampling
error. However, theory and experiments (De Visser and
Rozen 2005) suggest that during a 600-generations
experiment, the occurrence of compensatory mutations
and/or a variable host-dependent plasmid burden
would dramatically alter the plasmid loss dynamics.
Periods of overall heavy plasmid loss would be followed
by periods in which the relative frequency of segregants
remains almost unchanged. Therefore, as an alternative
hypothesis, we propose a stochastic formulation of the
segregants growth dynamics that assumes that at each
time step, the burden is a value drawn from a continu-
ous probability distribution. By doing so, the fraction of
plasmid-free cells grows stochastically. This variable
selection (VS) model is then recognized as a model

Figure 1.—Sample deterministic trajec-
tories (left) and growth rates (right) of
the horizontal transfer (HT) model. These
plots illustrate that for certain parameter
values, the HT model predicts that a long-
term coexistence of plasmid-free and plas-
mid-carrying cells will occur. When coexis-
tence is predicted, the growth rate of the
segregants fraction as a function of the frac-
tion of plasmid-free cells adopts a cubic-like
form reminiscent of an Allee effect model.
Here, however, the interior equilibrium is
stable and not unstable as in typical Allee ef-
fect models. The different curves correspond
to different plasmid cost s values. The other
parameters remained fixed. The parameter
values used were close to the ML estimates
for the strain P21: l ¼ 6.851044 3 10�05,
u ¼ 0.25, g ¼ 2.443239 3 10�02.
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with environmental stochasticity (Lewontin and Cohen

1969; Keiding 1975; Cushing et al. 2002). Hence, to
specify our variable selection model we let the selection
coefficient be drawn at each time step from a Normal
distribution (Lewontin and Cohen 1969; Keiding

1975) St with mean m and variance t2. Then, the VS
model can be written as

Nt ¼ 2ð1� lÞNt�1; ð8Þ

Mt ¼ 211St Mt�1 1 2lNt�1; ð9Þ

Xt ¼
Mt

Mt 1 Nt
¼ Xt�1211St 1 2lð1� Xt�1Þ

Xt�1211St 1 2ð1� Xt�1Þ
; ð10Þ

where uppercase letters denote random variables and
lowercase letters hereafter are used to denote realiza-
tions of the random variables involved. Then Xt be-
comes a Markov process whose transition probability
density function (pdf) is found to be (appendix):

fðXt jXt�1ÞðxtÞ ¼
ð1� lÞ

ln 2ðxt � lÞð1� xtÞ
ffiffiffiffiffiffiffiffiffiffi
2pt2
p exp

�ðht � mÞ2
2t2

� �
;

ð11Þ

where

ht ¼
ln ½ð1� xt�1Þðxt � lÞ� � ln ½xt�1ð1� xtÞ�

ln 2

and xt . l. The transition pdf (Equation 11) provides us
the means to characterize the behavior of Xt via
analytical and simulation results. Also, this pdf provides
the proper link between parameter estimation and the
hypothesized biological process.

MATERIALS AND METHODS

Stability experiments and time-series data: To investigate
whether the ability of a broad-host-range plasmid to be stably
maintained in a bacterial population varies between different
hosts, plasmid stability experiments were performed with
different bacterial strains carrying the same plasmid pB10, as
described by De Gelder et al. (2005, 2007). The experimental
approach is briefly summarized below. The 64.5-kb plasmid
pB10 (Schlüter et al. 2003), isolated from the bacterial
community of a wastewater treatment plant (Dröge et al.
2000), is a self-transmissible, BHR IncP-1b plasmid that
mediates resistance to the antibiotics tetracycline (Tc), strep-
tomycin (Sm), amoxicillin, and sulfonamide and to HgCl2. For
each strain, stability experiments were performed in triplicate,
starting from three separate colonies, which were each in-
oculated in 5 ml LB with the appropriate concentrations of Tc
and Sm to select for pB10. After incubation for 24 hr, these
cultures were washed to remove the antibiotics by spinning
down 1 ml culture and resuspending the pellet in 1 ml saline.
From these cell suspensions, 4.88 ml was transferred to 5 ml of
LB such that the cells went through 10 generations of growth
during each 24-hr growth cycle. These freshly inoculated
cultures constituted time point zero. After they were plated

on LB plates and an aliquot was archived at �80�, they were
incubated on a rotary shaker for 24 hr. Then, 4.88 ml of the full-
grown cultures was transferred each 24 hr to fresh 5 ml LB.
These were the daily bottlenecks mentioned in the theoret-

ical background section. At various time points, the cultures
were diluted and plated on LB plates. The fraction of plasmid-
free cells in the population was determined by replica picking
50 colonies per culture at random from the LB plates onto
LB–Tc, LB–Sm, and LB plates and scoring Tc�Sm� colonies.
Random Tc�Sm� isolates of each strain were confirmed as true
segregants through comparison of their genomic fingerprints
(BOX PCR) (Rademaker et al. 1997) with those of the original
strains from which they were derived and through gel elec-
trophoresis of plasmid extracts (Kado and Liu 1981; Top et al.
1990). The time-series data thus obtained were analyzed using
three population dynamics models.

Statistical analysis: Deterministic modeling (sampling error with
no environmental noise): A sample of size dtj colonies was taken at
random from a replicated culture j, j¼ 1, 2, . . . , r, at day t. Each
individual has a probability xt of being a segregant and (1� xt)
of being a wild type, where xt is the model-predicted fraction of
segregants at generation t. This defines a binomial sampling
process with dtj trials and the fraction of segregants xt changes
deterministically in time according to the dynamic Equations
1, 2, 4, and 5. Then, the number of plasmid-free cells observed
in culture j at day t, denoted Ytj, is a binomial random variable,
and

PðYtj ¼ ytjÞ ¼
dtj

ytj

� �
x

ytj
t ð1� xtÞdtj�ytj : ð12Þ

The two deterministic models, SS (Equations 1 and 2) and
HT (Equations 4 and 5), with the sampling process defined by
Equation 12, account for the deviations of the observations
from the predicted growth pattern. Therefore, the next step in
the model-building process was to rigorously connect the data
with the model using the above binomial sampling process.
This was done using the method of maximum likelihood (Rice

1995) in the case of the SS and HT models, as in De Gelder

et al. (2004). For these two models, a likelihood-ratio test
(LRT) was carried out, where under the null hypothesis the
data were binomially distributed according to Equation 12,
and under the alternative hypothesis the data were still
binomially distributed but with a different mean ptj unrelated
to the model. Under the null hypothesis, the estimated mean
trend is dE½Ytj � ¼ dtj bxt , where bxt is the model-predicted fraction
of segregants at generation t using the ML estimates for the
parameters s, l, g, u, and x0. Under the alternative hypothesis,
the estimated mean trend is dE½Ytj � ¼ dtj bptj , where bptj is just the
empirical estimate of the segregants’ proportion at replicate j
and generation t. After taking the natural logarithm and
multiplying by �2, the LRT L reduces to

�2 ln L ¼ �2
Xq

t¼1

Xr

j¼1

ytj

h
lnðbxtÞ � lnð bptjÞ

i

1 ðdtj � ytjÞ
h
lnð1� bxtjÞ � lnð1� bptjÞ

i
: ð13Þ

To approximate the distribution of�2 ln L we used param-
etric bootstrap likelihood-ratio tests (Efron and Tibshirani

1993) and proceeded as in De Gelder et al. (2004). While the
chi-square distribution is often used to approximate the
distribution of �2 ln L, it is valid only if the sample sizes are
large enough. The asymptotic theory is known to be unreliable
for small sample sizes, which is exactly the case in our data
during the early time periods. Our approach has the advan-
tage that it does not rely on asymptotic theory and the accuracy

960 J. M. Ponciano et al.



of the approximation is determined by the number of simu-
lations, which we can completely control. A more extensive
discussion of this issue appears in De Gelder et al. (2004,
p. 1137).

Stochastic modeling (sampling error plus environmental noise):
To carry out parameter estimation for the stochastic model in
Equations 8–10, we reformulate it as a SSM or HMM. For each
replicated time series of the process, we denote its realizations
as Xt,j, t ¼ 1, 2, . . . , q, and j ¼ 1, 2, 3. The stochastic growth
equation that governs each of the unobserved Xt,j random
realizations is therefore given by (see Equation 10)

Xt;j ¼
Xt�1;j 2

11St 1 2lð1� Xt�1;jÞ
Xt�1;j2

11St;j 1 2ð1� Xt�1;jÞ
: ð14Þ

Given an (unobservable, or ‘‘hidden’’) replicated random
path Xj¼ ½X1,j, X2,j, . . . ,Xq,j�9 that starts from a fixed (unknown)
proportion of plasmid-free cells x0,j, each observation in the
vector of recorded plasmid-free colonies counts Yj ¼ ½Y0,j, Y1,j,
Y2,j, . . . ,Yq,j�9 is assumed to be drawn from a binomial prob-
ability distribution with samples sizes dj¼ ½d0,j, d1,j, . . . ,dq,j�9 and
probabilities vector

x0;j

Xj

� �
:

That is,

ðYj j XjÞ � Binom dj;
x0;j

Xj

� �� �
: ð15Þ

Note that Equation 15 differs from Equation 12 in an
important way: In Equation 15, except for x0,j, the probabilities
used to evaluate the binomial sampling distribution are them-
selves random variables and not fixed quantities as in Equation
12. Equation 14 is called the ‘‘state equation’’ and Equation 15 is
called the ‘‘observation equation.’’ Together, Equations 14 and
15 constitute the state-space model formulation (Dennis et al.
2006) of the segregation-selection problem.

We used a Monte Carlo technique to retrieve the maximized
likelihood scores and carry out model selection. The maxi-
mized likelihood scores were computed by evaluating the
likelihood function of the observed time series at the ML
estimates. Let u ¼ ½l, m, t2, x0, 1, x0, 2, . . . , x0,r�9 be the model
parameters of interest for r replicated time series of the
process. Then, the likelihood function of the observed time
series for these r replicates, denoted by L(u), is

LðuÞ ¼ Pð½Y1;Y2; . . . ;Yr� juÞ ¼
Yr

j¼1

PðYj juÞ

¼
Yr

j¼1

ð
PðYj ju;XiÞPðXj juÞdXj: ð16Þ

The integral in Equation 16 cannot be computed directly and
was approximated using importance sampling as in George and
Thompson (2002). Before doing so, the ML estimates of the
model parameters were computed using Gibbs sampling Carlin

et al. (1992). However, we note that the methods used here
generalize their approach, as Carlin et al. (1992) treat only the
case in which the state and observation equations have additive
state and observation errors into their nonlinear and non-
Gaussian models. Carlin et al. (1992) formulated their methods
using the Bayesian paradigm of statistical estimation. In De

Gelder et al. (2007), however, we adopted the frequentist
perspective to find the SS and HT model parameter estimates.
So, to make the results of the SS model comparable to those ofDe

Gelder et al. (2004, 2007), we adopted the strategy of George

and Thompson (2002) and used the Bayesian methodology of
Carlin et al. (1992) just as a numerical device to compute the ML
estimates of the VS model parameters: By adopting uniform
priors for all the parameters, the posterior modes of the param-
eters of interest are equivalent to the ML estimates.

In the supplemental data (at http://www.genetics.org/
supplemental/), we present first the Gibbs sampling algorithm
for a single time series of plasmid stability, with no replicas.
Then we extend this procedure to the case in which a number r
of replicated time series are recorded. We also present there
the details of an extensive simulation experiment performed
to evaluate the performance of the parameter estimation
method, using the concept of bootstrap (Efron and Tibshirani

1993). Also, in the supplemental data we explain in detail the
calculation of the likelihood Equation 16. For a very good
description of the Gibbs sampling algorithm, and why it works,
we refer the reader to Casella and George (1992).

RESULTS

Results of fitting the models to the plasmid stability
data via LRTs: The different mathematical models were
fitted to time-course data that represent the stability of
plasmid pB10 in seven different hosts (2). In Figure 2,
top, we plotted the model predicted fraction of segre-
gants’ growth along with the replicated data, for strains
H2 and R28 under the SS model and for strain P21
under the HT model. The results of the SS model fitting
to the plasmid stability time series (Table 1 and Figure 2,
top) showed that for the strains Pseudomonas putida H2
and P. koreensis R28 only two simple factors, plasmid cost
and the segregation frequency, were necessary to
explain the segregant fraction time series and most of
the variation in the data, as confirmed by the absolute
goodness-of-fit P-values. For Stenotrophomonas malthophilia
P21, fitting the SS model was not sufficient and it was
necessary (Figure 2) to include frequency-dependent
plasmid transfer in the deterministic model equations.
For the strains P. plecoglossicida P18, P. veronii S34,
Ochrobactrum tritici S55, and Ensifer adhaerens S96, both
deterministic models failed to fit the data as they showed
more variability than what could have arisen from
simple random sampling off the deterministic trajecto-
ries (Figure 2, Equations 1, 4, and 5). For these strains
the VS model provided an adequate explanation of the
data. Finally, note that if two models are nested, the ML
score of the more complex model has to be the biggest.
In Table 1, for the strains H2 and R28, after rounding,
the ML score of models HT and SS are the same. Recall
that in the HT model, when g ¼ 0, the HT model is
identical to the SS model. As we show in De Gelder et al.
(2007), the ML estimates of g for these two strains are
2.11E� 09 and 1.99E� 30 respectively. Thus, the ML esti-
mate under the HT model for these strains basically says
that g� 0. Therefore, the HT model estimates converge
to the SS model and hence their maximum-likelihood
scores must be nearly identical. For the S55 strain the
estimate of g is 1.348896E-05, and, although this number
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is also close to 0, we note that neither the SS nor the HT
model fits the data and that these models were rejected
according to the absolute goodness-of-fit test.

Results of predicted growth patterns: The SS and HT
models predict a smooth trajectory and the deviations of
the data from those trajectories were assumed to be due
to sampling noise (see Figure 2). The SS and HT model
have the advantage of providing a very simple explana-
tion of the data, yet they explain only a small number of
growth patterns. In Figure 2, bottom, we plotted the
recorded data for each replicated stability experiment of
the strain P18, along with the posterior mode of the
estimated trajectory under the VS model. Following the
HMM assumptions, the process of growth is itself
stochastic, so that the recorded data set would not
deviate from a smooth unknown trajectory, but instead
from a variable growth pattern. Thus, Figure 2, bottom,
should not be interpreted as a typical ‘‘observed vs.
predicted’’ plot. A major advantage of the VS model is

that it can explain much more complex growth patterns.
Its one disadvantage is that it does not provide a precise
explanation as to what might cause the variation in selec-
tion over time. How well the VS model approximates a
more mechanistic model is a topic for further research.

Results of the stability analysis under the HT model:
As explained before, the plots in Figure 1 reveal that
there exist particular combinations of parameter values
for which a long-term coexistence of plasmid-free and
plasmid-carrying bacteria is predicted. Figure 3 depicts
explicitly the regions of the parameter space for which
this coexistence occurs. Take for instance the first
subplot in Figure 3, where the plasmid burden s is
located in the abscissa and the segregation frequency l

is in the ordinate. The picture inside these axes was
produced as follows: First, note that solving for s in
inequality 7, it follows that for fixed (biologically
meaningful) values of u, l, and g, xw

1 ¼ 1 is stable (i.e.,
the plasmid will always go extinct) whenever

Figure 2.—For each of four bacterial strains (H2, R28, P21, and P18) the data (solid circles) and the estimated model trajec-
tories (lines) are plotted. (Top) Maximum-likelihood observation error fit of the dynamic Equation 1 for H2 and R28 and Equa-
tions 4 and 5 for P21. There, it is assumed that the underlying trajectories obey a deterministic dynamic equation (solid line) and
that any deviation from that trajectory seen in the data (solid circles) is attributed to sampling error. (Bottom) A process noise plus
observation error fit for each of the three replicates of strain P18. The model parameters were estimated using the three replicates
simultaneously and are presented separately with a different vertical scale for clarity. In each case, the open circles joined by a solid
line show the observations and the solid circles represent the location of the underlying estimated trajectory (the Xt process) from
which the observations were assumed to be drawn.

962 J. M. Ponciano et al.



s .
lnðuð1� lÞÞ � lnðu� gÞ

ln 2
:

Then, for each combination of s and l the right-hand
side of the above inequality was evaluated using the ML
estimates of u and g. Then, a dot was simply plotted if the
above inequality was satisfied. By repeating the same
procedure for many combinations of s and l in the
quadrant, a shaded area enclosing the parameter region
where the point xw

1 ¼ 1 is stable appeared. The
unshaded area denotes the set of parameter values for
which xw

1 ¼ 1 is an unstable equilibrium. As mentioned
before, when this occurs, a new stable equilibrium xw

1

appears and the fraction of plasmid-free bacteria never
converges to 1, but to a point in (0, 1). In other words,

the plasmid-carrying bacteria remain in the population
at a certain fraction.

The ML estimates for the data set of the strain P21
were superimposed on these stability boundaries plots
and fell inside the region where no long-run coexis-
tence between plasmid-free bacteria and plasmid-carrying
bacteria is predicted. To account for sampling uncer-
tainty we added the approximate 95% parametric
bootstrap confidence cloud around the ML estimates
(Dennis et al. 1995; Hilborn and Mangel 1997; De

Gelder et al. 2004). The joint confidence interval can be
interpreted as an inverted likelihood-ratio test (Rice

1995): The points inside that interval denote the
plausible parameter values under which the data at
hand could have arisen, given the specified model. The

TABLE 1

Likelihood-ratio tests and model selection results

Strain
�ln L̂ SS

(P-value absolute g.o.f.)
�ln L̂ HT

(P-value absolute g.o.f.)

P-values for likelihood-ratio test of:

�ln L̂ VS SS vs. HT SS vs. VS HT vs. VS

H2 44.913 (0.2498) 44.913 (0.1625) NA 1 NA NA
R28 49.77485 (0.1304) 49.77485 (0.2457) NA 1 NA NA
P21 45.738 (0.00052) 30.24335 (0.5313) NA 1.86534E-07 NA NA
P18 246.0254 (0) 245.2713 (0) 104.4029 NA 4.20413 3 10�61 3.14139 3 10�63

S34 189.7365 (0) 175.8767 (0) 64.91768 NA 7.8379 3 10�54 3.45158 3 10�50

S96 644.6472 (0) 520.86 (0) 59.69714 NA 2.4877 3 10�253 1.3758 3 10�202

S55 227.3623 (0) 227.3623 (0) 83.82895 NA 6.26173 3 10�62 2.16624 3 10�64

The estimated negative log-likelihood score �ln L̂ for each model (SS, segregation selection; HT, horizontal transfer; VS, vari-
able selection) and strain combination is given under the first three columns. The better the model fit, the lower its computed
�ln L̂ value. For the SS and HT model columns, the absolute goodness-of-fit (g.o.f.) P-values in parentheses indicate whether the
model describes adequately (P-value . 0.05) or not (P-value , 0.05) the data at hand. Finally, the last three columns present the
P-values for the likelihood-ratio tests to evaluate which model was the best for describing the data.

Figure 3.—Stability boundaries for the hori-
zontal transfer (HT) model, location of the esti-
mated model parameters for the P21 strain and
their joint approximate 95% confidence region.
In each subplot, the HT model stability bound-
aries are plotted as a function of each parameter
combination. The shaded area corresponds to the
set of parameter values for which the plasmid-
carrying cells eventually disappear (i.e., where
the point x ¼ 1 is stable) and the unshaded area
denotes the parameter space for which the point
x ¼ 1 ceases to be a stable equilibrium and a new
stable equilibrium x 2 (0, 1) appears. In the un-
shaded area, a long-run coexistence between
plasmid-free cells and plasmid-carrying cells is
predicted. In each case, the solid dot locates
the maximum-likelihood estimated parameter
values and the cloud of blue points around them
is their approximate joint 95% confidence cloud.
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(blue) cloud of points in Figure 3 lies within both the
shaded and unshaded areas. Therefore, due to this
observation it cannot be concluded that the plasmids
will always be completely lost in the population in
repeated experiments, using the strain P21.

Assessing the reliability and accuracy of the variable-
selection (VS) model via simulations: To assess the
performance of the HMM formulation of the VS model,
an extensive simulation study was performed. Data were

simulated under the assumptions of the VS model using
the parameter values x0 ¼ 0.0066, m ¼ 0.01166667 per
generation, t2 ¼ 0.1583333 per generation, and l ¼
1.533333 3 10�05 per generation. Figures 4–6 were all
based on simulated data sets.

Assessing how well the HMM formulation of the VS
model predicted the underlying frequency dynamics
was done as follows: A single simulated trajectory of the
growth of the frequency of segregants over time under
the VS model was produced and plotted in Figure 4 with
triangles. Then, a random sample under the binomial
model Equations 14 and 15 with 50 trials and probability
equal to the size of the segregants fraction at each time
step was taken. Those samples were then treated as an
observed data set and plotted with open circles in Fig-
ure 4. The samples were then analyzed using the Gibbs
sampling algorithm (see the supplemental data file at
http://www.genetics.org/supplemental/). The results
were plotted with solid circles in Figure 4. As Figure 4
suggests, the VS model does well at predicting the
underlying frequency dynamics.

The parameter estimation method (see the supplemen-
tal data file at http://www.genetics.org/supplemental/)
for the HMM formulation of the segregants’ popula-
tion dynamics provides reliable estimates of the plasmid
cost and plasmid segregation frequency. One thousand
data sets containing each three replicated time series
of length 22 were simulated using the VS model. For
each replicated realization of the process within each
one of the ‘‘true’’ 1000 data sets, one random sample
using the binomial observation error model was gener-
ated, thus obtaining 3000 simulated ‘‘observed’’ time
series. The simulated observed time series were used to
estimate (1) the posterior distributions of the model

Figure 4.—Example of a simulated trajectory under the
variable selection (VS) model (triangles), sampled observa-
tions from the trajectory according to a binomial sampling
process (open circles) and the HMM estimates of the true sim-
ulated trajectory (solid circles) using only the observations
(open circles). The parameter values used for the simulations
are x0 ¼ 0.0066, m ¼ 0.01166667 per generation, t2 ¼
0.1583333 per generation, and l ¼ 1.533333 3 10�05 per
generation.

Figure 5.—Evaluation of the performance of the HMM parameter estimation methods. One thousand data sets containing
three replicated time series of plasmid loss each were simulated using the VS model plus binomial sampling error. For each data
set, the posterior modes of the model parameters were found and the thus-obtained set of 1000 posterior modes for each param-
eter was plotted in a histogram and compared against the true values used to simulate (vertical lines).
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parameters and (2) the posterior distributions of the
true simulated trajectories. Thus, 1000 posterior distri-
butions were obtained for each of the model parame-
ters m, t2, and l.

The posterior modes of the model parameters poste-
rior distributions were retrieved each time and were
plotted in a histogram and compared to the true values
used to generate the simulations in Figure 5. Because
uniform priors were used throughout, the posterior
modes of the model parameters are identical to the
ML estimates of the model. Therefore, the variability
around the mode of the posterior modes histograms is
an estimate of the variance of the ML estimates. In these
histograms, the 3 modes of the ML estimates of the
model parameters m, t2, and l lay very close to the true

values, thus showing that the HMM parameter estima-
tion framework provides nearly unbiased estimates of
the model parameters. Also, the posterior distributions
of the estimates of each point in the simulated true
trajectories were computed (thus obtaining a total of
3000 3 22 posterior distributions). The posterior mode
of each of those 3000 3 22 posterior distributions was
computed and the difference between those modes and
the true unknown trajectory point values was computed
and plotted as histograms in Figure 6. The mode of
those histograms lies in general right above 0, implying
that the mode of the ML estimates is usually an unbiased
estimate. The mode of the ML estimate of x0 was�0.050
and thus conveyed a biased estimate of the true original
value x0 ¼ 0.0066. A closer inspection of the Monte

Figure 6.—Evaluation of the performance of the HMM parameter estimation methods. One thousand data sets containing
three replicated time series of plasmid loss each where simulated using the VS model plus binomial sampling error. For each
data set, the posterior modes of the underlying (unseen) trajectory were estimated and their difference against the true simulated
trajectory was computed. The 1000 sets of differences between the posterior mode of the X process trajectories and the true sim-
ulated value of the X process are shown as histograms, from day 0 to day 21.
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Carlo Markov chains generated using Gibbs sampling
and simulations not presented here showed that the
Gibbs algorithm had trouble converging for x0.

DISCUSSION

The patterns generated by the dynamics of plasmid
loss in seven bacterial strains were effectively explained
by our deterministic and stochastic population dynam-
ics models. The segregation selection and horizontal
transfer models with added observation noise together
explained three of seven data sets. Nonneglegible
plasmid transfer was a necessary component in our
models to explain the data set for the P21 strain. The
need of including process noise was evidenced by the
rejection of the pure deterministic observation error
models in four of the seven data sets in favor of the VS
model. Hence, our analysis shows clearly that different
strains presented different plasmid-loss dynamics.
Moreover, the parameter estimates helped to explain
which of the three underlying mechanisms was most
responsible for the observed rapid plasmid loss. In the
case of hosts H2 and P21, segregation rate was estimated
to be respectively very low to low, but the plasmid cost
was high to very high, suggesting that few segregants
were formed but swept through the population once
they appeared. In contrast, the very high segregation
frequency estimate for host R28 with a low cost suggest
that the major cause of rapid plasmid loss is a high
segregational loss rate and not so much the growth
advantage of plasmid-free segregants. Importantly, in
the case of s, the plasmid cost, which was also measured
empirically, the model-based estimates were very similar
to the experimental estimates obtained by De Gelder

et al. (2007) for the same strains.
Although the HT model predicts that there exist

certain parameter combinations for which the plasmid-
carrying and plasmid-free bacteria coexist in the long-
term, the ML parameter estimates for the strain P21
data indicated that the amount of transfer was not high
enough to compensate for the loss via segregation and
the selection against the plasmid-carrying cells. How-
ever, sampling variability can blur the certainty that over
time, the plasmids will disappear from a bacterial
population. Even if the ML parameter estimates predict
the eventual loss of the plasmids, the joint confidence
interval of the model parameters may encompass values
that are both consistent with the loss of plasmid-carrying
cells and their long-term presence, as shown by our
results (Figure 3).

The VS model is a major departure from other
modeling approaches (Stewart and Levin 1977; Levin

et al. 1979; Levin 1980; Levin and Stewart 1980;
Seneta and Tavaré 1982, 1983; Freter et al. 1983;
Cooper et al. 1987; Simonsen 1991; Proctor 1994;
Tolker-Nielsen and Boe 1994; Boe 1996; Boe and
Rasmussen 1996; Bergstrom et al. 2000; Gasunov and

Brilkov 2002; Wahl et al. 2002; Tanaka et al. 2003;
Novozhilov et al. 2005). The process noise included in
the VS model represents the variability due to the
environment, where the environment may be under-
stood as the host itself and the host’s growth environ-
ment (De Gelder et al. 2007). Our model suggests that
the plasmid cost changes from one day to the other. The
growth rate of fraction of plasmid-free bacteria, a
function of the plasmid cost, then becomes a random
variable. Modeling plasmid cost as random effect sub-
stantially improves our ability to adequately explain
much of the data. These stochastic changes in the
plasmid cost may be due to the effect of beneficial or
deleterious mutations in the host chromosome and/or
the plasmid. Plasmid-carrying bacteria can acquire, for
instance, compensatory mutations that allow them to
grow as fast as or faster than the plasmid-free bacteria.
These processes are not, however, explicitly modeled in
the VS model equations and further work is required to
unravel the underlying biological mechanisms behind
this variable plasmid cost. How well the VS approxi-
mates a more mechanistic model is a topic for further
research.

The fact that the VS model provided a substantially
better fit to most of the data sets makes the use of SSMs
an important tool for understanding plasmid-growth
dynamics. However, a careful analysis, followed by
extensive simulations, is required when using SSMs. As
mentioned before, a recent study in population dynam-
ics (Dennis et al. 2006) has shown that in the simple case
of a linear and Gaussian SSM, the likelihood function is
highly multimodal and ML estimation is not a trivial
task. In fact, in some cases, the globally highest peak in
the likelihood produces parameter estimates that are
quite biased compared with estimates based on other
modes. However, Jensen and Petersen (1999) showed
that the maximum-likelihood estimates for SSMs are
indeed asymptotically normal, which implies consis-
tency. This does not contradict the simulation results
of Dennis et al. (2006), since the multimodality eventu-
ally disappears and in the limit as the samples sizes goes
to infinity, the maximum-likelihood estimate will con-
verge to the true parameter. Yet, for finite amounts of
data, the maximum-likelihood estimate may not be the
best. Stochastic methods such as the Gibbs sampler used
in this article can often fail to sample all the modes. For
this reason, if multimodality of the likelihood surface is
suspected, then extensive validation of the statistical
methodology is required. Fortunately, the SSMs pre-
sented in this article did not exhibit any of the exotic
behavior found in Dennis et al. (2006).

Stochastic population dynamics modeling in micro-
bial systems is a subject that is still in its infancy and we
stress that much remains to be done in the experimen-
tal, mathematical, and statistical areas. One of the final
comments of Novozhilov et al. (2005, p. 1727) was that
‘‘unfortunately, quantitative estimates (of the different
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process rates) are lacking, which precludes us from sup-
plementing the mathematical analysis of the model with
empirical estimates . . . .’’ Our study is an attempt to
answer the plea of Novozhilov et al. (2005).
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Schlüter, A., H. Heuer, R. Szczepanowski, L. J. Forney, C. M.
Thomas et al., 2003 The 64,508 bp IncP-1b antibiotic multire-
sistance plasmid pB10 isolated from a wastewater treatment plant
provides evidence for recombination between members of differ-
ent branches of the IncP-1b group. Microbiology 149: 3139–
3153.
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APPENDIX: DERIVATION OF THE VS MODEL TRANSITION PDF

Recall that in the right-hand side (RHS) of Equation 8, xt�1 is the realized value of the process Xt at time t� 1. Also, St

comes from a normal distribution with mean m and variance t2. Provided that 0 # l , Xt j Xt�1 ¼ xt�1 , 1, it follows
from Equation 10 that

PðXt # xt jXt�1 ¼ xt�1Þ ¼ P
xt�1211St 1 2lð1� xt�1Þ
xt�1211St 1 2ð1� xt�1Þ

# xt

� �

¼ P St #
ln½ð1� xt�1Þðxt � lÞ� � ln½ð1� xtÞxt�1�

ln 2

� �
:

After differentiation and setting ht ¼ ð1=ln 2Þ=(ln½ð1� xt�1Þðxt � lÞ� � ln½ð1� xtÞxt�1�) we get

fðXt jXt�1ÞðxtÞ ¼
ð1� lÞ

ln2ðxt � lÞð1� xtÞ
ffiffiffiffiffiffiffiffiffiffi
2pt2
p exp

�ðht � mÞ2

2t2

� �
;

which is the transition pdf shown in Equation 11.
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