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To use the Gibbs Sampling algorithm for parameter estimation of the SSM eqs. (15)
and (16) in the main text according to the method of Carlin et al. (1992) we need first
some definitions and establish notation conventions. Let

• θ =
[
X0, X1, X2, . . . ,λ,µ, τ 2,

]′ be the vector of unobservable random variables,
where we use greek bold letters to distinguish random variables form point values
of the model parameters (eq. 15). Note that θ is not to be confused here with the
parameter θ of the HT model.

• Let Y be a short-hand notation for the vector of observation from one replicate
of the stochastic process Xt (see eq. 12), denoted Yj = [Y0,j , Y1,j , Y2,j , . . . , Yq,j ]′ in
the main text.

• Let X be a short-hand notation for the vector [X0, X1, X2, . . . , Xq]′. Under the
Bayesian paradigm, x0 is no longer viewed as a point value but as a a random
variable. Under both, the frequentist and Bayesian paradigms, X1, X2, . . . , Xq are
all random variables defined by the Markov process Xt (see eq. 12).

• Let pY|θ(y|θ) be the sampling density function of the observations given θ.

• Let pθ(θ) be the joint (multivariate) prior distribution of the unobservables.

• Let pY,θ(y,θ) be the joint density of the unobservables and observations.

• Finally, we introduce the following short hand notation for three important con-
ditional distributions: recalling that time is indexed from 0 to q, we set

1. Xi|Xt"=i ≡ Xi| (X0, X1, X2, . . . , Xi−1, Xi+1, . . . , Xq),

2. Xi|Xt<i ≡ Xi| (X0, X1, X2, . . . , Xi−1),

3. Xi|Xt>i ≡ Xi| (Xi+1, Xi+2, Xi+3, . . . , Xq),

where 0 ≤ t ≤ q and 0 ≤ i ≤ q.

It follows that the joint posterior density function of the process pY|θ(y|θ) is:

pθ|Y(θ|y) =
pθ(θ)pY|θ(y|θ)

pY(y)

∝ pθ(θ)pY|θ(y|θ). (S1)
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The conditional posterior distribution for the element θi of the vector of unobservables
random variables θ is simply the product of the terms in pθ|Y(θ|y) ∝ pθ(θ)pY|θ(y|θ)
that involve θi. The joint pθ(θ) prior is simply assumed to be

pθ(θ) = pτ2

(
τ2

)
pµ (µ) pλ (λ) pX0 (x0)

q∏

i=1

pXi|Xi−1,λ,µ,τ2

(
xi|xi−1,λ, µ, τ2

)
, (S2)

and the sampling density pY|θ (y|θ) is

pY|θ (y|θ) =
q∏

t=0

pYt|Xt,λ,µ,τ2

(
yt|xt,λ, µ, τ2

)
. (S3)

The objective of the Bayesian analysis of Carlin et al. (1992) is to marginalize the joint
posterior eq. S1 over the components of θ to obtain posterior means, medians and modes
using Gibbs sampling.

The Gibbs algorithm for our state-space model formulation eqs. 15 and 16 is specified
below. We denote the mth value of the Gibbs sequence using superscripts in parentheses:

0. Set the random variables: X(0)
0 , X(0)

1 , . . . , X(0)
q ,λ(0),µ(0), τ 2(0) at the arbitrary

values
x(0)

0 , x(0)
1 , . . . , x(0)

q ,λ(0), µ(0), τ2(0)
.

1. Generate a sample λ(1) from the conditional posterior distribution
pλ|x,µ,τ2

(
λ|x(0), µ(0), τ2(0)

)
, where x(0) = [x(0)

0 , x(0)
1 , . . . , x(0)

q ].

2. Generate a sample τ2(1) from the conditional posterior pτ2|x,µ,λ

(
τ2|x(0), µ(0),λ(1)

)
.

3. Generate a sample µ(1) from the conditional posterior pµ|x,τ2,λ

(
µ|x(0), τ2(1)

,λ(1)
)

.

4. Generate X(1)
0 = x(1)

0 from the conditional posterior pX0|Y0,d0,X1

(
x0|y0, d0, x

(0)
1

)
,

where y0, d0 denote respectively the observed number of segregant colonies at time
0 and the total number of colonies screened at time 0.

5. Iteratively generate the samples X(1)
i = x(1)

i , i = 1, 2, . . . , q from the conditional
posterior distributions pXi|Xt"=i,λ,τ2,µ,y,d

(
xi|x(1)

t<i, x
(0)
t>i,λ

(1), τ2(1)
, µ(1),y,d

)
, where

d = [d0, d1, . . . , dq]′

6. Set X(1)
0 = x(1)

0 , X(1)
1 = x(1)

1 , . . . , X(1)
q = x(1)

q ,λ(1) = λ(1),µ(1) = µ(1), τ 2(1) = τ2(1)

and repeat steps 1 to 6 m times. Here we used m = 31001.

The above procedure is repeated so as to obtain B samples θ(b), b = 1, . . . , B. Following
Casella and George’s argument above, the θ(b) are then samples of the multivariate joint
posterior eq. S1. Then, a sample from the marginal posterior distribution of the ith

element of the vector θ, (say θi = λ) is simply given by
{

θ(b)
i , b = 1, 2, . . . , B

}
, and no

high-dimensional integration is necessary (Meyer and Millar 1999). We also note that,
alternatively, instead of repeating the procedure B times, a single very long chain can
be generated and B samples from it be taken at lags multiple of $, provided that at lag
$, the serial autocorrelation in the chain has basically disappeared.
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The conditional posterior densities involved in the Gibbs algorithm were:

pλ|x,µ,τ2

(
λ|x(0), µ(0), τ2(0)

)
∝ pλ (λ)

∏q
t=1 pXt|Xt−1,λ,µ,τ2

(
xt|xt−1,λ, µ, τ2

)
,

pτ2|x,µ,λ

(
τ2|x(0), µ(0),λ(1)

)
∝ pτ2

(
τ2

) ∏q
t=1 pXt|Xt−1,λ,µ,τ2

(
xt|xt−1,λ, µ, τ2

)
,

pµ|x,τ2,λ

(
µ|x(0), τ2(1)

,λ(1)
)

∝ pµ (µ)
∏q

t=1 pXt|Xt−1,λ,µ,τ2

(
xt|xt−1,λ, µ, τ2

)
,

pX0|Xt>0,Y,λ,µ,τ2

(
x0|xt>0,y,λ, µ, τ2

)
∝ pY0|X0

(y0|x0) pX1|X0
(x1|x0) pX0 (x0) ,

pXt|Xj "=t,y,λ,µ,τ2

(
λ, µ, τ2

)
∝ pYt|Xt

(yt|xt) pXt+1|Xt
(xt+1|xt) pxt|xt−1

(xt|xt−1) ,

(S4)

where pYt|Xt
(yt|xt) and pxt|xt−1

(xt|xt−1) are given by the binomial likelihhood and the
Markov process transition density function eq. (12) respectively. To obtain random
samples from those conditional posterior pdf’s, the Sampling Importance Resampling
(SIR) method (Liu 2001) was used. As Carlin et al 1992 mention, the SIR method can be
inefficient and difficult to use when the cover distributions are difficult to find. However,
here all of the unknown trajectories locations have to be a number between 0 and 1.
Thus, we used uniform cover distributions and uniform priors for all of the unknowns,
and this enormously simplifies sampling according to the SIR algorithm. Assuming
uniform priors for our unknowns gave more confidence in the resulting analysis and
avoided having to rely in the specification of conjugate priors, as Carlin et al 1992 and
Meyer and Millar (1999) do, therefore avoiding having to investigate the effect of the
priors on our posterior distribution estimates. When r = 3 different realizations of the
stochastic process are sampled at each time step, the algorithm is basically the same
as in the unidimensional case explained above, except that the conditional posterior
distributions of the X process (see eq. 12 in the main text) is of multivariate dimension
3.

To evaluate the validity of the Bayesian procedures, the frequentist concept of boot-
strap (Efron and Tibshirani 1993) was used and 1000 data sets with 3 replicated sample
paths each was simulated and each time the parameter estimates and their posterior
distributions were found. Recall that the 1000 data sets containing each three repli-
cated time series of length 22 were simulated using the VS model x0 = 0.0066, µ = 0.35
per 30 generations, τ2 = 4.75 per 30 generations and λ = 0.00046 per 30 generations.
The prior distributions used where Xt ∼ Unif(0, 1), t = 1, . . . 21, µ ∼ Unif(0.01, 10)
and τ 2 ∼ Unif(0.01, 60). For λ a uniform distribution was also used. From the term
ht in eq. 12 it is readily seen that the value of λ is restricted to be less than xt, for
t = 1, . . . , q, and that is an assumption that derives from the model itself. So strictly,
the prior for λ, pλ(λ) is not independent from xt and rather, it should be written as
λ|Xt = xt ∼ Unif(0, xt). As it is shown in the results, this fact does not seem to have
affected the outcome of the MCMC computations.

The quality of the model fitting to the data in Fig. 3 was assessed and compared
between the deterministic and the stochastic models. In previous papers, De Gelder et
al (2004, 2006), we used Likelihood Ratio Tests (LRTs) to compare among the different
deterministic models involved. Similarly we use LRTs to determine if the stochastic
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model is a significant better explanation of the data relative to the deterministic model
eqs. (1,2,4,5). To do so, we defined first ϕ = [λ, µ, τ2, x0,1, x0,2, . . . , x0,r]′ to be the
parameters of interest. The reader should be aware that this notation now conforms the
frequentist paradigm and assumes that the parameters are unknown point values and
not random variables. Then, the likelihood function for the observations, denoted L(ϕ)
is (see eq. 17 in the main text):

L(ϕ) =
∏r

j=1 P (Yj|ϕ)

=
∏r

j=1

∫
P (Yj|ϕ,Xi)P (Xj|ϕ)dXj

=
∏r

j=1

∫ P (Yj|ϕ,Xi)P (Xj|ϕ)
P (Xj|Yj,ϕ) P (Xj|Yj,ϕ)dXj.

(S5)

To calculate the Likelihood score for a particular data set, we evaluated the likelihood
at the ML estimates of ϕ for that data set, i.e,,

L(ϕ̂) =
∏r

j=1 E(Xj|Yj,ϕ̂)

{
P (Yj|ϕ̂,Xi)P (Xj|ϕ̂)

P (Xj|Yj,ϕ̂)

}

≈
∏r

j=1
1
m

∑m
i=1

P (Yj|ϕ̂,Xi
(m))P (Xj

(m)|ϕ̂)

P (Xj
(m)|Yj,ϕ̂)

,

(C6)

where the (m)th sample (m = 2000) of the vector Xj was drawn at random using SIR
from the conditional posterior density Xj|Yj, ϕ̂). This posterior density is the Impor-
tance Sampling distribution and is calculated as the product from time 1 to q of the last
conditional posterior density shown in eq. S4 for the single replicate case. P (Xj|ϕ̂) is
the joint probability distribution of a particular sample path of the Xt process and is
computed as

∏q
t=1 pXt|Xt−1,ϕ̂ (xt|xt−1, ϕ̂). Finally, P (Yj|ϕ̂,Xi) is just the binomial den-

sity evaluated at a particular data set and at the ML estimates for that data set. All the
calculations were done in the freely available software R (http://www.r-project.org)
and a Beowulf cluster with 132 nodes.

http://styx.ibest.uidaho.edu/help/servers/server_info.html
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